kern_proc.c revision 1.85.4.1 1 /* $NetBSD: kern_proc.c,v 1.85.4.1 2006/09/09 02:57:16 rpaulo Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.85.4.1 2006/09/09 02:57:16 rpaulo Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112
113 /*
114 * Process list locking:
115 *
116 * We have two types of locks on the proclists: read locks and write
117 * locks. Read locks can be used in interrupt context, so while we
118 * hold the write lock, we must also block clock interrupts to
119 * lock out any scheduling changes that may happen in interrupt
120 * context.
121 *
122 * The proclist lock locks the following structures:
123 *
124 * allproc
125 * zombproc
126 * pid_table
127 */
128 struct lock proclist_lock;
129
130 /*
131 * pid to proc lookup is done by indexing the pid_table array.
132 * Since pid numbers are only allocated when an empty slot
133 * has been found, there is no need to search any lists ever.
134 * (an orphaned pgrp will lock the slot, a session will lock
135 * the pgrp with the same number.)
136 * If the table is too small it is reallocated with twice the
137 * previous size and the entries 'unzipped' into the two halves.
138 * A linked list of free entries is passed through the pt_proc
139 * field of 'free' items - set odd to be an invalid ptr.
140 */
141
142 struct pid_table {
143 struct proc *pt_proc;
144 struct pgrp *pt_pgrp;
145 };
146 #if 1 /* strongly typed cast - should be a noop */
147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
148 #else
149 #define p2u(p) ((uint)p)
150 #endif
151 #define P_VALID(p) (!(p2u(p) & 1))
152 #define P_NEXT(p) (p2u(p) >> 1)
153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
154
155 #define INITIAL_PID_TABLE_SIZE (1 << 5)
156 static struct pid_table *pid_table;
157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
158 static uint pid_alloc_lim; /* max we allocate before growing table */
159 static uint pid_alloc_cnt; /* number of allocated pids */
160
161 /* links through free slots - never empty! */
162 static uint next_free_pt, last_free_pt;
163 static pid_t pid_max = PID_MAX; /* largest value we allocate */
164
165 /* Components of the first process -- never freed. */
166 struct session session0;
167 struct pgrp pgrp0;
168 struct proc proc0;
169 struct lwp lwp0;
170 kauth_cred_t cred0;
171 struct filedesc0 filedesc0;
172 struct cwdinfo cwdi0;
173 struct plimit limit0;
174 struct pstats pstat0;
175 struct vmspace vmspace0;
176 struct sigacts sigacts0;
177
178 extern struct user *proc0paddr;
179
180 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
181
182 int nofile = NOFILE;
183 int maxuprc = MAXUPRC;
184 int cmask = CMASK;
185
186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
187 &pool_allocator_nointr);
188 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
189 &pool_allocator_nointr);
190 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
191 &pool_allocator_nointr);
192 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
193 &pool_allocator_nointr);
194 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
195 &pool_allocator_nointr);
196 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
197 &pool_allocator_nointr);
198 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
199 &pool_allocator_nointr);
200 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
201 &pool_allocator_nointr);
202 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
203 &pool_allocator_nointr);
204
205 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
206 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
207 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
208
209 /*
210 * The process list descriptors, used during pid allocation and
211 * by sysctl. No locking on this data structure is needed since
212 * it is completely static.
213 */
214 const struct proclist_desc proclists[] = {
215 { &allproc },
216 { &zombproc },
217 { NULL },
218 };
219
220 static void orphanpg(struct pgrp *);
221 static void pg_delete(pid_t);
222
223 /*
224 * Initialize global process hashing structures.
225 */
226 void
227 procinit(void)
228 {
229 const struct proclist_desc *pd;
230 int i;
231 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
232
233 for (pd = proclists; pd->pd_list != NULL; pd++)
234 LIST_INIT(pd->pd_list);
235
236 spinlockinit(&proclist_lock, "proclk", 0);
237
238 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
239 M_PROC, M_WAITOK);
240 /* Set free list running through table...
241 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
242 for (i = 0; i <= pid_tbl_mask; i++) {
243 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
244 pid_table[i].pt_pgrp = 0;
245 }
246 /* slot 0 is just grabbed */
247 next_free_pt = 1;
248 /* Need to fix last entry. */
249 last_free_pt = pid_tbl_mask;
250 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
251 /* point at which we grow table - to avoid reusing pids too often */
252 pid_alloc_lim = pid_tbl_mask - 1;
253 #undef LINK_EMPTY
254
255 LIST_INIT(&alllwp);
256
257 uihashtbl =
258 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
259 }
260
261 /*
262 * Initialize process 0.
263 */
264 void
265 proc0_init(void)
266 {
267 struct proc *p;
268 struct pgrp *pg;
269 struct session *sess;
270 struct lwp *l;
271 int s;
272 u_int i;
273 rlim_t lim;
274
275 p = &proc0;
276 pg = &pgrp0;
277 sess = &session0;
278 l = &lwp0;
279
280 simple_lock_init(&p->p_lock);
281 LIST_INIT(&p->p_lwps);
282 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
283 p->p_nlwps = 1;
284 simple_lock_init(&p->p_sigctx.ps_silock);
285 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
286
287 s = proclist_lock_write();
288
289 pid_table[0].pt_proc = p;
290 LIST_INSERT_HEAD(&allproc, p, p_list);
291 LIST_INSERT_HEAD(&alllwp, l, l_list);
292
293 p->p_pgrp = pg;
294 pid_table[0].pt_pgrp = pg;
295 LIST_INIT(&pg->pg_members);
296 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
297
298 pg->pg_session = sess;
299 sess->s_count = 1;
300 sess->s_sid = 0;
301 sess->s_leader = p;
302
303 proclist_unlock_write(s);
304
305 /*
306 * Set P_NOCLDWAIT so that kernel threads are reparented to
307 * init(8) when they exit. init(8) can easily wait them out
308 * for us.
309 */
310 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
311 p->p_stat = SACTIVE;
312 p->p_nice = NZERO;
313 p->p_emul = &emul_netbsd;
314 #ifdef __HAVE_SYSCALL_INTERN
315 (*p->p_emul->e_syscall_intern)(p);
316 #endif
317 strncpy(p->p_comm, "swapper", MAXCOMLEN);
318
319 l->l_flag = L_INMEM;
320 l->l_stat = LSONPROC;
321 p->p_nrlwps = 1;
322
323 callout_init(&l->l_tsleep_ch);
324
325 /* Create credentials. */
326 cred0 = kauth_cred_alloc();
327 p->p_cred = cred0;
328 lwp_update_creds(l);
329
330 /* Create the CWD info. */
331 p->p_cwdi = &cwdi0;
332 cwdi0.cwdi_cmask = cmask;
333 cwdi0.cwdi_refcnt = 1;
334 simple_lock_init(&cwdi0.cwdi_slock);
335
336 /* Create the limits structures. */
337 p->p_limit = &limit0;
338 simple_lock_init(&limit0.p_slock);
339 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
340 limit0.pl_rlimit[i].rlim_cur =
341 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
342
343 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
344 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
345 maxfiles < nofile ? maxfiles : nofile;
346
347 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
348 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
349 maxproc < maxuprc ? maxproc : maxuprc;
350
351 lim = ptoa(uvmexp.free);
352 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
353 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
354 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
355 limit0.pl_corename = defcorename;
356 limit0.p_refcnt = 1;
357
358 /* Configure virtual memory system, set vm rlimits. */
359 uvm_init_limits(p);
360
361 /* Initialize file descriptor table for proc0. */
362 p->p_fd = &filedesc0.fd_fd;
363 fdinit1(&filedesc0);
364
365 /*
366 * Initialize proc0's vmspace, which uses the kernel pmap.
367 * All kernel processes (which never have user space mappings)
368 * share proc0's vmspace, and thus, the kernel pmap.
369 */
370 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
371 trunc_page(VM_MAX_ADDRESS));
372 p->p_vmspace = &vmspace0;
373
374 l->l_addr = proc0paddr; /* XXX */
375
376 p->p_stats = &pstat0;
377
378 /* Initialize signal state for proc0. */
379 p->p_sigacts = &sigacts0;
380 siginit(p);
381 }
382
383 /*
384 * Acquire a read lock on the proclist.
385 */
386 void
387 proclist_lock_read(void)
388 {
389 int error;
390
391 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
392 #ifdef DIAGNOSTIC
393 if (__predict_false(error != 0))
394 panic("proclist_lock_read: failed to acquire lock");
395 #endif
396 }
397
398 /*
399 * Release a read lock on the proclist.
400 */
401 void
402 proclist_unlock_read(void)
403 {
404
405 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
406 }
407
408 /*
409 * Acquire a write lock on the proclist.
410 */
411 int
412 proclist_lock_write(void)
413 {
414 int s, error;
415
416 s = splclock();
417 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
418 #ifdef DIAGNOSTIC
419 if (__predict_false(error != 0))
420 panic("proclist_lock: failed to acquire lock");
421 #endif
422 return s;
423 }
424
425 /*
426 * Release a write lock on the proclist.
427 */
428 void
429 proclist_unlock_write(int s)
430 {
431
432 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
433 splx(s);
434 }
435
436 /*
437 * Check that the specified process group is in the session of the
438 * specified process.
439 * Treats -ve ids as process ids.
440 * Used to validate TIOCSPGRP requests.
441 */
442 int
443 pgid_in_session(struct proc *p, pid_t pg_id)
444 {
445 struct pgrp *pgrp;
446
447 if (pg_id < 0) {
448 struct proc *p1 = pfind(-pg_id);
449 if (p1 == NULL)
450 return EINVAL;
451 pgrp = p1->p_pgrp;
452 } else {
453 pgrp = pgfind(pg_id);
454 if (pgrp == NULL)
455 return EINVAL;
456 }
457 if (pgrp->pg_session != p->p_pgrp->pg_session)
458 return EPERM;
459 return 0;
460 }
461
462 /*
463 * Is p an inferior of q?
464 *
465 * Call with the proclist_lock held.
466 */
467 int
468 inferior(struct proc *p, struct proc *q)
469 {
470
471 for (; p != q; p = p->p_pptr)
472 if (p->p_pid == 0)
473 return 0;
474 return 1;
475 }
476
477 /*
478 * Locate a process by number
479 */
480 struct proc *
481 p_find(pid_t pid, uint flags)
482 {
483 struct proc *p;
484 char stat;
485
486 if (!(flags & PFIND_LOCKED))
487 proclist_lock_read();
488 p = pid_table[pid & pid_tbl_mask].pt_proc;
489 /* Only allow live processes to be found by pid. */
490 if (P_VALID(p) && p->p_pid == pid &&
491 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
492 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
493 if (flags & PFIND_UNLOCK_OK)
494 proclist_unlock_read();
495 return p;
496 }
497 if (flags & PFIND_UNLOCK_FAIL)
498 proclist_unlock_read();
499 return NULL;
500 }
501
502
503 /*
504 * Locate a process group by number
505 */
506 struct pgrp *
507 pg_find(pid_t pgid, uint flags)
508 {
509 struct pgrp *pg;
510
511 if (!(flags & PFIND_LOCKED))
512 proclist_lock_read();
513 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
514 /*
515 * Can't look up a pgrp that only exists because the session
516 * hasn't died yet (traditional)
517 */
518 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
519 if (flags & PFIND_UNLOCK_FAIL)
520 proclist_unlock_read();
521 return NULL;
522 }
523
524 if (flags & PFIND_UNLOCK_OK)
525 proclist_unlock_read();
526 return pg;
527 }
528
529 static void
530 expand_pid_table(void)
531 {
532 uint pt_size = pid_tbl_mask + 1;
533 struct pid_table *n_pt, *new_pt;
534 struct proc *proc;
535 struct pgrp *pgrp;
536 int i;
537 int s;
538 pid_t pid;
539
540 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
541
542 s = proclist_lock_write();
543 if (pt_size != pid_tbl_mask + 1) {
544 /* Another process beat us to it... */
545 proclist_unlock_write(s);
546 FREE(new_pt, M_PROC);
547 return;
548 }
549
550 /*
551 * Copy entries from old table into new one.
552 * If 'pid' is 'odd' we need to place in the upper half,
553 * even pid's to the lower half.
554 * Free items stay in the low half so we don't have to
555 * fixup the reference to them.
556 * We stuff free items on the front of the freelist
557 * because we can't write to unmodified entries.
558 * Processing the table backwards maintains a semblance
559 * of issueing pid numbers that increase with time.
560 */
561 i = pt_size - 1;
562 n_pt = new_pt + i;
563 for (; ; i--, n_pt--) {
564 proc = pid_table[i].pt_proc;
565 pgrp = pid_table[i].pt_pgrp;
566 if (!P_VALID(proc)) {
567 /* Up 'use count' so that link is valid */
568 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
569 proc = P_FREE(pid);
570 if (pgrp)
571 pid = pgrp->pg_id;
572 } else
573 pid = proc->p_pid;
574
575 /* Save entry in appropriate half of table */
576 n_pt[pid & pt_size].pt_proc = proc;
577 n_pt[pid & pt_size].pt_pgrp = pgrp;
578
579 /* Put other piece on start of free list */
580 pid = (pid ^ pt_size) & ~pid_tbl_mask;
581 n_pt[pid & pt_size].pt_proc =
582 P_FREE((pid & ~pt_size) | next_free_pt);
583 n_pt[pid & pt_size].pt_pgrp = 0;
584 next_free_pt = i | (pid & pt_size);
585 if (i == 0)
586 break;
587 }
588
589 /* Switch tables */
590 n_pt = pid_table;
591 pid_table = new_pt;
592 pid_tbl_mask = pt_size * 2 - 1;
593
594 /*
595 * pid_max starts as PID_MAX (= 30000), once we have 16384
596 * allocated pids we need it to be larger!
597 */
598 if (pid_tbl_mask > PID_MAX) {
599 pid_max = pid_tbl_mask * 2 + 1;
600 pid_alloc_lim |= pid_alloc_lim << 1;
601 } else
602 pid_alloc_lim <<= 1; /* doubles number of free slots... */
603
604 proclist_unlock_write(s);
605 FREE(n_pt, M_PROC);
606 }
607
608 struct proc *
609 proc_alloc(void)
610 {
611 struct proc *p;
612 int s;
613 int nxt;
614 pid_t pid;
615 struct pid_table *pt;
616
617 p = pool_get(&proc_pool, PR_WAITOK);
618 p->p_stat = SIDL; /* protect against others */
619
620 /* allocate next free pid */
621
622 for (;;expand_pid_table()) {
623 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
624 /* ensure pids cycle through 2000+ values */
625 continue;
626 s = proclist_lock_write();
627 pt = &pid_table[next_free_pt];
628 #ifdef DIAGNOSTIC
629 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
630 panic("proc_alloc: slot busy");
631 #endif
632 nxt = P_NEXT(pt->pt_proc);
633 if (nxt & pid_tbl_mask)
634 break;
635 /* Table full - expand (NB last entry not used....) */
636 proclist_unlock_write(s);
637 }
638
639 /* pid is 'saved use count' + 'size' + entry */
640 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
641 if ((uint)pid > (uint)pid_max)
642 pid &= pid_tbl_mask;
643 p->p_pid = pid;
644 next_free_pt = nxt & pid_tbl_mask;
645
646 /* Grab table slot */
647 pt->pt_proc = p;
648 pid_alloc_cnt++;
649
650 proclist_unlock_write(s);
651
652 return p;
653 }
654
655 /*
656 * Free last resources of a process - called from proc_free (in kern_exit.c)
657 */
658 void
659 proc_free_mem(struct proc *p)
660 {
661 int s;
662 pid_t pid = p->p_pid;
663 struct pid_table *pt;
664
665 s = proclist_lock_write();
666
667 pt = &pid_table[pid & pid_tbl_mask];
668 #ifdef DIAGNOSTIC
669 if (__predict_false(pt->pt_proc != p))
670 panic("proc_free: pid_table mismatch, pid %x, proc %p",
671 pid, p);
672 #endif
673 /* save pid use count in slot */
674 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
675
676 if (pt->pt_pgrp == NULL) {
677 /* link last freed entry onto ours */
678 pid &= pid_tbl_mask;
679 pt = &pid_table[last_free_pt];
680 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
681 last_free_pt = pid;
682 pid_alloc_cnt--;
683 }
684
685 nprocs--;
686 proclist_unlock_write(s);
687
688 pool_put(&proc_pool, p);
689 }
690
691 /*
692 * Move p to a new or existing process group (and session)
693 *
694 * If we are creating a new pgrp, the pgid should equal
695 * the calling process' pid.
696 * If is only valid to enter a process group that is in the session
697 * of the process.
698 * Also mksess should only be set if we are creating a process group
699 *
700 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
701 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
702 */
703 int
704 enterpgrp(struct proc *p, pid_t pgid, int mksess)
705 {
706 struct pgrp *new_pgrp, *pgrp;
707 struct session *sess;
708 struct proc *curp = curproc;
709 pid_t pid = p->p_pid;
710 int rval;
711 int s;
712 pid_t pg_id = NO_PGID;
713
714 /* Allocate data areas we might need before doing any validity checks */
715 proclist_lock_read(); /* Because pid_table might change */
716 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
717 proclist_unlock_read();
718 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
719 } else {
720 proclist_unlock_read();
721 new_pgrp = NULL;
722 }
723 if (mksess)
724 sess = pool_get(&session_pool, M_WAITOK);
725 else
726 sess = NULL;
727
728 s = proclist_lock_write();
729 rval = EPERM; /* most common error (to save typing) */
730
731 /* Check pgrp exists or can be created */
732 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
733 if (pgrp != NULL && pgrp->pg_id != pgid)
734 goto done;
735
736 /* Can only set another process under restricted circumstances. */
737 if (p != curp) {
738 /* must exist and be one of our children... */
739 if (p != pid_table[pid & pid_tbl_mask].pt_proc
740 || !inferior(p, curp)) {
741 rval = ESRCH;
742 goto done;
743 }
744 /* ... in the same session... */
745 if (sess != NULL || p->p_session != curp->p_session)
746 goto done;
747 /* ... existing pgid must be in same session ... */
748 if (pgrp != NULL && pgrp->pg_session != p->p_session)
749 goto done;
750 /* ... and not done an exec. */
751 if (p->p_flag & P_EXEC) {
752 rval = EACCES;
753 goto done;
754 }
755 }
756
757 /* Changing the process group/session of a session
758 leader is definitely off limits. */
759 if (SESS_LEADER(p)) {
760 if (sess == NULL && p->p_pgrp == pgrp)
761 /* unless it's a definite noop */
762 rval = 0;
763 goto done;
764 }
765
766 /* Can only create a process group with id of process */
767 if (pgrp == NULL && pgid != pid)
768 goto done;
769
770 /* Can only create a session if creating pgrp */
771 if (sess != NULL && pgrp != NULL)
772 goto done;
773
774 /* Check we allocated memory for a pgrp... */
775 if (pgrp == NULL && new_pgrp == NULL)
776 goto done;
777
778 /* Don't attach to 'zombie' pgrp */
779 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
780 goto done;
781
782 /* Expect to succeed now */
783 rval = 0;
784
785 if (pgrp == p->p_pgrp)
786 /* nothing to do */
787 goto done;
788
789 /* Ok all setup, link up required structures */
790 if (pgrp == NULL) {
791 pgrp = new_pgrp;
792 new_pgrp = 0;
793 if (sess != NULL) {
794 sess->s_sid = p->p_pid;
795 sess->s_leader = p;
796 sess->s_count = 1;
797 sess->s_ttyvp = NULL;
798 sess->s_ttyp = NULL;
799 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
800 memcpy(sess->s_login, p->p_session->s_login,
801 sizeof(sess->s_login));
802 p->p_flag &= ~P_CONTROLT;
803 } else {
804 sess = p->p_pgrp->pg_session;
805 SESSHOLD(sess);
806 }
807 pgrp->pg_session = sess;
808 sess = 0;
809
810 pgrp->pg_id = pgid;
811 LIST_INIT(&pgrp->pg_members);
812 #ifdef DIAGNOSTIC
813 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
814 panic("enterpgrp: pgrp table slot in use");
815 if (__predict_false(mksess && p != curp))
816 panic("enterpgrp: mksession and p != curproc");
817 #endif
818 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
819 pgrp->pg_jobc = 0;
820 }
821
822 /*
823 * Adjust eligibility of affected pgrps to participate in job control.
824 * Increment eligibility counts before decrementing, otherwise we
825 * could reach 0 spuriously during the first call.
826 */
827 fixjobc(p, pgrp, 1);
828 fixjobc(p, p->p_pgrp, 0);
829
830 /* Move process to requested group */
831 LIST_REMOVE(p, p_pglist);
832 if (LIST_EMPTY(&p->p_pgrp->pg_members))
833 /* defer delete until we've dumped the lock */
834 pg_id = p->p_pgrp->pg_id;
835 p->p_pgrp = pgrp;
836 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
837
838 done:
839 proclist_unlock_write(s);
840 if (sess != NULL)
841 pool_put(&session_pool, sess);
842 if (new_pgrp != NULL)
843 pool_put(&pgrp_pool, new_pgrp);
844 if (pg_id != NO_PGID)
845 pg_delete(pg_id);
846 #ifdef DEBUG_PGRP
847 if (__predict_false(rval))
848 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
849 pid, pgid, mksess, curp->p_pid, rval);
850 #endif
851 return rval;
852 }
853
854 /*
855 * Remove a process from its process group.
856 */
857 int
858 leavepgrp(struct proc *p)
859 {
860 int s;
861 struct pgrp *pgrp;
862 pid_t pg_id;
863
864 s = proclist_lock_write();
865 pgrp = p->p_pgrp;
866 LIST_REMOVE(p, p_pglist);
867 p->p_pgrp = NULL;
868 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
869 proclist_unlock_write(s);
870
871 if (pg_id != NO_PGID)
872 pg_delete(pg_id);
873 return 0;
874 }
875
876 static void
877 pg_free(pid_t pg_id)
878 {
879 struct pgrp *pgrp;
880 struct pid_table *pt;
881 int s;
882
883 s = proclist_lock_write();
884 pt = &pid_table[pg_id & pid_tbl_mask];
885 pgrp = pt->pt_pgrp;
886 #ifdef DIAGNOSTIC
887 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
888 || !LIST_EMPTY(&pgrp->pg_members)))
889 panic("pg_free: process group absent or has members");
890 #endif
891 pt->pt_pgrp = 0;
892
893 if (!P_VALID(pt->pt_proc)) {
894 /* orphaned pgrp, put slot onto free list */
895 #ifdef DIAGNOSTIC
896 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
897 panic("pg_free: process slot on free list");
898 #endif
899
900 pg_id &= pid_tbl_mask;
901 pt = &pid_table[last_free_pt];
902 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
903 last_free_pt = pg_id;
904 pid_alloc_cnt--;
905 }
906 proclist_unlock_write(s);
907
908 pool_put(&pgrp_pool, pgrp);
909 }
910
911 /*
912 * delete a process group
913 */
914 static void
915 pg_delete(pid_t pg_id)
916 {
917 struct pgrp *pgrp;
918 struct tty *ttyp;
919 struct session *ss;
920 int s, is_pgrp_leader;
921
922 s = proclist_lock_write();
923 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
924 if (pgrp == NULL || pgrp->pg_id != pg_id ||
925 !LIST_EMPTY(&pgrp->pg_members)) {
926 proclist_unlock_write(s);
927 return;
928 }
929
930 ss = pgrp->pg_session;
931
932 /* Remove reference (if any) from tty to this process group */
933 ttyp = ss->s_ttyp;
934 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
935 ttyp->t_pgrp = NULL;
936 #ifdef DIAGNOSTIC
937 if (ttyp->t_session != ss)
938 panic("pg_delete: wrong session on terminal");
939 #endif
940 }
941
942 /*
943 * The leading process group in a session is freed
944 * by sessdelete() if last reference.
945 */
946 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
947 proclist_unlock_write(s);
948 SESSRELE(ss);
949
950 if (is_pgrp_leader)
951 return;
952
953 pg_free(pg_id);
954 }
955
956 /*
957 * Delete session - called from SESSRELE when s_count becomes zero.
958 */
959 void
960 sessdelete(struct session *ss)
961 {
962 /*
963 * We keep the pgrp with the same id as the session in
964 * order to stop a process being given the same pid.
965 * Since the pgrp holds a reference to the session, it
966 * must be a 'zombie' pgrp by now.
967 */
968
969 pg_free(ss->s_sid);
970
971 pool_put(&session_pool, ss);
972 }
973
974 /*
975 * Adjust pgrp jobc counters when specified process changes process group.
976 * We count the number of processes in each process group that "qualify"
977 * the group for terminal job control (those with a parent in a different
978 * process group of the same session). If that count reaches zero, the
979 * process group becomes orphaned. Check both the specified process'
980 * process group and that of its children.
981 * entering == 0 => p is leaving specified group.
982 * entering == 1 => p is entering specified group.
983 *
984 * Call with proclist_lock held.
985 */
986 void
987 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
988 {
989 struct pgrp *hispgrp;
990 struct session *mysession = pgrp->pg_session;
991 struct proc *child;
992
993 /*
994 * Check p's parent to see whether p qualifies its own process
995 * group; if so, adjust count for p's process group.
996 */
997 hispgrp = p->p_pptr->p_pgrp;
998 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
999 if (entering)
1000 pgrp->pg_jobc++;
1001 else if (--pgrp->pg_jobc == 0)
1002 orphanpg(pgrp);
1003 }
1004
1005 /*
1006 * Check this process' children to see whether they qualify
1007 * their process groups; if so, adjust counts for children's
1008 * process groups.
1009 */
1010 LIST_FOREACH(child, &p->p_children, p_sibling) {
1011 hispgrp = child->p_pgrp;
1012 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1013 !P_ZOMBIE(child)) {
1014 if (entering)
1015 hispgrp->pg_jobc++;
1016 else if (--hispgrp->pg_jobc == 0)
1017 orphanpg(hispgrp);
1018 }
1019 }
1020 }
1021
1022 /*
1023 * A process group has become orphaned;
1024 * if there are any stopped processes in the group,
1025 * hang-up all process in that group.
1026 *
1027 * Call with proclist_lock held.
1028 */
1029 static void
1030 orphanpg(struct pgrp *pg)
1031 {
1032 struct proc *p;
1033
1034 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1035 if (p->p_stat == SSTOP) {
1036 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1037 psignal(p, SIGHUP);
1038 psignal(p, SIGCONT);
1039 }
1040 return;
1041 }
1042 }
1043 }
1044
1045 /* mark process as suid/sgid, reset some values to defaults */
1046 void
1047 p_sugid(struct proc *p)
1048 {
1049 struct plimit *lim;
1050 char *cn;
1051
1052 p->p_flag |= P_SUGID;
1053 /* reset what needs to be reset in plimit */
1054 lim = p->p_limit;
1055 if (lim->pl_corename != defcorename) {
1056 if (lim->p_refcnt > 1 &&
1057 (lim->p_lflags & PL_SHAREMOD) == 0) {
1058 p->p_limit = limcopy(lim);
1059 limfree(lim);
1060 lim = p->p_limit;
1061 }
1062 simple_lock(&lim->p_slock);
1063 cn = lim->pl_corename;
1064 lim->pl_corename = defcorename;
1065 simple_unlock(&lim->p_slock);
1066 if (cn != defcorename)
1067 free(cn, M_TEMP);
1068 }
1069 }
1070
1071 #ifdef DDB
1072 #include <ddb/db_output.h>
1073 void pidtbl_dump(void);
1074 void
1075 pidtbl_dump(void)
1076 {
1077 struct pid_table *pt;
1078 struct proc *p;
1079 struct pgrp *pgrp;
1080 int id;
1081
1082 db_printf("pid table %p size %x, next %x, last %x\n",
1083 pid_table, pid_tbl_mask+1,
1084 next_free_pt, last_free_pt);
1085 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1086 p = pt->pt_proc;
1087 if (!P_VALID(p) && !pt->pt_pgrp)
1088 continue;
1089 db_printf(" id %x: ", id);
1090 if (P_VALID(p))
1091 db_printf("proc %p id %d (0x%x) %s\n",
1092 p, p->p_pid, p->p_pid, p->p_comm);
1093 else
1094 db_printf("next %x use %x\n",
1095 P_NEXT(p) & pid_tbl_mask,
1096 P_NEXT(p) & ~pid_tbl_mask);
1097 if ((pgrp = pt->pt_pgrp)) {
1098 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1099 pgrp->pg_session, pgrp->pg_session->s_sid,
1100 pgrp->pg_session->s_count,
1101 pgrp->pg_session->s_login);
1102 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1103 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1104 pgrp->pg_members.lh_first);
1105 for (p = pgrp->pg_members.lh_first; p != 0;
1106 p = p->p_pglist.le_next) {
1107 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1108 p->p_pid, p, p->p_pgrp, p->p_comm);
1109 }
1110 }
1111 }
1112 }
1113 #endif /* DDB */
1114
1115 #ifdef KSTACK_CHECK_MAGIC
1116 #include <sys/user.h>
1117
1118 #define KSTACK_MAGIC 0xdeadbeaf
1119
1120 /* XXX should be per process basis? */
1121 int kstackleftmin = KSTACK_SIZE;
1122 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1123 less than this */
1124
1125 void
1126 kstack_setup_magic(const struct lwp *l)
1127 {
1128 uint32_t *ip;
1129 uint32_t const *end;
1130
1131 KASSERT(l != NULL);
1132 KASSERT(l != &lwp0);
1133
1134 /*
1135 * fill all the stack with magic number
1136 * so that later modification on it can be detected.
1137 */
1138 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1139 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1140 for (; ip < end; ip++) {
1141 *ip = KSTACK_MAGIC;
1142 }
1143 }
1144
1145 void
1146 kstack_check_magic(const struct lwp *l)
1147 {
1148 uint32_t const *ip, *end;
1149 int stackleft;
1150
1151 KASSERT(l != NULL);
1152
1153 /* don't check proc0 */ /*XXX*/
1154 if (l == &lwp0)
1155 return;
1156
1157 #ifdef __MACHINE_STACK_GROWS_UP
1158 /* stack grows upwards (eg. hppa) */
1159 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1160 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1161 for (ip--; ip >= end; ip--)
1162 if (*ip != KSTACK_MAGIC)
1163 break;
1164
1165 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1166 #else /* __MACHINE_STACK_GROWS_UP */
1167 /* stack grows downwards (eg. i386) */
1168 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1169 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1170 for (; ip < end; ip++)
1171 if (*ip != KSTACK_MAGIC)
1172 break;
1173
1174 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1175 #endif /* __MACHINE_STACK_GROWS_UP */
1176
1177 if (kstackleftmin > stackleft) {
1178 kstackleftmin = stackleft;
1179 if (stackleft < kstackleftthres)
1180 printf("warning: kernel stack left %d bytes"
1181 "(pid %u:lid %u)\n", stackleft,
1182 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1183 }
1184
1185 if (stackleft <= 0) {
1186 panic("magic on the top of kernel stack changed for "
1187 "pid %u, lid %u: maybe kernel stack overflow",
1188 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1189 }
1190 }
1191 #endif /* KSTACK_CHECK_MAGIC */
1192
1193 /* XXX shouldn't be here */
1194 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1195 #define PROCLIST_ASSERT_LOCKED_READ() \
1196 KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1197 #else
1198 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */
1199 #endif
1200
1201 int
1202 proclist_foreach_call(struct proclist *list,
1203 int (*callback)(struct proc *, void *arg), void *arg)
1204 {
1205 struct proc marker;
1206 struct proc *p;
1207 struct lwp * const l = curlwp;
1208 int ret = 0;
1209
1210 marker.p_flag = P_MARKER;
1211 PHOLD(l);
1212 proclist_lock_read();
1213 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1214 if (p->p_flag & P_MARKER) {
1215 p = LIST_NEXT(p, p_list);
1216 continue;
1217 }
1218 LIST_INSERT_AFTER(p, &marker, p_list);
1219 ret = (*callback)(p, arg);
1220 PROCLIST_ASSERT_LOCKED_READ();
1221 p = LIST_NEXT(&marker, p_list);
1222 LIST_REMOVE(&marker, p_list);
1223 }
1224 proclist_unlock_read();
1225 PRELE(l);
1226
1227 return ret;
1228 }
1229
1230 int
1231 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1232 {
1233
1234 /* XXXCDC: how should locking work here? */
1235
1236 /* curproc exception is for coredump. */
1237
1238 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1239 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1240 return EFAULT;
1241 }
1242
1243 uvmspace_addref(p->p_vmspace);
1244 *vm = p->p_vmspace;
1245
1246 return 0;
1247 }
1248
1249 /*
1250 * Acquire a write lock on the process credential.
1251 */
1252 void
1253 proc_crmod_enter(struct proc *p)
1254 {
1255
1256 /*
1257 * XXXSMP This should be a lightweight sleep lock. 'struct lock' is
1258 * too large.
1259 */
1260 simple_lock(&p->p_lock);
1261 while ((p->p_flag & P_CRLOCK) != 0)
1262 ltsleep(&p->p_cred, PLOCK, "crlock", 0, &p->p_lock);
1263 p->p_flag |= P_CRLOCK;
1264 simple_unlock(&p->p_lock);
1265 }
1266
1267 /*
1268 * Block out readers, set in a new process credential, and drop the write
1269 * lock. The credential must have a reference already. Optionally, free a
1270 * no-longer required credential.
1271 */
1272 void
1273 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
1274 {
1275
1276 KDASSERT((p->p_flag & P_CRLOCK) != 0);
1277 simple_lock(&p->p_lock);
1278 p->p_cred = scred;
1279 p->p_flag &= ~P_CRLOCK;
1280 simple_unlock(&p->p_lock);
1281 wakeup(&p->p_cred);
1282 if (fcred != NULL)
1283 kauth_cred_free(fcred);
1284 }
1285