kern_proc.c revision 1.86.2.2 1 /* $NetBSD: kern_proc.c,v 1.86.2.2 2006/04/11 11:55:47 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.86.2.2 2006/04/11 11:55:47 yamt Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/resourcevar.h>
82 #include <sys/buf.h>
83 #include <sys/acct.h>
84 #include <sys/wait.h>
85 #include <sys/file.h>
86 #include <ufs/ufs/quota.h>
87 #include <sys/uio.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/mbuf.h>
91 #include <sys/ioctl.h>
92 #include <sys/tty.h>
93 #include <sys/signalvar.h>
94 #include <sys/ras.h>
95 #include <sys/sa.h>
96 #include <sys/savar.h>
97 #include <sys/filedesc.h>
98
99 #include <uvm/uvm.h>
100 #include <uvm/uvm_extern.h>
101
102 /*
103 * Other process lists
104 */
105
106 struct proclist allproc;
107 struct proclist zombproc; /* resources have been freed */
108
109
110 /*
111 * Process list locking:
112 *
113 * We have two types of locks on the proclists: read locks and write
114 * locks. Read locks can be used in interrupt context, so while we
115 * hold the write lock, we must also block clock interrupts to
116 * lock out any scheduling changes that may happen in interrupt
117 * context.
118 *
119 * The proclist lock locks the following structures:
120 *
121 * allproc
122 * zombproc
123 * pid_table
124 */
125 struct lock proclist_lock;
126
127 /*
128 * pid to proc lookup is done by indexing the pid_table array.
129 * Since pid numbers are only allocated when an empty slot
130 * has been found, there is no need to search any lists ever.
131 * (an orphaned pgrp will lock the slot, a session will lock
132 * the pgrp with the same number.)
133 * If the table is too small it is reallocated with twice the
134 * previous size and the entries 'unzipped' into the two halves.
135 * A linked list of free entries is passed through the pt_proc
136 * field of 'free' items - set odd to be an invalid ptr.
137 */
138
139 struct pid_table {
140 struct proc *pt_proc;
141 struct pgrp *pt_pgrp;
142 };
143 #if 1 /* strongly typed cast - should be a noop */
144 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
145 #else
146 #define p2u(p) ((uint)p)
147 #endif
148 #define P_VALID(p) (!(p2u(p) & 1))
149 #define P_NEXT(p) (p2u(p) >> 1)
150 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
151
152 #define INITIAL_PID_TABLE_SIZE (1 << 5)
153 static struct pid_table *pid_table;
154 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
155 static uint pid_alloc_lim; /* max we allocate before growing table */
156 static uint pid_alloc_cnt; /* number of allocated pids */
157
158 /* links through free slots - never empty! */
159 static uint next_free_pt, last_free_pt;
160 static pid_t pid_max = PID_MAX; /* largest value we allocate */
161
162 /* Components of the first process -- never freed. */
163 struct session session0;
164 struct pgrp pgrp0;
165 struct proc proc0;
166 struct lwp lwp0;
167 struct pcred cred0;
168 struct filedesc0 filedesc0;
169 struct cwdinfo cwdi0;
170 struct plimit limit0;
171 struct pstats pstat0;
172 struct vmspace vmspace0;
173 struct sigacts sigacts0;
174
175 extern struct user *proc0paddr;
176
177 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
178
179 int nofile = NOFILE;
180 int maxuprc = MAXUPRC;
181 int cmask = CMASK;
182
183 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
184 &pool_allocator_nointr);
185 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
186 &pool_allocator_nointr);
187 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
188 &pool_allocator_nointr);
189 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
190 &pool_allocator_nointr);
191 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
192 &pool_allocator_nointr);
193 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
194 &pool_allocator_nointr);
195 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
196 &pool_allocator_nointr);
197 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
198 &pool_allocator_nointr);
199 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
200 &pool_allocator_nointr);
201 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
202 &pool_allocator_nointr);
203 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
204 &pool_allocator_nointr);
205 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
206 &pool_allocator_nointr);
207 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
208 &pool_allocator_nointr);
209 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
210 &pool_allocator_nointr);
211
212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
215
216 /*
217 * The process list descriptors, used during pid allocation and
218 * by sysctl. No locking on this data structure is needed since
219 * it is completely static.
220 */
221 const struct proclist_desc proclists[] = {
222 { &allproc },
223 { &zombproc },
224 { NULL },
225 };
226
227 static void orphanpg(struct pgrp *);
228 static void pg_delete(pid_t);
229
230 /*
231 * Initialize global process hashing structures.
232 */
233 void
234 procinit(void)
235 {
236 const struct proclist_desc *pd;
237 int i;
238 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
239
240 for (pd = proclists; pd->pd_list != NULL; pd++)
241 LIST_INIT(pd->pd_list);
242
243 spinlockinit(&proclist_lock, "proclk", 0);
244
245 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
246 M_PROC, M_WAITOK);
247 /* Set free list running through table...
248 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
249 for (i = 0; i <= pid_tbl_mask; i++) {
250 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
251 pid_table[i].pt_pgrp = 0;
252 }
253 /* slot 0 is just grabbed */
254 next_free_pt = 1;
255 /* Need to fix last entry. */
256 last_free_pt = pid_tbl_mask;
257 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
258 /* point at which we grow table - to avoid reusing pids too often */
259 pid_alloc_lim = pid_tbl_mask - 1;
260 #undef LINK_EMPTY
261
262 LIST_INIT(&alllwp);
263
264 uihashtbl =
265 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
266 }
267
268 /*
269 * Initialize process 0.
270 */
271 void
272 proc0_init(void)
273 {
274 struct proc *p;
275 struct pgrp *pg;
276 struct session *sess;
277 struct lwp *l;
278 int s;
279 u_int i;
280 rlim_t lim;
281
282 p = &proc0;
283 pg = &pgrp0;
284 sess = &session0;
285 l = &lwp0;
286
287 simple_lock_init(&p->p_lock);
288 LIST_INIT(&p->p_lwps);
289 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
290 p->p_nlwps = 1;
291 simple_lock_init(&p->p_sigctx.ps_silock);
292 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
293
294 s = proclist_lock_write();
295
296 pid_table[0].pt_proc = p;
297 LIST_INSERT_HEAD(&allproc, p, p_list);
298 LIST_INSERT_HEAD(&alllwp, l, l_list);
299
300 p->p_pgrp = pg;
301 pid_table[0].pt_pgrp = pg;
302 LIST_INIT(&pg->pg_members);
303 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
304
305 pg->pg_session = sess;
306 sess->s_count = 1;
307 sess->s_sid = 0;
308 sess->s_leader = p;
309
310 proclist_unlock_write(s);
311
312 /*
313 * Set P_NOCLDWAIT so that kernel threads are reparented to
314 * init(8) when they exit. init(8) can easily wait them out
315 * for us.
316 */
317 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
318 p->p_stat = SACTIVE;
319 p->p_nice = NZERO;
320 p->p_emul = &emul_netbsd;
321 #ifdef __HAVE_SYSCALL_INTERN
322 (*p->p_emul->e_syscall_intern)(p);
323 #endif
324 strncpy(p->p_comm, "swapper", MAXCOMLEN);
325
326 l->l_flag = L_INMEM;
327 l->l_stat = LSONPROC;
328 p->p_nrlwps = 1;
329
330 callout_init(&l->l_tsleep_ch);
331
332 /* Create credentials. */
333 cred0.p_refcnt = 1;
334 p->p_cred = &cred0;
335 p->p_ucred = crget();
336 p->p_ucred->cr_ngroups = 1; /* group 0 */
337
338 /* Create the CWD info. */
339 p->p_cwdi = &cwdi0;
340 cwdi0.cwdi_cmask = cmask;
341 cwdi0.cwdi_refcnt = 1;
342 simple_lock_init(&cwdi0.cwdi_slock);
343
344 /* Create the limits structures. */
345 p->p_limit = &limit0;
346 simple_lock_init(&limit0.p_slock);
347 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
348 limit0.pl_rlimit[i].rlim_cur =
349 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
350
351 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
352 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
353 maxfiles < nofile ? maxfiles : nofile;
354
355 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
356 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
357 maxproc < maxuprc ? maxproc : maxuprc;
358
359 lim = ptoa(uvmexp.free);
360 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
361 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
362 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
363 limit0.pl_corename = defcorename;
364 limit0.p_refcnt = 1;
365
366 /* Configure virtual memory system, set vm rlimits. */
367 uvm_init_limits(p);
368
369 /* Initialize file descriptor table for proc0. */
370 p->p_fd = &filedesc0.fd_fd;
371 fdinit1(&filedesc0);
372
373 /*
374 * Initialize proc0's vmspace, which uses the kernel pmap.
375 * All kernel processes (which never have user space mappings)
376 * share proc0's vmspace, and thus, the kernel pmap.
377 */
378 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
379 trunc_page(VM_MAX_ADDRESS));
380 p->p_vmspace = &vmspace0;
381
382 l->l_addr = proc0paddr; /* XXX */
383
384 p->p_stats = &pstat0;
385
386 /* Initialize signal state for proc0. */
387 p->p_sigacts = &sigacts0;
388 siginit(p);
389 }
390
391 /*
392 * Acquire a read lock on the proclist.
393 */
394 void
395 proclist_lock_read(void)
396 {
397 int error;
398
399 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
400 #ifdef DIAGNOSTIC
401 if (__predict_false(error != 0))
402 panic("proclist_lock_read: failed to acquire lock");
403 #endif
404 }
405
406 /*
407 * Release a read lock on the proclist.
408 */
409 void
410 proclist_unlock_read(void)
411 {
412
413 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
414 }
415
416 /*
417 * Acquire a write lock on the proclist.
418 */
419 int
420 proclist_lock_write(void)
421 {
422 int s, error;
423
424 s = splclock();
425 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
426 #ifdef DIAGNOSTIC
427 if (__predict_false(error != 0))
428 panic("proclist_lock: failed to acquire lock");
429 #endif
430 return s;
431 }
432
433 /*
434 * Release a write lock on the proclist.
435 */
436 void
437 proclist_unlock_write(int s)
438 {
439
440 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
441 splx(s);
442 }
443
444 /*
445 * Check that the specified process group is in the session of the
446 * specified process.
447 * Treats -ve ids as process ids.
448 * Used to validate TIOCSPGRP requests.
449 */
450 int
451 pgid_in_session(struct proc *p, pid_t pg_id)
452 {
453 struct pgrp *pgrp;
454
455 if (pg_id < 0) {
456 struct proc *p1 = pfind(-pg_id);
457 if (p1 == NULL)
458 return EINVAL;
459 pgrp = p1->p_pgrp;
460 } else {
461 pgrp = pgfind(pg_id);
462 if (pgrp == NULL)
463 return EINVAL;
464 }
465 if (pgrp->pg_session != p->p_pgrp->pg_session)
466 return EPERM;
467 return 0;
468 }
469
470 /*
471 * Is p an inferior of q?
472 */
473 int
474 inferior(struct proc *p, struct proc *q)
475 {
476
477 for (; p != q; p = p->p_pptr)
478 if (p->p_pid == 0)
479 return 0;
480 return 1;
481 }
482
483 /*
484 * Locate a process by number
485 */
486 struct proc *
487 p_find(pid_t pid, uint flags)
488 {
489 struct proc *p;
490 char stat;
491
492 if (!(flags & PFIND_LOCKED))
493 proclist_lock_read();
494 p = pid_table[pid & pid_tbl_mask].pt_proc;
495 /* Only allow live processes to be found by pid. */
496 if (P_VALID(p) && p->p_pid == pid &&
497 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
498 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
499 if (flags & PFIND_UNLOCK_OK)
500 proclist_unlock_read();
501 return p;
502 }
503 if (flags & PFIND_UNLOCK_FAIL)
504 proclist_unlock_read();
505 return NULL;
506 }
507
508
509 /*
510 * Locate a process group by number
511 */
512 struct pgrp *
513 pg_find(pid_t pgid, uint flags)
514 {
515 struct pgrp *pg;
516
517 if (!(flags & PFIND_LOCKED))
518 proclist_lock_read();
519 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
520 /*
521 * Can't look up a pgrp that only exists because the session
522 * hasn't died yet (traditional)
523 */
524 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
525 if (flags & PFIND_UNLOCK_FAIL)
526 proclist_unlock_read();
527 return NULL;
528 }
529
530 if (flags & PFIND_UNLOCK_OK)
531 proclist_unlock_read();
532 return pg;
533 }
534
535 static void
536 expand_pid_table(void)
537 {
538 uint pt_size = pid_tbl_mask + 1;
539 struct pid_table *n_pt, *new_pt;
540 struct proc *proc;
541 struct pgrp *pgrp;
542 int i;
543 int s;
544 pid_t pid;
545
546 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
547
548 s = proclist_lock_write();
549 if (pt_size != pid_tbl_mask + 1) {
550 /* Another process beat us to it... */
551 proclist_unlock_write(s);
552 FREE(new_pt, M_PROC);
553 return;
554 }
555
556 /*
557 * Copy entries from old table into new one.
558 * If 'pid' is 'odd' we need to place in the upper half,
559 * even pid's to the lower half.
560 * Free items stay in the low half so we don't have to
561 * fixup the reference to them.
562 * We stuff free items on the front of the freelist
563 * because we can't write to unmodified entries.
564 * Processing the table backwards maintains a semblance
565 * of issueing pid numbers that increase with time.
566 */
567 i = pt_size - 1;
568 n_pt = new_pt + i;
569 for (; ; i--, n_pt--) {
570 proc = pid_table[i].pt_proc;
571 pgrp = pid_table[i].pt_pgrp;
572 if (!P_VALID(proc)) {
573 /* Up 'use count' so that link is valid */
574 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
575 proc = P_FREE(pid);
576 if (pgrp)
577 pid = pgrp->pg_id;
578 } else
579 pid = proc->p_pid;
580
581 /* Save entry in appropriate half of table */
582 n_pt[pid & pt_size].pt_proc = proc;
583 n_pt[pid & pt_size].pt_pgrp = pgrp;
584
585 /* Put other piece on start of free list */
586 pid = (pid ^ pt_size) & ~pid_tbl_mask;
587 n_pt[pid & pt_size].pt_proc =
588 P_FREE((pid & ~pt_size) | next_free_pt);
589 n_pt[pid & pt_size].pt_pgrp = 0;
590 next_free_pt = i | (pid & pt_size);
591 if (i == 0)
592 break;
593 }
594
595 /* Switch tables */
596 n_pt = pid_table;
597 pid_table = new_pt;
598 pid_tbl_mask = pt_size * 2 - 1;
599
600 /*
601 * pid_max starts as PID_MAX (= 30000), once we have 16384
602 * allocated pids we need it to be larger!
603 */
604 if (pid_tbl_mask > PID_MAX) {
605 pid_max = pid_tbl_mask * 2 + 1;
606 pid_alloc_lim |= pid_alloc_lim << 1;
607 } else
608 pid_alloc_lim <<= 1; /* doubles number of free slots... */
609
610 proclist_unlock_write(s);
611 FREE(n_pt, M_PROC);
612 }
613
614 struct proc *
615 proc_alloc(void)
616 {
617 struct proc *p;
618 int s;
619 int nxt;
620 pid_t pid;
621 struct pid_table *pt;
622
623 p = pool_get(&proc_pool, PR_WAITOK);
624 p->p_stat = SIDL; /* protect against others */
625
626 /* allocate next free pid */
627
628 for (;;expand_pid_table()) {
629 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
630 /* ensure pids cycle through 2000+ values */
631 continue;
632 s = proclist_lock_write();
633 pt = &pid_table[next_free_pt];
634 #ifdef DIAGNOSTIC
635 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
636 panic("proc_alloc: slot busy");
637 #endif
638 nxt = P_NEXT(pt->pt_proc);
639 if (nxt & pid_tbl_mask)
640 break;
641 /* Table full - expand (NB last entry not used....) */
642 proclist_unlock_write(s);
643 }
644
645 /* pid is 'saved use count' + 'size' + entry */
646 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
647 if ((uint)pid > (uint)pid_max)
648 pid &= pid_tbl_mask;
649 p->p_pid = pid;
650 next_free_pt = nxt & pid_tbl_mask;
651
652 /* Grab table slot */
653 pt->pt_proc = p;
654 pid_alloc_cnt++;
655
656 proclist_unlock_write(s);
657
658 return p;
659 }
660
661 /*
662 * Free last resources of a process - called from proc_free (in kern_exit.c)
663 */
664 void
665 proc_free_mem(struct proc *p)
666 {
667 int s;
668 pid_t pid = p->p_pid;
669 struct pid_table *pt;
670
671 s = proclist_lock_write();
672
673 pt = &pid_table[pid & pid_tbl_mask];
674 #ifdef DIAGNOSTIC
675 if (__predict_false(pt->pt_proc != p))
676 panic("proc_free: pid_table mismatch, pid %x, proc %p",
677 pid, p);
678 #endif
679 /* save pid use count in slot */
680 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
681
682 if (pt->pt_pgrp == NULL) {
683 /* link last freed entry onto ours */
684 pid &= pid_tbl_mask;
685 pt = &pid_table[last_free_pt];
686 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
687 last_free_pt = pid;
688 pid_alloc_cnt--;
689 }
690
691 nprocs--;
692 proclist_unlock_write(s);
693
694 pool_put(&proc_pool, p);
695 }
696
697 /*
698 * Move p to a new or existing process group (and session)
699 *
700 * If we are creating a new pgrp, the pgid should equal
701 * the calling process' pid.
702 * If is only valid to enter a process group that is in the session
703 * of the process.
704 * Also mksess should only be set if we are creating a process group
705 *
706 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
707 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
708 */
709 int
710 enterpgrp(struct proc *p, pid_t pgid, int mksess)
711 {
712 struct pgrp *new_pgrp, *pgrp;
713 struct session *sess;
714 struct proc *curp = curproc;
715 pid_t pid = p->p_pid;
716 int rval;
717 int s;
718 pid_t pg_id = NO_PGID;
719
720 /* Allocate data areas we might need before doing any validity checks */
721 proclist_lock_read(); /* Because pid_table might change */
722 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
723 proclist_unlock_read();
724 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
725 } else {
726 proclist_unlock_read();
727 new_pgrp = NULL;
728 }
729 if (mksess)
730 sess = pool_get(&session_pool, M_WAITOK);
731 else
732 sess = NULL;
733
734 s = proclist_lock_write();
735 rval = EPERM; /* most common error (to save typing) */
736
737 /* Check pgrp exists or can be created */
738 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
739 if (pgrp != NULL && pgrp->pg_id != pgid)
740 goto done;
741
742 /* Can only set another process under restricted circumstances. */
743 if (p != curp) {
744 /* must exist and be one of our children... */
745 if (p != pid_table[pid & pid_tbl_mask].pt_proc
746 || !inferior(p, curp)) {
747 rval = ESRCH;
748 goto done;
749 }
750 /* ... in the same session... */
751 if (sess != NULL || p->p_session != curp->p_session)
752 goto done;
753 /* ... existing pgid must be in same session ... */
754 if (pgrp != NULL && pgrp->pg_session != p->p_session)
755 goto done;
756 /* ... and not done an exec. */
757 if (p->p_flag & P_EXEC) {
758 rval = EACCES;
759 goto done;
760 }
761 }
762
763 /* Changing the process group/session of a session
764 leader is definitely off limits. */
765 if (SESS_LEADER(p)) {
766 if (sess == NULL && p->p_pgrp == pgrp)
767 /* unless it's a definite noop */
768 rval = 0;
769 goto done;
770 }
771
772 /* Can only create a process group with id of process */
773 if (pgrp == NULL && pgid != pid)
774 goto done;
775
776 /* Can only create a session if creating pgrp */
777 if (sess != NULL && pgrp != NULL)
778 goto done;
779
780 /* Check we allocated memory for a pgrp... */
781 if (pgrp == NULL && new_pgrp == NULL)
782 goto done;
783
784 /* Don't attach to 'zombie' pgrp */
785 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
786 goto done;
787
788 /* Expect to succeed now */
789 rval = 0;
790
791 if (pgrp == p->p_pgrp)
792 /* nothing to do */
793 goto done;
794
795 /* Ok all setup, link up required structures */
796 if (pgrp == NULL) {
797 pgrp = new_pgrp;
798 new_pgrp = 0;
799 if (sess != NULL) {
800 sess->s_sid = p->p_pid;
801 sess->s_leader = p;
802 sess->s_count = 1;
803 sess->s_ttyvp = NULL;
804 sess->s_ttyp = NULL;
805 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
806 memcpy(sess->s_login, p->p_session->s_login,
807 sizeof(sess->s_login));
808 p->p_flag &= ~P_CONTROLT;
809 } else {
810 sess = p->p_pgrp->pg_session;
811 SESSHOLD(sess);
812 }
813 pgrp->pg_session = sess;
814 sess = 0;
815
816 pgrp->pg_id = pgid;
817 LIST_INIT(&pgrp->pg_members);
818 #ifdef DIAGNOSTIC
819 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
820 panic("enterpgrp: pgrp table slot in use");
821 if (__predict_false(mksess && p != curp))
822 panic("enterpgrp: mksession and p != curproc");
823 #endif
824 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
825 pgrp->pg_jobc = 0;
826 }
827
828 /*
829 * Adjust eligibility of affected pgrps to participate in job control.
830 * Increment eligibility counts before decrementing, otherwise we
831 * could reach 0 spuriously during the first call.
832 */
833 fixjobc(p, pgrp, 1);
834 fixjobc(p, p->p_pgrp, 0);
835
836 /* Move process to requested group */
837 LIST_REMOVE(p, p_pglist);
838 if (LIST_EMPTY(&p->p_pgrp->pg_members))
839 /* defer delete until we've dumped the lock */
840 pg_id = p->p_pgrp->pg_id;
841 p->p_pgrp = pgrp;
842 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
843
844 done:
845 proclist_unlock_write(s);
846 if (sess != NULL)
847 pool_put(&session_pool, sess);
848 if (new_pgrp != NULL)
849 pool_put(&pgrp_pool, new_pgrp);
850 if (pg_id != NO_PGID)
851 pg_delete(pg_id);
852 #ifdef DEBUG_PGRP
853 if (__predict_false(rval))
854 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
855 pid, pgid, mksess, curp->p_pid, rval);
856 #endif
857 return rval;
858 }
859
860 /*
861 * remove process from process group
862 */
863 int
864 leavepgrp(struct proc *p)
865 {
866 int s;
867 struct pgrp *pgrp;
868 pid_t pg_id;
869
870 s = proclist_lock_write();
871 pgrp = p->p_pgrp;
872 LIST_REMOVE(p, p_pglist);
873 p->p_pgrp = 0;
874 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
875 proclist_unlock_write(s);
876
877 if (pg_id != NO_PGID)
878 pg_delete(pg_id);
879 return 0;
880 }
881
882 static void
883 pg_free(pid_t pg_id)
884 {
885 struct pgrp *pgrp;
886 struct pid_table *pt;
887 int s;
888
889 s = proclist_lock_write();
890 pt = &pid_table[pg_id & pid_tbl_mask];
891 pgrp = pt->pt_pgrp;
892 #ifdef DIAGNOSTIC
893 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
894 || !LIST_EMPTY(&pgrp->pg_members)))
895 panic("pg_free: process group absent or has members");
896 #endif
897 pt->pt_pgrp = 0;
898
899 if (!P_VALID(pt->pt_proc)) {
900 /* orphaned pgrp, put slot onto free list */
901 #ifdef DIAGNOSTIC
902 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
903 panic("pg_free: process slot on free list");
904 #endif
905
906 pg_id &= pid_tbl_mask;
907 pt = &pid_table[last_free_pt];
908 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
909 last_free_pt = pg_id;
910 pid_alloc_cnt--;
911 }
912 proclist_unlock_write(s);
913
914 pool_put(&pgrp_pool, pgrp);
915 }
916
917 /*
918 * delete a process group
919 */
920 static void
921 pg_delete(pid_t pg_id)
922 {
923 struct pgrp *pgrp;
924 struct tty *ttyp;
925 struct session *ss;
926 int s, is_pgrp_leader;
927
928 s = proclist_lock_write();
929 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
930 if (pgrp == NULL || pgrp->pg_id != pg_id ||
931 !LIST_EMPTY(&pgrp->pg_members)) {
932 proclist_unlock_write(s);
933 return;
934 }
935
936 ss = pgrp->pg_session;
937
938 /* Remove reference (if any) from tty to this process group */
939 ttyp = ss->s_ttyp;
940 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
941 ttyp->t_pgrp = NULL;
942 #ifdef DIAGNOSTIC
943 if (ttyp->t_session != ss)
944 panic("pg_delete: wrong session on terminal");
945 #endif
946 }
947
948 /*
949 * The leading process group in a session is freed
950 * by sessdelete() if last reference.
951 */
952 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
953 proclist_unlock_write(s);
954 SESSRELE(ss);
955
956 if (is_pgrp_leader)
957 return;
958
959 pg_free(pg_id);
960 }
961
962 /*
963 * Delete session - called from SESSRELE when s_count becomes zero.
964 */
965 void
966 sessdelete(struct session *ss)
967 {
968 /*
969 * We keep the pgrp with the same id as the session in
970 * order to stop a process being given the same pid.
971 * Since the pgrp holds a reference to the session, it
972 * must be a 'zombie' pgrp by now.
973 */
974
975 pg_free(ss->s_sid);
976
977 pool_put(&session_pool, ss);
978 }
979
980 /*
981 * Adjust pgrp jobc counters when specified process changes process group.
982 * We count the number of processes in each process group that "qualify"
983 * the group for terminal job control (those with a parent in a different
984 * process group of the same session). If that count reaches zero, the
985 * process group becomes orphaned. Check both the specified process'
986 * process group and that of its children.
987 * entering == 0 => p is leaving specified group.
988 * entering == 1 => p is entering specified group.
989 *
990 * Call with proclist_lock held.
991 */
992 void
993 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
994 {
995 struct pgrp *hispgrp;
996 struct session *mysession = pgrp->pg_session;
997 struct proc *child;
998
999 /*
1000 * Check p's parent to see whether p qualifies its own process
1001 * group; if so, adjust count for p's process group.
1002 */
1003 hispgrp = p->p_pptr->p_pgrp;
1004 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1005 if (entering)
1006 pgrp->pg_jobc++;
1007 else if (--pgrp->pg_jobc == 0)
1008 orphanpg(pgrp);
1009 }
1010
1011 /*
1012 * Check this process' children to see whether they qualify
1013 * their process groups; if so, adjust counts for children's
1014 * process groups.
1015 */
1016 LIST_FOREACH(child, &p->p_children, p_sibling) {
1017 hispgrp = child->p_pgrp;
1018 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1019 !P_ZOMBIE(child)) {
1020 if (entering)
1021 hispgrp->pg_jobc++;
1022 else if (--hispgrp->pg_jobc == 0)
1023 orphanpg(hispgrp);
1024 }
1025 }
1026 }
1027
1028 /*
1029 * A process group has become orphaned;
1030 * if there are any stopped processes in the group,
1031 * hang-up all process in that group.
1032 *
1033 * Call with proclist_lock held.
1034 */
1035 static void
1036 orphanpg(struct pgrp *pg)
1037 {
1038 struct proc *p;
1039
1040 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1041 if (p->p_stat == SSTOP) {
1042 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1043 psignal(p, SIGHUP);
1044 psignal(p, SIGCONT);
1045 }
1046 return;
1047 }
1048 }
1049 }
1050
1051 /* mark process as suid/sgid, reset some values to defaults */
1052 void
1053 p_sugid(struct proc *p)
1054 {
1055 struct plimit *lim;
1056 char *cn;
1057
1058 p->p_flag |= P_SUGID;
1059 /* reset what needs to be reset in plimit */
1060 lim = p->p_limit;
1061 if (lim->pl_corename != defcorename) {
1062 if (lim->p_refcnt > 1 &&
1063 (lim->p_lflags & PL_SHAREMOD) == 0) {
1064 p->p_limit = limcopy(lim);
1065 limfree(lim);
1066 lim = p->p_limit;
1067 }
1068 simple_lock(&lim->p_slock);
1069 cn = lim->pl_corename;
1070 lim->pl_corename = defcorename;
1071 simple_unlock(&lim->p_slock);
1072 if (cn != defcorename)
1073 free(cn, M_TEMP);
1074 }
1075 }
1076
1077 #ifdef DDB
1078 #include <ddb/db_output.h>
1079 void pidtbl_dump(void);
1080 void
1081 pidtbl_dump(void)
1082 {
1083 struct pid_table *pt;
1084 struct proc *p;
1085 struct pgrp *pgrp;
1086 int id;
1087
1088 db_printf("pid table %p size %x, next %x, last %x\n",
1089 pid_table, pid_tbl_mask+1,
1090 next_free_pt, last_free_pt);
1091 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1092 p = pt->pt_proc;
1093 if (!P_VALID(p) && !pt->pt_pgrp)
1094 continue;
1095 db_printf(" id %x: ", id);
1096 if (P_VALID(p))
1097 db_printf("proc %p id %d (0x%x) %s\n",
1098 p, p->p_pid, p->p_pid, p->p_comm);
1099 else
1100 db_printf("next %x use %x\n",
1101 P_NEXT(p) & pid_tbl_mask,
1102 P_NEXT(p) & ~pid_tbl_mask);
1103 if ((pgrp = pt->pt_pgrp)) {
1104 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1105 pgrp->pg_session, pgrp->pg_session->s_sid,
1106 pgrp->pg_session->s_count,
1107 pgrp->pg_session->s_login);
1108 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1109 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1110 pgrp->pg_members.lh_first);
1111 for (p = pgrp->pg_members.lh_first; p != 0;
1112 p = p->p_pglist.le_next) {
1113 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1114 p->p_pid, p, p->p_pgrp, p->p_comm);
1115 }
1116 }
1117 }
1118 }
1119 #endif /* DDB */
1120
1121 #ifdef KSTACK_CHECK_MAGIC
1122 #include <sys/user.h>
1123
1124 #define KSTACK_MAGIC 0xdeadbeaf
1125
1126 /* XXX should be per process basis? */
1127 int kstackleftmin = KSTACK_SIZE;
1128 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1129 less than this */
1130
1131 void
1132 kstack_setup_magic(const struct lwp *l)
1133 {
1134 uint32_t *ip;
1135 uint32_t const *end;
1136
1137 KASSERT(l != NULL);
1138 KASSERT(l != &lwp0);
1139
1140 /*
1141 * fill all the stack with magic number
1142 * so that later modification on it can be detected.
1143 */
1144 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1145 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1146 for (; ip < end; ip++) {
1147 *ip = KSTACK_MAGIC;
1148 }
1149 }
1150
1151 void
1152 kstack_check_magic(const struct lwp *l)
1153 {
1154 uint32_t const *ip, *end;
1155 int stackleft;
1156
1157 KASSERT(l != NULL);
1158
1159 /* don't check proc0 */ /*XXX*/
1160 if (l == &lwp0)
1161 return;
1162
1163 #ifdef __MACHINE_STACK_GROWS_UP
1164 /* stack grows upwards (eg. hppa) */
1165 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1166 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1167 for (ip--; ip >= end; ip--)
1168 if (*ip != KSTACK_MAGIC)
1169 break;
1170
1171 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1172 #else /* __MACHINE_STACK_GROWS_UP */
1173 /* stack grows downwards (eg. i386) */
1174 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1175 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1176 for (; ip < end; ip++)
1177 if (*ip != KSTACK_MAGIC)
1178 break;
1179
1180 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1181 #endif /* __MACHINE_STACK_GROWS_UP */
1182
1183 if (kstackleftmin > stackleft) {
1184 kstackleftmin = stackleft;
1185 if (stackleft < kstackleftthres)
1186 printf("warning: kernel stack left %d bytes"
1187 "(pid %u:lid %u)\n", stackleft,
1188 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1189 }
1190
1191 if (stackleft <= 0) {
1192 panic("magic on the top of kernel stack changed for "
1193 "pid %u, lid %u: maybe kernel stack overflow",
1194 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1195 }
1196 }
1197 #endif /* KSTACK_CHECK_MAGIC */
1198
1199 /* XXX shouldn't be here */
1200 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1201 #define PROCLIST_ASSERT_LOCKED_READ() \
1202 KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1203 #else
1204 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */
1205 #endif
1206
1207 int
1208 proclist_foreach_call(struct proclist *list,
1209 int (*callback)(struct proc *, void *arg), void *arg)
1210 {
1211 struct proc marker;
1212 struct proc *p;
1213 struct lwp * const l = curlwp;
1214 int ret = 0;
1215
1216 marker.p_flag = P_MARKER;
1217 PHOLD(l);
1218 proclist_lock_read();
1219 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1220 if (p->p_flag & P_MARKER) {
1221 p = LIST_NEXT(p, p_list);
1222 continue;
1223 }
1224 LIST_INSERT_AFTER(p, &marker, p_list);
1225 ret = (*callback)(p, arg);
1226 PROCLIST_ASSERT_LOCKED_READ();
1227 p = LIST_NEXT(&marker, p_list);
1228 LIST_REMOVE(&marker, p_list);
1229 }
1230 proclist_unlock_read();
1231 PRELE(l);
1232
1233 return ret;
1234 }
1235
1236 int
1237 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1238 {
1239
1240 /* XXXCDC: how should locking work here? */
1241
1242 /* curproc exception is for coredump. */
1243
1244 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1245 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1246 return EFAULT;
1247 }
1248
1249 uvmspace_addref(p->p_vmspace);
1250 *vm = p->p_vmspace;
1251
1252 return 0;
1253 }
1254