kern_proc.c revision 1.83 1 /* $NetBSD: kern_proc.c,v 1.83 2005/11/26 05:26:33 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.83 2005/11/26 05:26:33 simonb Exp $");
73
74 #include "opt_kstack.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/acct.h>
83 #include <sys/wait.h>
84 #include <sys/file.h>
85 #include <ufs/ufs/quota.h>
86 #include <sys/uio.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/mbuf.h>
90 #include <sys/ioctl.h>
91 #include <sys/tty.h>
92 #include <sys/signalvar.h>
93 #include <sys/ras.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96 #include <sys/filedesc.h>
97
98 #include <uvm/uvm.h>
99 #include <uvm/uvm_extern.h>
100
101 /*
102 * Other process lists
103 */
104
105 struct proclist allproc;
106 struct proclist zombproc; /* resources have been freed */
107
108
109 /*
110 * Process list locking:
111 *
112 * We have two types of locks on the proclists: read locks and write
113 * locks. Read locks can be used in interrupt context, so while we
114 * hold the write lock, we must also block clock interrupts to
115 * lock out any scheduling changes that may happen in interrupt
116 * context.
117 *
118 * The proclist lock locks the following structures:
119 *
120 * allproc
121 * zombproc
122 * pid_table
123 */
124 struct lock proclist_lock;
125
126 /*
127 * pid to proc lookup is done by indexing the pid_table array.
128 * Since pid numbers are only allocated when an empty slot
129 * has been found, there is no need to search any lists ever.
130 * (an orphaned pgrp will lock the slot, a session will lock
131 * the pgrp with the same number.)
132 * If the table is too small it is reallocated with twice the
133 * previous size and the entries 'unzipped' into the two halves.
134 * A linked list of free entries is passed through the pt_proc
135 * field of 'free' items - set odd to be an invalid ptr.
136 */
137
138 struct pid_table {
139 struct proc *pt_proc;
140 struct pgrp *pt_pgrp;
141 };
142 #if 1 /* strongly typed cast - should be a noop */
143 static __inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
144 #else
145 #define p2u(p) ((uint)p)
146 #endif
147 #define P_VALID(p) (!(p2u(p) & 1))
148 #define P_NEXT(p) (p2u(p) >> 1)
149 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
150
151 #define INITIAL_PID_TABLE_SIZE (1 << 5)
152 static struct pid_table *pid_table;
153 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
154 static uint pid_alloc_lim; /* max we allocate before growing table */
155 static uint pid_alloc_cnt; /* number of allocated pids */
156
157 /* links through free slots - never empty! */
158 static uint next_free_pt, last_free_pt;
159 static pid_t pid_max = PID_MAX; /* largest value we allocate */
160
161 /* Components of the first process -- never freed. */
162 struct session session0;
163 struct pgrp pgrp0;
164 struct proc proc0;
165 struct lwp lwp0;
166 struct pcred cred0;
167 struct filedesc0 filedesc0;
168 struct cwdinfo cwdi0;
169 struct plimit limit0;
170 struct pstats pstat0;
171 struct vmspace vmspace0;
172 struct sigacts sigacts0;
173
174 extern struct user *proc0paddr;
175
176 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
177
178 int nofile = NOFILE;
179 int maxuprc = MAXUPRC;
180 int cmask = CMASK;
181
182 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
183 &pool_allocator_nointr);
184 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
185 &pool_allocator_nointr);
186 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
187 &pool_allocator_nointr);
188 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
189 &pool_allocator_nointr);
190 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
191 &pool_allocator_nointr);
192 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
193 &pool_allocator_nointr);
194 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
195 &pool_allocator_nointr);
196 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
197 &pool_allocator_nointr);
198 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
199 &pool_allocator_nointr);
200 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
201 &pool_allocator_nointr);
202 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
203 &pool_allocator_nointr);
204 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
205 &pool_allocator_nointr);
206 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
207 &pool_allocator_nointr);
208 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
209 &pool_allocator_nointr);
210
211 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
212 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
213 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
214
215 /*
216 * The process list descriptors, used during pid allocation and
217 * by sysctl. No locking on this data structure is needed since
218 * it is completely static.
219 */
220 const struct proclist_desc proclists[] = {
221 { &allproc },
222 { &zombproc },
223 { NULL },
224 };
225
226 static void orphanpg(struct pgrp *);
227 static void pg_delete(pid_t);
228
229 /*
230 * Initialize global process hashing structures.
231 */
232 void
233 procinit(void)
234 {
235 const struct proclist_desc *pd;
236 int i;
237 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
238
239 for (pd = proclists; pd->pd_list != NULL; pd++)
240 LIST_INIT(pd->pd_list);
241
242 spinlockinit(&proclist_lock, "proclk", 0);
243
244 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
245 M_PROC, M_WAITOK);
246 /* Set free list running through table...
247 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
248 for (i = 0; i <= pid_tbl_mask; i++) {
249 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
250 pid_table[i].pt_pgrp = 0;
251 }
252 /* slot 0 is just grabbed */
253 next_free_pt = 1;
254 /* Need to fix last entry. */
255 last_free_pt = pid_tbl_mask;
256 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
257 /* point at which we grow table - to avoid reusing pids too often */
258 pid_alloc_lim = pid_tbl_mask - 1;
259 #undef LINK_EMPTY
260
261 LIST_INIT(&alllwp);
262
263 uihashtbl =
264 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
265 }
266
267 /*
268 * Initialize process 0.
269 */
270 void
271 proc0_init(void)
272 {
273 struct proc *p;
274 struct pgrp *pg;
275 struct session *sess;
276 struct lwp *l;
277 int s;
278 u_int i;
279 rlim_t lim;
280
281 p = &proc0;
282 pg = &pgrp0;
283 sess = &session0;
284 l = &lwp0;
285
286 simple_lock_init(&p->p_lock);
287 LIST_INIT(&p->p_lwps);
288 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
289 p->p_nlwps = 1;
290 simple_lock_init(&p->p_sigctx.ps_silock);
291 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
292
293 s = proclist_lock_write();
294
295 pid_table[0].pt_proc = p;
296 LIST_INSERT_HEAD(&allproc, p, p_list);
297 LIST_INSERT_HEAD(&alllwp, l, l_list);
298
299 p->p_pgrp = pg;
300 pid_table[0].pt_pgrp = pg;
301 LIST_INIT(&pg->pg_members);
302 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
303
304 pg->pg_session = sess;
305 sess->s_count = 1;
306 sess->s_sid = 0;
307 sess->s_leader = p;
308
309 proclist_unlock_write(s);
310
311 /*
312 * Set P_NOCLDWAIT so that kernel threads are reparented to
313 * init(8) when they exit. init(8) can easily wait them out
314 * for us.
315 */
316 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
317 p->p_stat = SACTIVE;
318 p->p_nice = NZERO;
319 p->p_emul = &emul_netbsd;
320 #ifdef __HAVE_SYSCALL_INTERN
321 (*p->p_emul->e_syscall_intern)(p);
322 #endif
323 strncpy(p->p_comm, "swapper", MAXCOMLEN);
324
325 l->l_flag = L_INMEM;
326 l->l_stat = LSONPROC;
327 p->p_nrlwps = 1;
328
329 callout_init(&l->l_tsleep_ch);
330
331 /* Create credentials. */
332 cred0.p_refcnt = 1;
333 p->p_cred = &cred0;
334 p->p_ucred = crget();
335 p->p_ucred->cr_ngroups = 1; /* group 0 */
336
337 /* Create the CWD info. */
338 p->p_cwdi = &cwdi0;
339 cwdi0.cwdi_cmask = cmask;
340 cwdi0.cwdi_refcnt = 1;
341 simple_lock_init(&cwdi0.cwdi_slock);
342
343 /* Create the limits structures. */
344 p->p_limit = &limit0;
345 simple_lock_init(&limit0.p_slock);
346 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
347 limit0.pl_rlimit[i].rlim_cur =
348 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
349
350 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
351 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
352 maxfiles < nofile ? maxfiles : nofile;
353
354 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
355 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
356 maxproc < maxuprc ? maxproc : maxuprc;
357
358 lim = ptoa(uvmexp.free);
359 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
360 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
361 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
362 limit0.pl_corename = defcorename;
363 limit0.p_refcnt = 1;
364
365 /* Configure virtual memory system, set vm rlimits. */
366 uvm_init_limits(p);
367
368 /* Initialize file descriptor table for proc0. */
369 p->p_fd = &filedesc0.fd_fd;
370 fdinit1(&filedesc0);
371
372 /*
373 * Initialize proc0's vmspace, which uses the kernel pmap.
374 * All kernel processes (which never have user space mappings)
375 * share proc0's vmspace, and thus, the kernel pmap.
376 */
377 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
378 trunc_page(VM_MAX_ADDRESS));
379 p->p_vmspace = &vmspace0;
380
381 l->l_addr = proc0paddr; /* XXX */
382
383 p->p_stats = &pstat0;
384
385 /* Initialize signal state for proc0. */
386 p->p_sigacts = &sigacts0;
387 siginit(p);
388 }
389
390 /*
391 * Acquire a read lock on the proclist.
392 */
393 void
394 proclist_lock_read(void)
395 {
396 int error;
397
398 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
399 #ifdef DIAGNOSTIC
400 if (__predict_false(error != 0))
401 panic("proclist_lock_read: failed to acquire lock");
402 #endif
403 }
404
405 /*
406 * Release a read lock on the proclist.
407 */
408 void
409 proclist_unlock_read(void)
410 {
411
412 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
413 }
414
415 /*
416 * Acquire a write lock on the proclist.
417 */
418 int
419 proclist_lock_write(void)
420 {
421 int s, error;
422
423 s = splclock();
424 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
425 #ifdef DIAGNOSTIC
426 if (__predict_false(error != 0))
427 panic("proclist_lock: failed to acquire lock");
428 #endif
429 return s;
430 }
431
432 /*
433 * Release a write lock on the proclist.
434 */
435 void
436 proclist_unlock_write(int s)
437 {
438
439 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
440 splx(s);
441 }
442
443 /*
444 * Check that the specified process group is in the session of the
445 * specified process.
446 * Treats -ve ids as process ids.
447 * Used to validate TIOCSPGRP requests.
448 */
449 int
450 pgid_in_session(struct proc *p, pid_t pg_id)
451 {
452 struct pgrp *pgrp;
453
454 if (pg_id < 0) {
455 struct proc *p1 = pfind(-pg_id);
456 if (p1 == NULL)
457 return EINVAL;
458 pgrp = p1->p_pgrp;
459 } else {
460 pgrp = pgfind(pg_id);
461 if (pgrp == NULL)
462 return EINVAL;
463 }
464 if (pgrp->pg_session != p->p_pgrp->pg_session)
465 return EPERM;
466 return 0;
467 }
468
469 /*
470 * Is p an inferior of q?
471 */
472 int
473 inferior(struct proc *p, struct proc *q)
474 {
475
476 for (; p != q; p = p->p_pptr)
477 if (p->p_pid == 0)
478 return 0;
479 return 1;
480 }
481
482 /*
483 * Locate a process by number
484 */
485 struct proc *
486 p_find(pid_t pid, uint flags)
487 {
488 struct proc *p;
489 char stat;
490
491 if (!(flags & PFIND_LOCKED))
492 proclist_lock_read();
493 p = pid_table[pid & pid_tbl_mask].pt_proc;
494 /* Only allow live processes to be found by pid. */
495 if (P_VALID(p) && p->p_pid == pid &&
496 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
497 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
498 if (flags & PFIND_UNLOCK_OK)
499 proclist_unlock_read();
500 return p;
501 }
502 if (flags & PFIND_UNLOCK_FAIL)
503 proclist_unlock_read();
504 return NULL;
505 }
506
507
508 /*
509 * Locate a process group by number
510 */
511 struct pgrp *
512 pg_find(pid_t pgid, uint flags)
513 {
514 struct pgrp *pg;
515
516 if (!(flags & PFIND_LOCKED))
517 proclist_lock_read();
518 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
519 /*
520 * Can't look up a pgrp that only exists because the session
521 * hasn't died yet (traditional)
522 */
523 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
524 if (flags & PFIND_UNLOCK_FAIL)
525 proclist_unlock_read();
526 return NULL;
527 }
528
529 if (flags & PFIND_UNLOCK_OK)
530 proclist_unlock_read();
531 return pg;
532 }
533
534 static void
535 expand_pid_table(void)
536 {
537 uint pt_size = pid_tbl_mask + 1;
538 struct pid_table *n_pt, *new_pt;
539 struct proc *proc;
540 struct pgrp *pgrp;
541 int i;
542 int s;
543 pid_t pid;
544
545 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
546
547 s = proclist_lock_write();
548 if (pt_size != pid_tbl_mask + 1) {
549 /* Another process beat us to it... */
550 proclist_unlock_write(s);
551 FREE(new_pt, M_PROC);
552 return;
553 }
554
555 /*
556 * Copy entries from old table into new one.
557 * If 'pid' is 'odd' we need to place in the upper half,
558 * even pid's to the lower half.
559 * Free items stay in the low half so we don't have to
560 * fixup the reference to them.
561 * We stuff free items on the front of the freelist
562 * because we can't write to unmodified entries.
563 * Processing the table backwards maintains a semblance
564 * of issueing pid numbers that increase with time.
565 */
566 i = pt_size - 1;
567 n_pt = new_pt + i;
568 for (; ; i--, n_pt--) {
569 proc = pid_table[i].pt_proc;
570 pgrp = pid_table[i].pt_pgrp;
571 if (!P_VALID(proc)) {
572 /* Up 'use count' so that link is valid */
573 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
574 proc = P_FREE(pid);
575 if (pgrp)
576 pid = pgrp->pg_id;
577 } else
578 pid = proc->p_pid;
579
580 /* Save entry in appropriate half of table */
581 n_pt[pid & pt_size].pt_proc = proc;
582 n_pt[pid & pt_size].pt_pgrp = pgrp;
583
584 /* Put other piece on start of free list */
585 pid = (pid ^ pt_size) & ~pid_tbl_mask;
586 n_pt[pid & pt_size].pt_proc =
587 P_FREE((pid & ~pt_size) | next_free_pt);
588 n_pt[pid & pt_size].pt_pgrp = 0;
589 next_free_pt = i | (pid & pt_size);
590 if (i == 0)
591 break;
592 }
593
594 /* Switch tables */
595 n_pt = pid_table;
596 pid_table = new_pt;
597 pid_tbl_mask = pt_size * 2 - 1;
598
599 /*
600 * pid_max starts as PID_MAX (= 30000), once we have 16384
601 * allocated pids we need it to be larger!
602 */
603 if (pid_tbl_mask > PID_MAX) {
604 pid_max = pid_tbl_mask * 2 + 1;
605 pid_alloc_lim |= pid_alloc_lim << 1;
606 } else
607 pid_alloc_lim <<= 1; /* doubles number of free slots... */
608
609 proclist_unlock_write(s);
610 FREE(n_pt, M_PROC);
611 }
612
613 struct proc *
614 proc_alloc(void)
615 {
616 struct proc *p;
617 int s;
618 int nxt;
619 pid_t pid;
620 struct pid_table *pt;
621
622 p = pool_get(&proc_pool, PR_WAITOK);
623 p->p_stat = SIDL; /* protect against others */
624
625 /* allocate next free pid */
626
627 for (;;expand_pid_table()) {
628 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
629 /* ensure pids cycle through 2000+ values */
630 continue;
631 s = proclist_lock_write();
632 pt = &pid_table[next_free_pt];
633 #ifdef DIAGNOSTIC
634 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
635 panic("proc_alloc: slot busy");
636 #endif
637 nxt = P_NEXT(pt->pt_proc);
638 if (nxt & pid_tbl_mask)
639 break;
640 /* Table full - expand (NB last entry not used....) */
641 proclist_unlock_write(s);
642 }
643
644 /* pid is 'saved use count' + 'size' + entry */
645 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
646 if ((uint)pid > (uint)pid_max)
647 pid &= pid_tbl_mask;
648 p->p_pid = pid;
649 next_free_pt = nxt & pid_tbl_mask;
650
651 /* Grab table slot */
652 pt->pt_proc = p;
653 pid_alloc_cnt++;
654
655 proclist_unlock_write(s);
656
657 return p;
658 }
659
660 /*
661 * Free last resources of a process - called from proc_free (in kern_exit.c)
662 */
663 void
664 proc_free_mem(struct proc *p)
665 {
666 int s;
667 pid_t pid = p->p_pid;
668 struct pid_table *pt;
669
670 s = proclist_lock_write();
671
672 pt = &pid_table[pid & pid_tbl_mask];
673 #ifdef DIAGNOSTIC
674 if (__predict_false(pt->pt_proc != p))
675 panic("proc_free: pid_table mismatch, pid %x, proc %p",
676 pid, p);
677 #endif
678 /* save pid use count in slot */
679 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
680
681 if (pt->pt_pgrp == NULL) {
682 /* link last freed entry onto ours */
683 pid &= pid_tbl_mask;
684 pt = &pid_table[last_free_pt];
685 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
686 last_free_pt = pid;
687 pid_alloc_cnt--;
688 }
689
690 nprocs--;
691 proclist_unlock_write(s);
692
693 pool_put(&proc_pool, p);
694 }
695
696 /*
697 * Move p to a new or existing process group (and session)
698 *
699 * If we are creating a new pgrp, the pgid should equal
700 * the calling process' pid.
701 * If is only valid to enter a process group that is in the session
702 * of the process.
703 * Also mksess should only be set if we are creating a process group
704 *
705 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
706 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
707 */
708 int
709 enterpgrp(struct proc *p, pid_t pgid, int mksess)
710 {
711 struct pgrp *new_pgrp, *pgrp;
712 struct session *sess;
713 struct proc *curp = curproc;
714 pid_t pid = p->p_pid;
715 int rval;
716 int s;
717 pid_t pg_id = NO_PGID;
718
719 /* Allocate data areas we might need before doing any validity checks */
720 proclist_lock_read(); /* Because pid_table might change */
721 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
722 proclist_unlock_read();
723 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
724 } else {
725 proclist_unlock_read();
726 new_pgrp = NULL;
727 }
728 if (mksess)
729 sess = pool_get(&session_pool, M_WAITOK);
730 else
731 sess = NULL;
732
733 s = proclist_lock_write();
734 rval = EPERM; /* most common error (to save typing) */
735
736 /* Check pgrp exists or can be created */
737 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
738 if (pgrp != NULL && pgrp->pg_id != pgid)
739 goto done;
740
741 /* Can only set another process under restricted circumstances. */
742 if (p != curp) {
743 /* must exist and be one of our children... */
744 if (p != pid_table[pid & pid_tbl_mask].pt_proc
745 || !inferior(p, curp)) {
746 rval = ESRCH;
747 goto done;
748 }
749 /* ... in the same session... */
750 if (sess != NULL || p->p_session != curp->p_session)
751 goto done;
752 /* ... existing pgid must be in same session ... */
753 if (pgrp != NULL && pgrp->pg_session != p->p_session)
754 goto done;
755 /* ... and not done an exec. */
756 if (p->p_flag & P_EXEC) {
757 rval = EACCES;
758 goto done;
759 }
760 }
761
762 /* Changing the process group/session of a session
763 leader is definitely off limits. */
764 if (SESS_LEADER(p)) {
765 if (sess == NULL && p->p_pgrp == pgrp)
766 /* unless it's a definite noop */
767 rval = 0;
768 goto done;
769 }
770
771 /* Can only create a process group with id of process */
772 if (pgrp == NULL && pgid != pid)
773 goto done;
774
775 /* Can only create a session if creating pgrp */
776 if (sess != NULL && pgrp != NULL)
777 goto done;
778
779 /* Check we allocated memory for a pgrp... */
780 if (pgrp == NULL && new_pgrp == NULL)
781 goto done;
782
783 /* Don't attach to 'zombie' pgrp */
784 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
785 goto done;
786
787 /* Expect to succeed now */
788 rval = 0;
789
790 if (pgrp == p->p_pgrp)
791 /* nothing to do */
792 goto done;
793
794 /* Ok all setup, link up required structures */
795 if (pgrp == NULL) {
796 pgrp = new_pgrp;
797 new_pgrp = 0;
798 if (sess != NULL) {
799 sess->s_sid = p->p_pid;
800 sess->s_leader = p;
801 sess->s_count = 1;
802 sess->s_ttyvp = NULL;
803 sess->s_ttyp = NULL;
804 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
805 memcpy(sess->s_login, p->p_session->s_login,
806 sizeof(sess->s_login));
807 p->p_flag &= ~P_CONTROLT;
808 } else {
809 sess = p->p_pgrp->pg_session;
810 SESSHOLD(sess);
811 }
812 pgrp->pg_session = sess;
813 sess = 0;
814
815 pgrp->pg_id = pgid;
816 LIST_INIT(&pgrp->pg_members);
817 #ifdef DIAGNOSTIC
818 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
819 panic("enterpgrp: pgrp table slot in use");
820 if (__predict_false(mksess && p != curp))
821 panic("enterpgrp: mksession and p != curproc");
822 #endif
823 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
824 pgrp->pg_jobc = 0;
825 }
826
827 /*
828 * Adjust eligibility of affected pgrps to participate in job control.
829 * Increment eligibility counts before decrementing, otherwise we
830 * could reach 0 spuriously during the first call.
831 */
832 fixjobc(p, pgrp, 1);
833 fixjobc(p, p->p_pgrp, 0);
834
835 /* Move process to requested group */
836 LIST_REMOVE(p, p_pglist);
837 if (LIST_EMPTY(&p->p_pgrp->pg_members))
838 /* defer delete until we've dumped the lock */
839 pg_id = p->p_pgrp->pg_id;
840 p->p_pgrp = pgrp;
841 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
842
843 done:
844 proclist_unlock_write(s);
845 if (sess != NULL)
846 pool_put(&session_pool, sess);
847 if (new_pgrp != NULL)
848 pool_put(&pgrp_pool, new_pgrp);
849 if (pg_id != NO_PGID)
850 pg_delete(pg_id);
851 #ifdef DEBUG_PGRP
852 if (__predict_false(rval))
853 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
854 pid, pgid, mksess, curp->p_pid, rval);
855 #endif
856 return rval;
857 }
858
859 /*
860 * remove process from process group
861 */
862 int
863 leavepgrp(struct proc *p)
864 {
865 int s;
866 struct pgrp *pgrp;
867 pid_t pg_id;
868
869 s = proclist_lock_write();
870 pgrp = p->p_pgrp;
871 LIST_REMOVE(p, p_pglist);
872 p->p_pgrp = 0;
873 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
874 proclist_unlock_write(s);
875
876 if (pg_id != NO_PGID)
877 pg_delete(pg_id);
878 return 0;
879 }
880
881 static void
882 pg_free(pid_t pg_id)
883 {
884 struct pgrp *pgrp;
885 struct pid_table *pt;
886 int s;
887
888 s = proclist_lock_write();
889 pt = &pid_table[pg_id & pid_tbl_mask];
890 pgrp = pt->pt_pgrp;
891 #ifdef DIAGNOSTIC
892 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
893 || !LIST_EMPTY(&pgrp->pg_members)))
894 panic("pg_free: process group absent or has members");
895 #endif
896 pt->pt_pgrp = 0;
897
898 if (!P_VALID(pt->pt_proc)) {
899 /* orphaned pgrp, put slot onto free list */
900 #ifdef DIAGNOSTIC
901 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
902 panic("pg_free: process slot on free list");
903 #endif
904
905 pg_id &= pid_tbl_mask;
906 pt = &pid_table[last_free_pt];
907 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
908 last_free_pt = pg_id;
909 pid_alloc_cnt--;
910 }
911 proclist_unlock_write(s);
912
913 pool_put(&pgrp_pool, pgrp);
914 }
915
916 /*
917 * delete a process group
918 */
919 static void
920 pg_delete(pid_t pg_id)
921 {
922 struct pgrp *pgrp;
923 struct tty *ttyp;
924 struct session *ss;
925 int s, is_pgrp_leader;
926
927 s = proclist_lock_write();
928 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
929 if (pgrp == NULL || pgrp->pg_id != pg_id ||
930 !LIST_EMPTY(&pgrp->pg_members)) {
931 proclist_unlock_write(s);
932 return;
933 }
934
935 ss = pgrp->pg_session;
936
937 /* Remove reference (if any) from tty to this process group */
938 ttyp = ss->s_ttyp;
939 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
940 ttyp->t_pgrp = NULL;
941 #ifdef DIAGNOSTIC
942 if (ttyp->t_session != ss)
943 panic("pg_delete: wrong session on terminal");
944 #endif
945 }
946
947 /*
948 * The leading process group in a session is freed
949 * by sessdelete() if last reference.
950 */
951 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
952 proclist_unlock_write(s);
953 SESSRELE(ss);
954
955 if (is_pgrp_leader)
956 return;
957
958 pg_free(pg_id);
959 }
960
961 /*
962 * Delete session - called from SESSRELE when s_count becomes zero.
963 */
964 void
965 sessdelete(struct session *ss)
966 {
967 /*
968 * We keep the pgrp with the same id as the session in
969 * order to stop a process being given the same pid.
970 * Since the pgrp holds a reference to the session, it
971 * must be a 'zombie' pgrp by now.
972 */
973
974 pg_free(ss->s_sid);
975
976 pool_put(&session_pool, ss);
977 }
978
979 /*
980 * Adjust pgrp jobc counters when specified process changes process group.
981 * We count the number of processes in each process group that "qualify"
982 * the group for terminal job control (those with a parent in a different
983 * process group of the same session). If that count reaches zero, the
984 * process group becomes orphaned. Check both the specified process'
985 * process group and that of its children.
986 * entering == 0 => p is leaving specified group.
987 * entering == 1 => p is entering specified group.
988 *
989 * Call with proclist_lock held.
990 */
991 void
992 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
993 {
994 struct pgrp *hispgrp;
995 struct session *mysession = pgrp->pg_session;
996 struct proc *child;
997
998 /*
999 * Check p's parent to see whether p qualifies its own process
1000 * group; if so, adjust count for p's process group.
1001 */
1002 hispgrp = p->p_pptr->p_pgrp;
1003 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1004 if (entering)
1005 pgrp->pg_jobc++;
1006 else if (--pgrp->pg_jobc == 0)
1007 orphanpg(pgrp);
1008 }
1009
1010 /*
1011 * Check this process' children to see whether they qualify
1012 * their process groups; if so, adjust counts for children's
1013 * process groups.
1014 */
1015 LIST_FOREACH(child, &p->p_children, p_sibling) {
1016 hispgrp = child->p_pgrp;
1017 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1018 !P_ZOMBIE(child)) {
1019 if (entering)
1020 hispgrp->pg_jobc++;
1021 else if (--hispgrp->pg_jobc == 0)
1022 orphanpg(hispgrp);
1023 }
1024 }
1025 }
1026
1027 /*
1028 * A process group has become orphaned;
1029 * if there are any stopped processes in the group,
1030 * hang-up all process in that group.
1031 *
1032 * Call with proclist_lock held.
1033 */
1034 static void
1035 orphanpg(struct pgrp *pg)
1036 {
1037 struct proc *p;
1038
1039 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1040 if (p->p_stat == SSTOP) {
1041 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1042 psignal(p, SIGHUP);
1043 psignal(p, SIGCONT);
1044 }
1045 return;
1046 }
1047 }
1048 }
1049
1050 /* mark process as suid/sgid, reset some values to defaults */
1051 void
1052 p_sugid(struct proc *p)
1053 {
1054 struct plimit *lim;
1055 char *cn;
1056
1057 p->p_flag |= P_SUGID;
1058 /* reset what needs to be reset in plimit */
1059 lim = p->p_limit;
1060 if (lim->pl_corename != defcorename) {
1061 if (lim->p_refcnt > 1 &&
1062 (lim->p_lflags & PL_SHAREMOD) == 0) {
1063 p->p_limit = limcopy(lim);
1064 limfree(lim);
1065 lim = p->p_limit;
1066 }
1067 simple_lock(&lim->p_slock);
1068 cn = lim->pl_corename;
1069 lim->pl_corename = defcorename;
1070 simple_unlock(&lim->p_slock);
1071 if (cn != defcorename)
1072 free(cn, M_TEMP);
1073 }
1074 }
1075
1076 #ifdef DDB
1077 #include <ddb/db_output.h>
1078 void pidtbl_dump(void);
1079 void
1080 pidtbl_dump(void)
1081 {
1082 struct pid_table *pt;
1083 struct proc *p;
1084 struct pgrp *pgrp;
1085 int id;
1086
1087 db_printf("pid table %p size %x, next %x, last %x\n",
1088 pid_table, pid_tbl_mask+1,
1089 next_free_pt, last_free_pt);
1090 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1091 p = pt->pt_proc;
1092 if (!P_VALID(p) && !pt->pt_pgrp)
1093 continue;
1094 db_printf(" id %x: ", id);
1095 if (P_VALID(p))
1096 db_printf("proc %p id %d (0x%x) %s\n",
1097 p, p->p_pid, p->p_pid, p->p_comm);
1098 else
1099 db_printf("next %x use %x\n",
1100 P_NEXT(p) & pid_tbl_mask,
1101 P_NEXT(p) & ~pid_tbl_mask);
1102 if ((pgrp = pt->pt_pgrp)) {
1103 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1104 pgrp->pg_session, pgrp->pg_session->s_sid,
1105 pgrp->pg_session->s_count,
1106 pgrp->pg_session->s_login);
1107 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1108 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1109 pgrp->pg_members.lh_first);
1110 for (p = pgrp->pg_members.lh_first; p != 0;
1111 p = p->p_pglist.le_next) {
1112 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1113 p->p_pid, p, p->p_pgrp, p->p_comm);
1114 }
1115 }
1116 }
1117 }
1118 #endif /* DDB */
1119
1120 #ifdef KSTACK_CHECK_MAGIC
1121 #include <sys/user.h>
1122
1123 #define KSTACK_MAGIC 0xdeadbeaf
1124
1125 /* XXX should be per process basis? */
1126 int kstackleftmin = KSTACK_SIZE;
1127 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1128 less than this */
1129
1130 void
1131 kstack_setup_magic(const struct lwp *l)
1132 {
1133 u_int32_t *ip;
1134 u_int32_t const *end;
1135
1136 KASSERT(l != NULL);
1137 KASSERT(l != &lwp0);
1138
1139 /*
1140 * fill all the stack with magic number
1141 * so that later modification on it can be detected.
1142 */
1143 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1144 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1145 for (; ip < end; ip++) {
1146 *ip = KSTACK_MAGIC;
1147 }
1148 }
1149
1150 void
1151 kstack_check_magic(const struct lwp *l)
1152 {
1153 u_int32_t const *ip, *end;
1154 int stackleft;
1155
1156 KASSERT(l != NULL);
1157
1158 /* don't check proc0 */ /*XXX*/
1159 if (l == &lwp0)
1160 return;
1161
1162 #ifdef __MACHINE_STACK_GROWS_UP
1163 /* stack grows upwards (eg. hppa) */
1164 ip = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1165 end = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1166 for (ip--; ip >= end; ip--)
1167 if (*ip != KSTACK_MAGIC)
1168 break;
1169
1170 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1171 #else /* __MACHINE_STACK_GROWS_UP */
1172 /* stack grows downwards (eg. i386) */
1173 ip = (u_int32_t *)KSTACK_LOWEST_ADDR(l);
1174 end = (u_int32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1175 for (; ip < end; ip++)
1176 if (*ip != KSTACK_MAGIC)
1177 break;
1178
1179 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1180 #endif /* __MACHINE_STACK_GROWS_UP */
1181
1182 if (kstackleftmin > stackleft) {
1183 kstackleftmin = stackleft;
1184 if (stackleft < kstackleftthres)
1185 printf("warning: kernel stack left %d bytes"
1186 "(pid %u:lid %u)\n", stackleft,
1187 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1188 }
1189
1190 if (stackleft <= 0) {
1191 panic("magic on the top of kernel stack changed for "
1192 "pid %u, lid %u: maybe kernel stack overflow",
1193 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1194 }
1195 }
1196 #endif /* KSTACK_CHECK_MAGIC */
1197
1198 /* XXX shouldn't be here */
1199 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1200 #define PROCLIST_ASSERT_LOCKED_READ() \
1201 KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1202 #else
1203 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */
1204 #endif
1205
1206 int
1207 proclist_foreach_call(struct proclist *list,
1208 int (*callback)(struct proc *, void *arg), void *arg)
1209 {
1210 struct proc marker;
1211 struct proc *p;
1212 struct lwp * const l = curlwp;
1213 int ret = 0;
1214
1215 marker.p_flag = P_MARKER;
1216 PHOLD(l);
1217 proclist_lock_read();
1218 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1219 if (p->p_flag & P_MARKER) {
1220 p = LIST_NEXT(p, p_list);
1221 continue;
1222 }
1223 LIST_INSERT_AFTER(p, &marker, p_list);
1224 ret = (*callback)(p, arg);
1225 PROCLIST_ASSERT_LOCKED_READ();
1226 p = LIST_NEXT(&marker, p_list);
1227 LIST_REMOVE(&marker, p_list);
1228 }
1229 proclist_unlock_read();
1230 PRELE(l);
1231
1232 return ret;
1233 }
1234