Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.86.2.2
      1 /*	$NetBSD: kern_proc.c,v 1.86.2.2 2006/04/11 11:55:47 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.86.2.2 2006/04/11 11:55:47 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/kernel.h>
     80 #include <sys/proc.h>
     81 #include <sys/resourcevar.h>
     82 #include <sys/buf.h>
     83 #include <sys/acct.h>
     84 #include <sys/wait.h>
     85 #include <sys/file.h>
     86 #include <ufs/ufs/quota.h>
     87 #include <sys/uio.h>
     88 #include <sys/malloc.h>
     89 #include <sys/pool.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/ioctl.h>
     92 #include <sys/tty.h>
     93 #include <sys/signalvar.h>
     94 #include <sys/ras.h>
     95 #include <sys/sa.h>
     96 #include <sys/savar.h>
     97 #include <sys/filedesc.h>
     98 
     99 #include <uvm/uvm.h>
    100 #include <uvm/uvm_extern.h>
    101 
    102 /*
    103  * Other process lists
    104  */
    105 
    106 struct proclist allproc;
    107 struct proclist zombproc;	/* resources have been freed */
    108 
    109 
    110 /*
    111  * Process list locking:
    112  *
    113  * We have two types of locks on the proclists: read locks and write
    114  * locks.  Read locks can be used in interrupt context, so while we
    115  * hold the write lock, we must also block clock interrupts to
    116  * lock out any scheduling changes that may happen in interrupt
    117  * context.
    118  *
    119  * The proclist lock locks the following structures:
    120  *
    121  *	allproc
    122  *	zombproc
    123  *	pid_table
    124  */
    125 struct lock proclist_lock;
    126 
    127 /*
    128  * pid to proc lookup is done by indexing the pid_table array.
    129  * Since pid numbers are only allocated when an empty slot
    130  * has been found, there is no need to search any lists ever.
    131  * (an orphaned pgrp will lock the slot, a session will lock
    132  * the pgrp with the same number.)
    133  * If the table is too small it is reallocated with twice the
    134  * previous size and the entries 'unzipped' into the two halves.
    135  * A linked list of free entries is passed through the pt_proc
    136  * field of 'free' items - set odd to be an invalid ptr.
    137  */
    138 
    139 struct pid_table {
    140 	struct proc	*pt_proc;
    141 	struct pgrp	*pt_pgrp;
    142 };
    143 #if 1	/* strongly typed cast - should be a noop */
    144 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    145 #else
    146 #define p2u(p) ((uint)p)
    147 #endif
    148 #define P_VALID(p) (!(p2u(p) & 1))
    149 #define P_NEXT(p) (p2u(p) >> 1)
    150 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    151 
    152 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    153 static struct pid_table *pid_table;
    154 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    155 static uint pid_alloc_lim;	/* max we allocate before growing table */
    156 static uint pid_alloc_cnt;	/* number of allocated pids */
    157 
    158 /* links through free slots - never empty! */
    159 static uint next_free_pt, last_free_pt;
    160 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    161 
    162 /* Components of the first process -- never freed. */
    163 struct session session0;
    164 struct pgrp pgrp0;
    165 struct proc proc0;
    166 struct lwp lwp0;
    167 struct pcred cred0;
    168 struct filedesc0 filedesc0;
    169 struct cwdinfo cwdi0;
    170 struct plimit limit0;
    171 struct pstats pstat0;
    172 struct vmspace vmspace0;
    173 struct sigacts sigacts0;
    174 
    175 extern struct user *proc0paddr;
    176 
    177 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    178 
    179 int nofile = NOFILE;
    180 int maxuprc = MAXUPRC;
    181 int cmask = CMASK;
    182 
    183 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    184     &pool_allocator_nointr);
    185 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
    186     &pool_allocator_nointr);
    187 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    188     &pool_allocator_nointr);
    189 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    190     &pool_allocator_nointr);
    191 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
    192     &pool_allocator_nointr);
    193 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    194     &pool_allocator_nointr);
    195 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    196     &pool_allocator_nointr);
    197 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    198     &pool_allocator_nointr);
    199 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
    200     &pool_allocator_nointr);
    201 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
    202     &pool_allocator_nointr);
    203 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
    204     &pool_allocator_nointr);
    205 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
    206     &pool_allocator_nointr);
    207 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
    208     &pool_allocator_nointr);
    209 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    210     &pool_allocator_nointr);
    211 
    212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static void orphanpg(struct pgrp *);
    228 static void pg_delete(pid_t);
    229 
    230 /*
    231  * Initialize global process hashing structures.
    232  */
    233 void
    234 procinit(void)
    235 {
    236 	const struct proclist_desc *pd;
    237 	int i;
    238 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    239 
    240 	for (pd = proclists; pd->pd_list != NULL; pd++)
    241 		LIST_INIT(pd->pd_list);
    242 
    243 	spinlockinit(&proclist_lock, "proclk", 0);
    244 
    245 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    246 			    M_PROC, M_WAITOK);
    247 	/* Set free list running through table...
    248 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    249 	for (i = 0; i <= pid_tbl_mask; i++) {
    250 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    251 		pid_table[i].pt_pgrp = 0;
    252 	}
    253 	/* slot 0 is just grabbed */
    254 	next_free_pt = 1;
    255 	/* Need to fix last entry. */
    256 	last_free_pt = pid_tbl_mask;
    257 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    258 	/* point at which we grow table - to avoid reusing pids too often */
    259 	pid_alloc_lim = pid_tbl_mask - 1;
    260 #undef LINK_EMPTY
    261 
    262 	LIST_INIT(&alllwp);
    263 
    264 	uihashtbl =
    265 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    266 }
    267 
    268 /*
    269  * Initialize process 0.
    270  */
    271 void
    272 proc0_init(void)
    273 {
    274 	struct proc *p;
    275 	struct pgrp *pg;
    276 	struct session *sess;
    277 	struct lwp *l;
    278 	int s;
    279 	u_int i;
    280 	rlim_t lim;
    281 
    282 	p = &proc0;
    283 	pg = &pgrp0;
    284 	sess = &session0;
    285 	l = &lwp0;
    286 
    287 	simple_lock_init(&p->p_lock);
    288 	LIST_INIT(&p->p_lwps);
    289 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    290 	p->p_nlwps = 1;
    291 	simple_lock_init(&p->p_sigctx.ps_silock);
    292 	CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
    293 
    294 	s = proclist_lock_write();
    295 
    296 	pid_table[0].pt_proc = p;
    297 	LIST_INSERT_HEAD(&allproc, p, p_list);
    298 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    299 
    300 	p->p_pgrp = pg;
    301 	pid_table[0].pt_pgrp = pg;
    302 	LIST_INIT(&pg->pg_members);
    303 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    304 
    305 	pg->pg_session = sess;
    306 	sess->s_count = 1;
    307 	sess->s_sid = 0;
    308 	sess->s_leader = p;
    309 
    310 	proclist_unlock_write(s);
    311 
    312 	/*
    313 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    314 	 * init(8) when they exit.  init(8) can easily wait them out
    315 	 * for us.
    316 	 */
    317 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    318 	p->p_stat = SACTIVE;
    319 	p->p_nice = NZERO;
    320 	p->p_emul = &emul_netbsd;
    321 #ifdef __HAVE_SYSCALL_INTERN
    322 	(*p->p_emul->e_syscall_intern)(p);
    323 #endif
    324 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    325 
    326 	l->l_flag = L_INMEM;
    327 	l->l_stat = LSONPROC;
    328 	p->p_nrlwps = 1;
    329 
    330 	callout_init(&l->l_tsleep_ch);
    331 
    332 	/* Create credentials. */
    333 	cred0.p_refcnt = 1;
    334 	p->p_cred = &cred0;
    335 	p->p_ucred = crget();
    336 	p->p_ucred->cr_ngroups = 1;	/* group 0 */
    337 
    338 	/* Create the CWD info. */
    339 	p->p_cwdi = &cwdi0;
    340 	cwdi0.cwdi_cmask = cmask;
    341 	cwdi0.cwdi_refcnt = 1;
    342 	simple_lock_init(&cwdi0.cwdi_slock);
    343 
    344 	/* Create the limits structures. */
    345 	p->p_limit = &limit0;
    346 	simple_lock_init(&limit0.p_slock);
    347 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    348 		limit0.pl_rlimit[i].rlim_cur =
    349 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    350 
    351 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    352 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    353 	    maxfiles < nofile ? maxfiles : nofile;
    354 
    355 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    356 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    357 	    maxproc < maxuprc ? maxproc : maxuprc;
    358 
    359 	lim = ptoa(uvmexp.free);
    360 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    361 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    362 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    363 	limit0.pl_corename = defcorename;
    364 	limit0.p_refcnt = 1;
    365 
    366 	/* Configure virtual memory system, set vm rlimits. */
    367 	uvm_init_limits(p);
    368 
    369 	/* Initialize file descriptor table for proc0. */
    370 	p->p_fd = &filedesc0.fd_fd;
    371 	fdinit1(&filedesc0);
    372 
    373 	/*
    374 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    375 	 * All kernel processes (which never have user space mappings)
    376 	 * share proc0's vmspace, and thus, the kernel pmap.
    377 	 */
    378 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    379 	    trunc_page(VM_MAX_ADDRESS));
    380 	p->p_vmspace = &vmspace0;
    381 
    382 	l->l_addr = proc0paddr;				/* XXX */
    383 
    384 	p->p_stats = &pstat0;
    385 
    386 	/* Initialize signal state for proc0. */
    387 	p->p_sigacts = &sigacts0;
    388 	siginit(p);
    389 }
    390 
    391 /*
    392  * Acquire a read lock on the proclist.
    393  */
    394 void
    395 proclist_lock_read(void)
    396 {
    397 	int error;
    398 
    399 	error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
    400 #ifdef DIAGNOSTIC
    401 	if (__predict_false(error != 0))
    402 		panic("proclist_lock_read: failed to acquire lock");
    403 #endif
    404 }
    405 
    406 /*
    407  * Release a read lock on the proclist.
    408  */
    409 void
    410 proclist_unlock_read(void)
    411 {
    412 
    413 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    414 }
    415 
    416 /*
    417  * Acquire a write lock on the proclist.
    418  */
    419 int
    420 proclist_lock_write(void)
    421 {
    422 	int s, error;
    423 
    424 	s = splclock();
    425 	error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
    426 #ifdef DIAGNOSTIC
    427 	if (__predict_false(error != 0))
    428 		panic("proclist_lock: failed to acquire lock");
    429 #endif
    430 	return s;
    431 }
    432 
    433 /*
    434  * Release a write lock on the proclist.
    435  */
    436 void
    437 proclist_unlock_write(int s)
    438 {
    439 
    440 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    441 	splx(s);
    442 }
    443 
    444 /*
    445  * Check that the specified process group is in the session of the
    446  * specified process.
    447  * Treats -ve ids as process ids.
    448  * Used to validate TIOCSPGRP requests.
    449  */
    450 int
    451 pgid_in_session(struct proc *p, pid_t pg_id)
    452 {
    453 	struct pgrp *pgrp;
    454 
    455 	if (pg_id < 0) {
    456 		struct proc *p1 = pfind(-pg_id);
    457 		if (p1 == NULL)
    458 			return EINVAL;
    459 		pgrp = p1->p_pgrp;
    460 	} else {
    461 		pgrp = pgfind(pg_id);
    462 		if (pgrp == NULL)
    463 			return EINVAL;
    464 	}
    465 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    466 		return EPERM;
    467 	return 0;
    468 }
    469 
    470 /*
    471  * Is p an inferior of q?
    472  */
    473 int
    474 inferior(struct proc *p, struct proc *q)
    475 {
    476 
    477 	for (; p != q; p = p->p_pptr)
    478 		if (p->p_pid == 0)
    479 			return 0;
    480 	return 1;
    481 }
    482 
    483 /*
    484  * Locate a process by number
    485  */
    486 struct proc *
    487 p_find(pid_t pid, uint flags)
    488 {
    489 	struct proc *p;
    490 	char stat;
    491 
    492 	if (!(flags & PFIND_LOCKED))
    493 		proclist_lock_read();
    494 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    495 	/* Only allow live processes to be found by pid. */
    496 	if (P_VALID(p) && p->p_pid == pid &&
    497 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
    498 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
    499 		if (flags & PFIND_UNLOCK_OK)
    500 			 proclist_unlock_read();
    501 		return p;
    502 	}
    503 	if (flags & PFIND_UNLOCK_FAIL)
    504 		 proclist_unlock_read();
    505 	return NULL;
    506 }
    507 
    508 
    509 /*
    510  * Locate a process group by number
    511  */
    512 struct pgrp *
    513 pg_find(pid_t pgid, uint flags)
    514 {
    515 	struct pgrp *pg;
    516 
    517 	if (!(flags & PFIND_LOCKED))
    518 		proclist_lock_read();
    519 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    520 	/*
    521 	 * Can't look up a pgrp that only exists because the session
    522 	 * hasn't died yet (traditional)
    523 	 */
    524 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    525 		if (flags & PFIND_UNLOCK_FAIL)
    526 			 proclist_unlock_read();
    527 		return NULL;
    528 	}
    529 
    530 	if (flags & PFIND_UNLOCK_OK)
    531 		proclist_unlock_read();
    532 	return pg;
    533 }
    534 
    535 static void
    536 expand_pid_table(void)
    537 {
    538 	uint pt_size = pid_tbl_mask + 1;
    539 	struct pid_table *n_pt, *new_pt;
    540 	struct proc *proc;
    541 	struct pgrp *pgrp;
    542 	int i;
    543 	int s;
    544 	pid_t pid;
    545 
    546 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    547 
    548 	s = proclist_lock_write();
    549 	if (pt_size != pid_tbl_mask + 1) {
    550 		/* Another process beat us to it... */
    551 		proclist_unlock_write(s);
    552 		FREE(new_pt, M_PROC);
    553 		return;
    554 	}
    555 
    556 	/*
    557 	 * Copy entries from old table into new one.
    558 	 * If 'pid' is 'odd' we need to place in the upper half,
    559 	 * even pid's to the lower half.
    560 	 * Free items stay in the low half so we don't have to
    561 	 * fixup the reference to them.
    562 	 * We stuff free items on the front of the freelist
    563 	 * because we can't write to unmodified entries.
    564 	 * Processing the table backwards maintains a semblance
    565 	 * of issueing pid numbers that increase with time.
    566 	 */
    567 	i = pt_size - 1;
    568 	n_pt = new_pt + i;
    569 	for (; ; i--, n_pt--) {
    570 		proc = pid_table[i].pt_proc;
    571 		pgrp = pid_table[i].pt_pgrp;
    572 		if (!P_VALID(proc)) {
    573 			/* Up 'use count' so that link is valid */
    574 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    575 			proc = P_FREE(pid);
    576 			if (pgrp)
    577 				pid = pgrp->pg_id;
    578 		} else
    579 			pid = proc->p_pid;
    580 
    581 		/* Save entry in appropriate half of table */
    582 		n_pt[pid & pt_size].pt_proc = proc;
    583 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    584 
    585 		/* Put other piece on start of free list */
    586 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    587 		n_pt[pid & pt_size].pt_proc =
    588 				    P_FREE((pid & ~pt_size) | next_free_pt);
    589 		n_pt[pid & pt_size].pt_pgrp = 0;
    590 		next_free_pt = i | (pid & pt_size);
    591 		if (i == 0)
    592 			break;
    593 	}
    594 
    595 	/* Switch tables */
    596 	n_pt = pid_table;
    597 	pid_table = new_pt;
    598 	pid_tbl_mask = pt_size * 2 - 1;
    599 
    600 	/*
    601 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    602 	 * allocated pids we need it to be larger!
    603 	 */
    604 	if (pid_tbl_mask > PID_MAX) {
    605 		pid_max = pid_tbl_mask * 2 + 1;
    606 		pid_alloc_lim |= pid_alloc_lim << 1;
    607 	} else
    608 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    609 
    610 	proclist_unlock_write(s);
    611 	FREE(n_pt, M_PROC);
    612 }
    613 
    614 struct proc *
    615 proc_alloc(void)
    616 {
    617 	struct proc *p;
    618 	int s;
    619 	int nxt;
    620 	pid_t pid;
    621 	struct pid_table *pt;
    622 
    623 	p = pool_get(&proc_pool, PR_WAITOK);
    624 	p->p_stat = SIDL;			/* protect against others */
    625 
    626 	/* allocate next free pid */
    627 
    628 	for (;;expand_pid_table()) {
    629 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    630 			/* ensure pids cycle through 2000+ values */
    631 			continue;
    632 		s = proclist_lock_write();
    633 		pt = &pid_table[next_free_pt];
    634 #ifdef DIAGNOSTIC
    635 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    636 			panic("proc_alloc: slot busy");
    637 #endif
    638 		nxt = P_NEXT(pt->pt_proc);
    639 		if (nxt & pid_tbl_mask)
    640 			break;
    641 		/* Table full - expand (NB last entry not used....) */
    642 		proclist_unlock_write(s);
    643 	}
    644 
    645 	/* pid is 'saved use count' + 'size' + entry */
    646 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    647 	if ((uint)pid > (uint)pid_max)
    648 		pid &= pid_tbl_mask;
    649 	p->p_pid = pid;
    650 	next_free_pt = nxt & pid_tbl_mask;
    651 
    652 	/* Grab table slot */
    653 	pt->pt_proc = p;
    654 	pid_alloc_cnt++;
    655 
    656 	proclist_unlock_write(s);
    657 
    658 	return p;
    659 }
    660 
    661 /*
    662  * Free last resources of a process - called from proc_free (in kern_exit.c)
    663  */
    664 void
    665 proc_free_mem(struct proc *p)
    666 {
    667 	int s;
    668 	pid_t pid = p->p_pid;
    669 	struct pid_table *pt;
    670 
    671 	s = proclist_lock_write();
    672 
    673 	pt = &pid_table[pid & pid_tbl_mask];
    674 #ifdef DIAGNOSTIC
    675 	if (__predict_false(pt->pt_proc != p))
    676 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    677 			pid, p);
    678 #endif
    679 	/* save pid use count in slot */
    680 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    681 
    682 	if (pt->pt_pgrp == NULL) {
    683 		/* link last freed entry onto ours */
    684 		pid &= pid_tbl_mask;
    685 		pt = &pid_table[last_free_pt];
    686 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    687 		last_free_pt = pid;
    688 		pid_alloc_cnt--;
    689 	}
    690 
    691 	nprocs--;
    692 	proclist_unlock_write(s);
    693 
    694 	pool_put(&proc_pool, p);
    695 }
    696 
    697 /*
    698  * Move p to a new or existing process group (and session)
    699  *
    700  * If we are creating a new pgrp, the pgid should equal
    701  * the calling process' pid.
    702  * If is only valid to enter a process group that is in the session
    703  * of the process.
    704  * Also mksess should only be set if we are creating a process group
    705  *
    706  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    707  * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
    708  */
    709 int
    710 enterpgrp(struct proc *p, pid_t pgid, int mksess)
    711 {
    712 	struct pgrp *new_pgrp, *pgrp;
    713 	struct session *sess;
    714 	struct proc *curp = curproc;
    715 	pid_t pid = p->p_pid;
    716 	int rval;
    717 	int s;
    718 	pid_t pg_id = NO_PGID;
    719 
    720 	/* Allocate data areas we might need before doing any validity checks */
    721 	proclist_lock_read();		/* Because pid_table might change */
    722 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    723 		proclist_unlock_read();
    724 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    725 	} else {
    726 		proclist_unlock_read();
    727 		new_pgrp = NULL;
    728 	}
    729 	if (mksess)
    730 		sess = pool_get(&session_pool, M_WAITOK);
    731 	else
    732 		sess = NULL;
    733 
    734 	s = proclist_lock_write();
    735 	rval = EPERM;	/* most common error (to save typing) */
    736 
    737 	/* Check pgrp exists or can be created */
    738 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    739 	if (pgrp != NULL && pgrp->pg_id != pgid)
    740 		goto done;
    741 
    742 	/* Can only set another process under restricted circumstances. */
    743 	if (p != curp) {
    744 		/* must exist and be one of our children... */
    745 		if (p != pid_table[pid & pid_tbl_mask].pt_proc
    746 		    || !inferior(p, curp)) {
    747 			rval = ESRCH;
    748 			goto done;
    749 		}
    750 		/* ... in the same session... */
    751 		if (sess != NULL || p->p_session != curp->p_session)
    752 			goto done;
    753 		/* ... existing pgid must be in same session ... */
    754 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    755 			goto done;
    756 		/* ... and not done an exec. */
    757 		if (p->p_flag & P_EXEC) {
    758 			rval = EACCES;
    759 			goto done;
    760 		}
    761 	}
    762 
    763 	/* Changing the process group/session of a session
    764 	   leader is definitely off limits. */
    765 	if (SESS_LEADER(p)) {
    766 		if (sess == NULL && p->p_pgrp == pgrp)
    767 			/* unless it's a definite noop */
    768 			rval = 0;
    769 		goto done;
    770 	}
    771 
    772 	/* Can only create a process group with id of process */
    773 	if (pgrp == NULL && pgid != pid)
    774 		goto done;
    775 
    776 	/* Can only create a session if creating pgrp */
    777 	if (sess != NULL && pgrp != NULL)
    778 		goto done;
    779 
    780 	/* Check we allocated memory for a pgrp... */
    781 	if (pgrp == NULL && new_pgrp == NULL)
    782 		goto done;
    783 
    784 	/* Don't attach to 'zombie' pgrp */
    785 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    786 		goto done;
    787 
    788 	/* Expect to succeed now */
    789 	rval = 0;
    790 
    791 	if (pgrp == p->p_pgrp)
    792 		/* nothing to do */
    793 		goto done;
    794 
    795 	/* Ok all setup, link up required structures */
    796 	if (pgrp == NULL) {
    797 		pgrp = new_pgrp;
    798 		new_pgrp = 0;
    799 		if (sess != NULL) {
    800 			sess->s_sid = p->p_pid;
    801 			sess->s_leader = p;
    802 			sess->s_count = 1;
    803 			sess->s_ttyvp = NULL;
    804 			sess->s_ttyp = NULL;
    805 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    806 			memcpy(sess->s_login, p->p_session->s_login,
    807 			    sizeof(sess->s_login));
    808 			p->p_flag &= ~P_CONTROLT;
    809 		} else {
    810 			sess = p->p_pgrp->pg_session;
    811 			SESSHOLD(sess);
    812 		}
    813 		pgrp->pg_session = sess;
    814 		sess = 0;
    815 
    816 		pgrp->pg_id = pgid;
    817 		LIST_INIT(&pgrp->pg_members);
    818 #ifdef DIAGNOSTIC
    819 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    820 			panic("enterpgrp: pgrp table slot in use");
    821 		if (__predict_false(mksess && p != curp))
    822 			panic("enterpgrp: mksession and p != curproc");
    823 #endif
    824 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    825 		pgrp->pg_jobc = 0;
    826 	}
    827 
    828 	/*
    829 	 * Adjust eligibility of affected pgrps to participate in job control.
    830 	 * Increment eligibility counts before decrementing, otherwise we
    831 	 * could reach 0 spuriously during the first call.
    832 	 */
    833 	fixjobc(p, pgrp, 1);
    834 	fixjobc(p, p->p_pgrp, 0);
    835 
    836 	/* Move process to requested group */
    837 	LIST_REMOVE(p, p_pglist);
    838 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    839 		/* defer delete until we've dumped the lock */
    840 		pg_id = p->p_pgrp->pg_id;
    841 	p->p_pgrp = pgrp;
    842 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    843 
    844     done:
    845 	proclist_unlock_write(s);
    846 	if (sess != NULL)
    847 		pool_put(&session_pool, sess);
    848 	if (new_pgrp != NULL)
    849 		pool_put(&pgrp_pool, new_pgrp);
    850 	if (pg_id != NO_PGID)
    851 		pg_delete(pg_id);
    852 #ifdef DEBUG_PGRP
    853 	if (__predict_false(rval))
    854 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    855 			pid, pgid, mksess, curp->p_pid, rval);
    856 #endif
    857 	return rval;
    858 }
    859 
    860 /*
    861  * remove process from process group
    862  */
    863 int
    864 leavepgrp(struct proc *p)
    865 {
    866 	int s;
    867 	struct pgrp *pgrp;
    868 	pid_t pg_id;
    869 
    870 	s = proclist_lock_write();
    871 	pgrp = p->p_pgrp;
    872 	LIST_REMOVE(p, p_pglist);
    873 	p->p_pgrp = 0;
    874 	pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
    875 	proclist_unlock_write(s);
    876 
    877 	if (pg_id != NO_PGID)
    878 		pg_delete(pg_id);
    879 	return 0;
    880 }
    881 
    882 static void
    883 pg_free(pid_t pg_id)
    884 {
    885 	struct pgrp *pgrp;
    886 	struct pid_table *pt;
    887 	int s;
    888 
    889 	s = proclist_lock_write();
    890 	pt = &pid_table[pg_id & pid_tbl_mask];
    891 	pgrp = pt->pt_pgrp;
    892 #ifdef DIAGNOSTIC
    893 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    894 	    || !LIST_EMPTY(&pgrp->pg_members)))
    895 		panic("pg_free: process group absent or has members");
    896 #endif
    897 	pt->pt_pgrp = 0;
    898 
    899 	if (!P_VALID(pt->pt_proc)) {
    900 		/* orphaned pgrp, put slot onto free list */
    901 #ifdef DIAGNOSTIC
    902 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    903 			panic("pg_free: process slot on free list");
    904 #endif
    905 
    906 		pg_id &= pid_tbl_mask;
    907 		pt = &pid_table[last_free_pt];
    908 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    909 		last_free_pt = pg_id;
    910 		pid_alloc_cnt--;
    911 	}
    912 	proclist_unlock_write(s);
    913 
    914 	pool_put(&pgrp_pool, pgrp);
    915 }
    916 
    917 /*
    918  * delete a process group
    919  */
    920 static void
    921 pg_delete(pid_t pg_id)
    922 {
    923 	struct pgrp *pgrp;
    924 	struct tty *ttyp;
    925 	struct session *ss;
    926 	int s, is_pgrp_leader;
    927 
    928 	s = proclist_lock_write();
    929 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    930 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    931 	    !LIST_EMPTY(&pgrp->pg_members)) {
    932 		proclist_unlock_write(s);
    933 		return;
    934 	}
    935 
    936 	ss = pgrp->pg_session;
    937 
    938 	/* Remove reference (if any) from tty to this process group */
    939 	ttyp = ss->s_ttyp;
    940 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    941 		ttyp->t_pgrp = NULL;
    942 #ifdef DIAGNOSTIC
    943 		if (ttyp->t_session != ss)
    944 			panic("pg_delete: wrong session on terminal");
    945 #endif
    946 	}
    947 
    948 	/*
    949 	 * The leading process group in a session is freed
    950 	 * by sessdelete() if last reference.
    951 	 */
    952 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    953 	proclist_unlock_write(s);
    954 	SESSRELE(ss);
    955 
    956 	if (is_pgrp_leader)
    957 		return;
    958 
    959 	pg_free(pg_id);
    960 }
    961 
    962 /*
    963  * Delete session - called from SESSRELE when s_count becomes zero.
    964  */
    965 void
    966 sessdelete(struct session *ss)
    967 {
    968 	/*
    969 	 * We keep the pgrp with the same id as the session in
    970 	 * order to stop a process being given the same pid.
    971 	 * Since the pgrp holds a reference to the session, it
    972 	 * must be a 'zombie' pgrp by now.
    973 	 */
    974 
    975 	pg_free(ss->s_sid);
    976 
    977 	pool_put(&session_pool, ss);
    978 }
    979 
    980 /*
    981  * Adjust pgrp jobc counters when specified process changes process group.
    982  * We count the number of processes in each process group that "qualify"
    983  * the group for terminal job control (those with a parent in a different
    984  * process group of the same session).  If that count reaches zero, the
    985  * process group becomes orphaned.  Check both the specified process'
    986  * process group and that of its children.
    987  * entering == 0 => p is leaving specified group.
    988  * entering == 1 => p is entering specified group.
    989  *
    990  * Call with proclist_lock held.
    991  */
    992 void
    993 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    994 {
    995 	struct pgrp *hispgrp;
    996 	struct session *mysession = pgrp->pg_session;
    997 	struct proc *child;
    998 
    999 	/*
   1000 	 * Check p's parent to see whether p qualifies its own process
   1001 	 * group; if so, adjust count for p's process group.
   1002 	 */
   1003 	hispgrp = p->p_pptr->p_pgrp;
   1004 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1005 		if (entering)
   1006 			pgrp->pg_jobc++;
   1007 		else if (--pgrp->pg_jobc == 0)
   1008 			orphanpg(pgrp);
   1009 	}
   1010 
   1011 	/*
   1012 	 * Check this process' children to see whether they qualify
   1013 	 * their process groups; if so, adjust counts for children's
   1014 	 * process groups.
   1015 	 */
   1016 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1017 		hispgrp = child->p_pgrp;
   1018 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1019 		    !P_ZOMBIE(child)) {
   1020 			if (entering)
   1021 				hispgrp->pg_jobc++;
   1022 			else if (--hispgrp->pg_jobc == 0)
   1023 				orphanpg(hispgrp);
   1024 		}
   1025 	}
   1026 }
   1027 
   1028 /*
   1029  * A process group has become orphaned;
   1030  * if there are any stopped processes in the group,
   1031  * hang-up all process in that group.
   1032  *
   1033  * Call with proclist_lock held.
   1034  */
   1035 static void
   1036 orphanpg(struct pgrp *pg)
   1037 {
   1038 	struct proc *p;
   1039 
   1040 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1041 		if (p->p_stat == SSTOP) {
   1042 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1043 				psignal(p, SIGHUP);
   1044 				psignal(p, SIGCONT);
   1045 			}
   1046 			return;
   1047 		}
   1048 	}
   1049 }
   1050 
   1051 /* mark process as suid/sgid, reset some values to defaults */
   1052 void
   1053 p_sugid(struct proc *p)
   1054 {
   1055 	struct plimit *lim;
   1056 	char *cn;
   1057 
   1058 	p->p_flag |= P_SUGID;
   1059 	/* reset what needs to be reset in plimit */
   1060 	lim = p->p_limit;
   1061 	if (lim->pl_corename != defcorename) {
   1062 		if (lim->p_refcnt > 1 &&
   1063 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1064 			p->p_limit = limcopy(lim);
   1065 			limfree(lim);
   1066 			lim = p->p_limit;
   1067 		}
   1068 		simple_lock(&lim->p_slock);
   1069 		cn = lim->pl_corename;
   1070 		lim->pl_corename = defcorename;
   1071 		simple_unlock(&lim->p_slock);
   1072 		if (cn != defcorename)
   1073 			free(cn, M_TEMP);
   1074 	}
   1075 }
   1076 
   1077 #ifdef DDB
   1078 #include <ddb/db_output.h>
   1079 void pidtbl_dump(void);
   1080 void
   1081 pidtbl_dump(void)
   1082 {
   1083 	struct pid_table *pt;
   1084 	struct proc *p;
   1085 	struct pgrp *pgrp;
   1086 	int id;
   1087 
   1088 	db_printf("pid table %p size %x, next %x, last %x\n",
   1089 		pid_table, pid_tbl_mask+1,
   1090 		next_free_pt, last_free_pt);
   1091 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1092 		p = pt->pt_proc;
   1093 		if (!P_VALID(p) && !pt->pt_pgrp)
   1094 			continue;
   1095 		db_printf("  id %x: ", id);
   1096 		if (P_VALID(p))
   1097 			db_printf("proc %p id %d (0x%x) %s\n",
   1098 				p, p->p_pid, p->p_pid, p->p_comm);
   1099 		else
   1100 			db_printf("next %x use %x\n",
   1101 				P_NEXT(p) & pid_tbl_mask,
   1102 				P_NEXT(p) & ~pid_tbl_mask);
   1103 		if ((pgrp = pt->pt_pgrp)) {
   1104 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1105 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1106 			    pgrp->pg_session->s_count,
   1107 			    pgrp->pg_session->s_login);
   1108 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1109 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1110 			    pgrp->pg_members.lh_first);
   1111 			for (p = pgrp->pg_members.lh_first; p != 0;
   1112 			    p = p->p_pglist.le_next) {
   1113 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1114 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1115 			}
   1116 		}
   1117 	}
   1118 }
   1119 #endif /* DDB */
   1120 
   1121 #ifdef KSTACK_CHECK_MAGIC
   1122 #include <sys/user.h>
   1123 
   1124 #define	KSTACK_MAGIC	0xdeadbeaf
   1125 
   1126 /* XXX should be per process basis? */
   1127 int kstackleftmin = KSTACK_SIZE;
   1128 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1129 					  less than this */
   1130 
   1131 void
   1132 kstack_setup_magic(const struct lwp *l)
   1133 {
   1134 	uint32_t *ip;
   1135 	uint32_t const *end;
   1136 
   1137 	KASSERT(l != NULL);
   1138 	KASSERT(l != &lwp0);
   1139 
   1140 	/*
   1141 	 * fill all the stack with magic number
   1142 	 * so that later modification on it can be detected.
   1143 	 */
   1144 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1145 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1146 	for (; ip < end; ip++) {
   1147 		*ip = KSTACK_MAGIC;
   1148 	}
   1149 }
   1150 
   1151 void
   1152 kstack_check_magic(const struct lwp *l)
   1153 {
   1154 	uint32_t const *ip, *end;
   1155 	int stackleft;
   1156 
   1157 	KASSERT(l != NULL);
   1158 
   1159 	/* don't check proc0 */ /*XXX*/
   1160 	if (l == &lwp0)
   1161 		return;
   1162 
   1163 #ifdef __MACHINE_STACK_GROWS_UP
   1164 	/* stack grows upwards (eg. hppa) */
   1165 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1166 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1167 	for (ip--; ip >= end; ip--)
   1168 		if (*ip != KSTACK_MAGIC)
   1169 			break;
   1170 
   1171 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1172 #else /* __MACHINE_STACK_GROWS_UP */
   1173 	/* stack grows downwards (eg. i386) */
   1174 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1175 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1176 	for (; ip < end; ip++)
   1177 		if (*ip != KSTACK_MAGIC)
   1178 			break;
   1179 
   1180 	stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
   1181 #endif /* __MACHINE_STACK_GROWS_UP */
   1182 
   1183 	if (kstackleftmin > stackleft) {
   1184 		kstackleftmin = stackleft;
   1185 		if (stackleft < kstackleftthres)
   1186 			printf("warning: kernel stack left %d bytes"
   1187 			    "(pid %u:lid %u)\n", stackleft,
   1188 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1189 	}
   1190 
   1191 	if (stackleft <= 0) {
   1192 		panic("magic on the top of kernel stack changed for "
   1193 		    "pid %u, lid %u: maybe kernel stack overflow",
   1194 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1195 	}
   1196 }
   1197 #endif /* KSTACK_CHECK_MAGIC */
   1198 
   1199 /* XXX shouldn't be here */
   1200 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1201 #define	PROCLIST_ASSERT_LOCKED_READ()	\
   1202 	KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
   1203 #else
   1204 #define	PROCLIST_ASSERT_LOCKED_READ()	/* nothing */
   1205 #endif
   1206 
   1207 int
   1208 proclist_foreach_call(struct proclist *list,
   1209     int (*callback)(struct proc *, void *arg), void *arg)
   1210 {
   1211 	struct proc marker;
   1212 	struct proc *p;
   1213 	struct lwp * const l = curlwp;
   1214 	int ret = 0;
   1215 
   1216 	marker.p_flag = P_MARKER;
   1217 	PHOLD(l);
   1218 	proclist_lock_read();
   1219 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1220 		if (p->p_flag & P_MARKER) {
   1221 			p = LIST_NEXT(p, p_list);
   1222 			continue;
   1223 		}
   1224 		LIST_INSERT_AFTER(p, &marker, p_list);
   1225 		ret = (*callback)(p, arg);
   1226 		PROCLIST_ASSERT_LOCKED_READ();
   1227 		p = LIST_NEXT(&marker, p_list);
   1228 		LIST_REMOVE(&marker, p_list);
   1229 	}
   1230 	proclist_unlock_read();
   1231 	PRELE(l);
   1232 
   1233 	return ret;
   1234 }
   1235 
   1236 int
   1237 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1238 {
   1239 
   1240 	/* XXXCDC: how should locking work here? */
   1241 
   1242 	/* curproc exception is for coredump. */
   1243 
   1244 	if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
   1245 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1246 		return EFAULT;
   1247 	}
   1248 
   1249 	uvmspace_addref(p->p_vmspace);
   1250 	*vm = p->p_vmspace;
   1251 
   1252 	return 0;
   1253 }
   1254