Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.86.4.3
      1 /*	$NetBSD: kern_proc.c,v 1.86.4.3 2006/03/10 21:04:13 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.86.4.3 2006/03/10 21:04:13 elad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/acct.h>
     83 #include <sys/wait.h>
     84 #include <sys/file.h>
     85 #include <ufs/ufs/quota.h>
     86 #include <sys/uio.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/tty.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/ras.h>
     94 #include <sys/sa.h>
     95 #include <sys/savar.h>
     96 #include <sys/filedesc.h>
     97 #include <sys/kauth.h>
     98 
     99 #include <uvm/uvm.h>
    100 #include <uvm/uvm_extern.h>
    101 
    102 /*
    103  * Other process lists
    104  */
    105 
    106 struct proclist allproc;
    107 struct proclist zombproc;	/* resources have been freed */
    108 
    109 
    110 /*
    111  * Process list locking:
    112  *
    113  * We have two types of locks on the proclists: read locks and write
    114  * locks.  Read locks can be used in interrupt context, so while we
    115  * hold the write lock, we must also block clock interrupts to
    116  * lock out any scheduling changes that may happen in interrupt
    117  * context.
    118  *
    119  * The proclist lock locks the following structures:
    120  *
    121  *	allproc
    122  *	zombproc
    123  *	pid_table
    124  */
    125 struct lock proclist_lock;
    126 
    127 /*
    128  * pid to proc lookup is done by indexing the pid_table array.
    129  * Since pid numbers are only allocated when an empty slot
    130  * has been found, there is no need to search any lists ever.
    131  * (an orphaned pgrp will lock the slot, a session will lock
    132  * the pgrp with the same number.)
    133  * If the table is too small it is reallocated with twice the
    134  * previous size and the entries 'unzipped' into the two halves.
    135  * A linked list of free entries is passed through the pt_proc
    136  * field of 'free' items - set odd to be an invalid ptr.
    137  */
    138 
    139 struct pid_table {
    140 	struct proc	*pt_proc;
    141 	struct pgrp	*pt_pgrp;
    142 };
    143 #if 1	/* strongly typed cast - should be a noop */
    144 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    145 #else
    146 #define p2u(p) ((uint)p)
    147 #endif
    148 #define P_VALID(p) (!(p2u(p) & 1))
    149 #define P_NEXT(p) (p2u(p) >> 1)
    150 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    151 
    152 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    153 static struct pid_table *pid_table;
    154 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    155 static uint pid_alloc_lim;	/* max we allocate before growing table */
    156 static uint pid_alloc_cnt;	/* number of allocated pids */
    157 
    158 /* links through free slots - never empty! */
    159 static uint next_free_pt, last_free_pt;
    160 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    161 
    162 /* Components of the first process -- never freed. */
    163 struct session session0;
    164 struct pgrp pgrp0;
    165 struct proc proc0;
    166 struct lwp lwp0;
    167 kauth_cred_t cred0;
    168 struct filedesc0 filedesc0;
    169 struct cwdinfo cwdi0;
    170 struct plimit limit0;
    171 struct pstats pstat0;
    172 struct vmspace vmspace0;
    173 struct sigacts sigacts0;
    174 
    175 extern struct user *proc0paddr;
    176 
    177 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    178 
    179 int nofile = NOFILE;
    180 int maxuprc = MAXUPRC;
    181 int cmask = CMASK;
    182 
    183 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    184     &pool_allocator_nointr);
    185 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
    186     &pool_allocator_nointr);
    187 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    188     &pool_allocator_nointr);
    189 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    190     &pool_allocator_nointr);
    191 POOL_INIT(pcred_pool, sizeof(struct pcred), 0, 0, 0, "pcredpl",
    192     &pool_allocator_nointr);
    193 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    194     &pool_allocator_nointr);
    195 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    196     &pool_allocator_nointr);
    197 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    198     &pool_allocator_nointr);
    199 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
    200     &pool_allocator_nointr);
    201 POOL_INIT(sadata_pool, sizeof(struct sadata), 0, 0, 0, "sadatapl",
    202     &pool_allocator_nointr);
    203 POOL_INIT(saupcall_pool, sizeof(struct sadata_upcall), 0, 0, 0, "saupcpl",
    204     &pool_allocator_nointr);
    205 POOL_INIT(sastack_pool, sizeof(struct sastack), 0, 0, 0, "sastackpl",
    206     &pool_allocator_nointr);
    207 POOL_INIT(savp_pool, sizeof(struct sadata_vp), 0, 0, 0, "savppl",
    208     &pool_allocator_nointr);
    209 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    210     &pool_allocator_nointr);
    211 
    212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    215 
    216 /*
    217  * The process list descriptors, used during pid allocation and
    218  * by sysctl.  No locking on this data structure is needed since
    219  * it is completely static.
    220  */
    221 const struct proclist_desc proclists[] = {
    222 	{ &allproc	},
    223 	{ &zombproc	},
    224 	{ NULL		},
    225 };
    226 
    227 static void orphanpg(struct pgrp *);
    228 static void pg_delete(pid_t);
    229 
    230 /*
    231  * Initialize global process hashing structures.
    232  */
    233 void
    234 procinit(void)
    235 {
    236 	const struct proclist_desc *pd;
    237 	int i;
    238 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    239 
    240 	for (pd = proclists; pd->pd_list != NULL; pd++)
    241 		LIST_INIT(pd->pd_list);
    242 
    243 	spinlockinit(&proclist_lock, "proclk", 0);
    244 
    245 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    246 			    M_PROC, M_WAITOK);
    247 	/* Set free list running through table...
    248 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    249 	for (i = 0; i <= pid_tbl_mask; i++) {
    250 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    251 		pid_table[i].pt_pgrp = 0;
    252 	}
    253 	/* slot 0 is just grabbed */
    254 	next_free_pt = 1;
    255 	/* Need to fix last entry. */
    256 	last_free_pt = pid_tbl_mask;
    257 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    258 	/* point at which we grow table - to avoid reusing pids too often */
    259 	pid_alloc_lim = pid_tbl_mask - 1;
    260 #undef LINK_EMPTY
    261 
    262 	LIST_INIT(&alllwp);
    263 
    264 	uihashtbl =
    265 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    266 }
    267 
    268 /*
    269  * Initialize process 0.
    270  */
    271 void
    272 proc0_init(void)
    273 {
    274 	struct proc *p;
    275 	struct pgrp *pg;
    276 	struct session *sess;
    277 	struct lwp *l;
    278 	int s;
    279 	u_int i;
    280 	rlim_t lim;
    281 
    282 	p = &proc0;
    283 	pg = &pgrp0;
    284 	sess = &session0;
    285 	l = &lwp0;
    286 
    287 	simple_lock_init(&p->p_lock);
    288 	LIST_INIT(&p->p_lwps);
    289 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    290 	p->p_nlwps = 1;
    291 	simple_lock_init(&p->p_sigctx.ps_silock);
    292 	CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
    293 
    294 	s = proclist_lock_write();
    295 
    296 	pid_table[0].pt_proc = p;
    297 	LIST_INSERT_HEAD(&allproc, p, p_list);
    298 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    299 
    300 	p->p_pgrp = pg;
    301 	pid_table[0].pt_pgrp = pg;
    302 	LIST_INIT(&pg->pg_members);
    303 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    304 
    305 	pg->pg_session = sess;
    306 	sess->s_count = 1;
    307 	sess->s_sid = 0;
    308 	sess->s_leader = p;
    309 
    310 	proclist_unlock_write(s);
    311 
    312 	/*
    313 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    314 	 * init(8) when they exit.  init(8) can easily wait them out
    315 	 * for us.
    316 	 */
    317 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    318 	p->p_stat = SACTIVE;
    319 	p->p_nice = NZERO;
    320 	p->p_emul = &emul_netbsd;
    321 #ifdef __HAVE_SYSCALL_INTERN
    322 	(*p->p_emul->e_syscall_intern)(p);
    323 #endif
    324 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    325 
    326 	l->l_flag = L_INMEM;
    327 	l->l_stat = LSONPROC;
    328 	p->p_nrlwps = 1;
    329 
    330 	callout_init(&l->l_tsleep_ch);
    331 
    332 	/* Create credentials. */
    333 	cred0 = kauth_cred_alloc();
    334 	p->p_cred = cred0;
    335 
    336 	/* Create the CWD info. */
    337 	p->p_cwdi = &cwdi0;
    338 	cwdi0.cwdi_cmask = cmask;
    339 	cwdi0.cwdi_refcnt = 1;
    340 	simple_lock_init(&cwdi0.cwdi_slock);
    341 
    342 	/* Create the limits structures. */
    343 	p->p_limit = &limit0;
    344 	simple_lock_init(&limit0.p_slock);
    345 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    346 		limit0.pl_rlimit[i].rlim_cur =
    347 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    348 
    349 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    350 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    351 	    maxfiles < nofile ? maxfiles : nofile;
    352 
    353 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    354 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    355 	    maxproc < maxuprc ? maxproc : maxuprc;
    356 
    357 	lim = ptoa(uvmexp.free);
    358 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    359 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    360 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    361 	limit0.pl_corename = defcorename;
    362 	limit0.p_refcnt = 1;
    363 
    364 	/* Configure virtual memory system, set vm rlimits. */
    365 	uvm_init_limits(p);
    366 
    367 	/* Initialize file descriptor table for proc0. */
    368 	p->p_fd = &filedesc0.fd_fd;
    369 	fdinit1(&filedesc0);
    370 
    371 	/*
    372 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    373 	 * All kernel processes (which never have user space mappings)
    374 	 * share proc0's vmspace, and thus, the kernel pmap.
    375 	 */
    376 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    377 	    trunc_page(VM_MAX_ADDRESS));
    378 	p->p_vmspace = &vmspace0;
    379 
    380 	l->l_addr = proc0paddr;				/* XXX */
    381 
    382 	p->p_stats = &pstat0;
    383 
    384 	/* Initialize signal state for proc0. */
    385 	p->p_sigacts = &sigacts0;
    386 	siginit(p);
    387 }
    388 
    389 /*
    390  * Acquire a read lock on the proclist.
    391  */
    392 void
    393 proclist_lock_read(void)
    394 {
    395 	int error;
    396 
    397 	error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
    398 #ifdef DIAGNOSTIC
    399 	if (__predict_false(error != 0))
    400 		panic("proclist_lock_read: failed to acquire lock");
    401 #endif
    402 }
    403 
    404 /*
    405  * Release a read lock on the proclist.
    406  */
    407 void
    408 proclist_unlock_read(void)
    409 {
    410 
    411 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    412 }
    413 
    414 /*
    415  * Acquire a write lock on the proclist.
    416  */
    417 int
    418 proclist_lock_write(void)
    419 {
    420 	int s, error;
    421 
    422 	s = splclock();
    423 	error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
    424 #ifdef DIAGNOSTIC
    425 	if (__predict_false(error != 0))
    426 		panic("proclist_lock: failed to acquire lock");
    427 #endif
    428 	return s;
    429 }
    430 
    431 /*
    432  * Release a write lock on the proclist.
    433  */
    434 void
    435 proclist_unlock_write(int s)
    436 {
    437 
    438 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
    439 	splx(s);
    440 }
    441 
    442 /*
    443  * Check that the specified process group is in the session of the
    444  * specified process.
    445  * Treats -ve ids as process ids.
    446  * Used to validate TIOCSPGRP requests.
    447  */
    448 int
    449 pgid_in_session(struct proc *p, pid_t pg_id)
    450 {
    451 	struct pgrp *pgrp;
    452 
    453 	if (pg_id < 0) {
    454 		struct proc *p1 = pfind(-pg_id);
    455 		if (p1 == NULL)
    456 			return EINVAL;
    457 		pgrp = p1->p_pgrp;
    458 	} else {
    459 		pgrp = pgfind(pg_id);
    460 		if (pgrp == NULL)
    461 			return EINVAL;
    462 	}
    463 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    464 		return EPERM;
    465 	return 0;
    466 }
    467 
    468 /*
    469  * Is p an inferior of q?
    470  */
    471 int
    472 inferior(struct proc *p, struct proc *q)
    473 {
    474 
    475 	for (; p != q; p = p->p_pptr)
    476 		if (p->p_pid == 0)
    477 			return 0;
    478 	return 1;
    479 }
    480 
    481 /*
    482  * Locate a process by number
    483  */
    484 struct proc *
    485 p_find(pid_t pid, uint flags)
    486 {
    487 	struct proc *p;
    488 	char stat;
    489 
    490 	if (!(flags & PFIND_LOCKED))
    491 		proclist_lock_read();
    492 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    493 	/* Only allow live processes to be found by pid. */
    494 	if (P_VALID(p) && p->p_pid == pid &&
    495 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
    496 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
    497 		if (flags & PFIND_UNLOCK_OK)
    498 			 proclist_unlock_read();
    499 		return p;
    500 	}
    501 	if (flags & PFIND_UNLOCK_FAIL)
    502 		 proclist_unlock_read();
    503 	return NULL;
    504 }
    505 
    506 
    507 /*
    508  * Locate a process group by number
    509  */
    510 struct pgrp *
    511 pg_find(pid_t pgid, uint flags)
    512 {
    513 	struct pgrp *pg;
    514 
    515 	if (!(flags & PFIND_LOCKED))
    516 		proclist_lock_read();
    517 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    518 	/*
    519 	 * Can't look up a pgrp that only exists because the session
    520 	 * hasn't died yet (traditional)
    521 	 */
    522 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    523 		if (flags & PFIND_UNLOCK_FAIL)
    524 			 proclist_unlock_read();
    525 		return NULL;
    526 	}
    527 
    528 	if (flags & PFIND_UNLOCK_OK)
    529 		proclist_unlock_read();
    530 	return pg;
    531 }
    532 
    533 static void
    534 expand_pid_table(void)
    535 {
    536 	uint pt_size = pid_tbl_mask + 1;
    537 	struct pid_table *n_pt, *new_pt;
    538 	struct proc *proc;
    539 	struct pgrp *pgrp;
    540 	int i;
    541 	int s;
    542 	pid_t pid;
    543 
    544 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    545 
    546 	s = proclist_lock_write();
    547 	if (pt_size != pid_tbl_mask + 1) {
    548 		/* Another process beat us to it... */
    549 		proclist_unlock_write(s);
    550 		FREE(new_pt, M_PROC);
    551 		return;
    552 	}
    553 
    554 	/*
    555 	 * Copy entries from old table into new one.
    556 	 * If 'pid' is 'odd' we need to place in the upper half,
    557 	 * even pid's to the lower half.
    558 	 * Free items stay in the low half so we don't have to
    559 	 * fixup the reference to them.
    560 	 * We stuff free items on the front of the freelist
    561 	 * because we can't write to unmodified entries.
    562 	 * Processing the table backwards maintains a semblance
    563 	 * of issueing pid numbers that increase with time.
    564 	 */
    565 	i = pt_size - 1;
    566 	n_pt = new_pt + i;
    567 	for (; ; i--, n_pt--) {
    568 		proc = pid_table[i].pt_proc;
    569 		pgrp = pid_table[i].pt_pgrp;
    570 		if (!P_VALID(proc)) {
    571 			/* Up 'use count' so that link is valid */
    572 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    573 			proc = P_FREE(pid);
    574 			if (pgrp)
    575 				pid = pgrp->pg_id;
    576 		} else
    577 			pid = proc->p_pid;
    578 
    579 		/* Save entry in appropriate half of table */
    580 		n_pt[pid & pt_size].pt_proc = proc;
    581 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    582 
    583 		/* Put other piece on start of free list */
    584 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    585 		n_pt[pid & pt_size].pt_proc =
    586 				    P_FREE((pid & ~pt_size) | next_free_pt);
    587 		n_pt[pid & pt_size].pt_pgrp = 0;
    588 		next_free_pt = i | (pid & pt_size);
    589 		if (i == 0)
    590 			break;
    591 	}
    592 
    593 	/* Switch tables */
    594 	n_pt = pid_table;
    595 	pid_table = new_pt;
    596 	pid_tbl_mask = pt_size * 2 - 1;
    597 
    598 	/*
    599 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    600 	 * allocated pids we need it to be larger!
    601 	 */
    602 	if (pid_tbl_mask > PID_MAX) {
    603 		pid_max = pid_tbl_mask * 2 + 1;
    604 		pid_alloc_lim |= pid_alloc_lim << 1;
    605 	} else
    606 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    607 
    608 	proclist_unlock_write(s);
    609 	FREE(n_pt, M_PROC);
    610 }
    611 
    612 struct proc *
    613 proc_alloc(void)
    614 {
    615 	struct proc *p;
    616 	int s;
    617 	int nxt;
    618 	pid_t pid;
    619 	struct pid_table *pt;
    620 
    621 	p = pool_get(&proc_pool, PR_WAITOK);
    622 	p->p_stat = SIDL;			/* protect against others */
    623 
    624 	/* allocate next free pid */
    625 
    626 	for (;;expand_pid_table()) {
    627 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    628 			/* ensure pids cycle through 2000+ values */
    629 			continue;
    630 		s = proclist_lock_write();
    631 		pt = &pid_table[next_free_pt];
    632 #ifdef DIAGNOSTIC
    633 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    634 			panic("proc_alloc: slot busy");
    635 #endif
    636 		nxt = P_NEXT(pt->pt_proc);
    637 		if (nxt & pid_tbl_mask)
    638 			break;
    639 		/* Table full - expand (NB last entry not used....) */
    640 		proclist_unlock_write(s);
    641 	}
    642 
    643 	/* pid is 'saved use count' + 'size' + entry */
    644 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    645 	if ((uint)pid > (uint)pid_max)
    646 		pid &= pid_tbl_mask;
    647 	p->p_pid = pid;
    648 	next_free_pt = nxt & pid_tbl_mask;
    649 
    650 	/* Grab table slot */
    651 	pt->pt_proc = p;
    652 	pid_alloc_cnt++;
    653 
    654 	proclist_unlock_write(s);
    655 
    656 	return p;
    657 }
    658 
    659 /*
    660  * Free last resources of a process - called from proc_free (in kern_exit.c)
    661  */
    662 void
    663 proc_free_mem(struct proc *p)
    664 {
    665 	int s;
    666 	pid_t pid = p->p_pid;
    667 	struct pid_table *pt;
    668 
    669 	s = proclist_lock_write();
    670 
    671 	pt = &pid_table[pid & pid_tbl_mask];
    672 #ifdef DIAGNOSTIC
    673 	if (__predict_false(pt->pt_proc != p))
    674 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    675 			pid, p);
    676 #endif
    677 	/* save pid use count in slot */
    678 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    679 
    680 	if (pt->pt_pgrp == NULL) {
    681 		/* link last freed entry onto ours */
    682 		pid &= pid_tbl_mask;
    683 		pt = &pid_table[last_free_pt];
    684 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    685 		last_free_pt = pid;
    686 		pid_alloc_cnt--;
    687 	}
    688 
    689 	nprocs--;
    690 	proclist_unlock_write(s);
    691 
    692 	pool_put(&proc_pool, p);
    693 }
    694 
    695 /*
    696  * Move p to a new or existing process group (and session)
    697  *
    698  * If we are creating a new pgrp, the pgid should equal
    699  * the calling process' pid.
    700  * If is only valid to enter a process group that is in the session
    701  * of the process.
    702  * Also mksess should only be set if we are creating a process group
    703  *
    704  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    705  * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
    706  */
    707 int
    708 enterpgrp(struct proc *p, pid_t pgid, int mksess)
    709 {
    710 	struct pgrp *new_pgrp, *pgrp;
    711 	struct session *sess;
    712 	struct proc *curp = curproc;
    713 	pid_t pid = p->p_pid;
    714 	int rval;
    715 	int s;
    716 	pid_t pg_id = NO_PGID;
    717 
    718 	/* Allocate data areas we might need before doing any validity checks */
    719 	proclist_lock_read();		/* Because pid_table might change */
    720 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    721 		proclist_unlock_read();
    722 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    723 	} else {
    724 		proclist_unlock_read();
    725 		new_pgrp = NULL;
    726 	}
    727 	if (mksess)
    728 		sess = pool_get(&session_pool, M_WAITOK);
    729 	else
    730 		sess = NULL;
    731 
    732 	s = proclist_lock_write();
    733 	rval = EPERM;	/* most common error (to save typing) */
    734 
    735 	/* Check pgrp exists or can be created */
    736 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    737 	if (pgrp != NULL && pgrp->pg_id != pgid)
    738 		goto done;
    739 
    740 	/* Can only set another process under restricted circumstances. */
    741 	if (p != curp) {
    742 		/* must exist and be one of our children... */
    743 		if (p != pid_table[pid & pid_tbl_mask].pt_proc
    744 		    || !inferior(p, curp)) {
    745 			rval = ESRCH;
    746 			goto done;
    747 		}
    748 		/* ... in the same session... */
    749 		if (sess != NULL || p->p_session != curp->p_session)
    750 			goto done;
    751 		/* ... existing pgid must be in same session ... */
    752 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    753 			goto done;
    754 		/* ... and not done an exec. */
    755 		if (p->p_flag & P_EXEC) {
    756 			rval = EACCES;
    757 			goto done;
    758 		}
    759 	}
    760 
    761 	/* Changing the process group/session of a session
    762 	   leader is definitely off limits. */
    763 	if (SESS_LEADER(p)) {
    764 		if (sess == NULL && p->p_pgrp == pgrp)
    765 			/* unless it's a definite noop */
    766 			rval = 0;
    767 		goto done;
    768 	}
    769 
    770 	/* Can only create a process group with id of process */
    771 	if (pgrp == NULL && pgid != pid)
    772 		goto done;
    773 
    774 	/* Can only create a session if creating pgrp */
    775 	if (sess != NULL && pgrp != NULL)
    776 		goto done;
    777 
    778 	/* Check we allocated memory for a pgrp... */
    779 	if (pgrp == NULL && new_pgrp == NULL)
    780 		goto done;
    781 
    782 	/* Don't attach to 'zombie' pgrp */
    783 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    784 		goto done;
    785 
    786 	/* Expect to succeed now */
    787 	rval = 0;
    788 
    789 	if (pgrp == p->p_pgrp)
    790 		/* nothing to do */
    791 		goto done;
    792 
    793 	/* Ok all setup, link up required structures */
    794 	if (pgrp == NULL) {
    795 		pgrp = new_pgrp;
    796 		new_pgrp = 0;
    797 		if (sess != NULL) {
    798 			sess->s_sid = p->p_pid;
    799 			sess->s_leader = p;
    800 			sess->s_count = 1;
    801 			sess->s_ttyvp = NULL;
    802 			sess->s_ttyp = NULL;
    803 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    804 			memcpy(sess->s_login, p->p_session->s_login,
    805 			    sizeof(sess->s_login));
    806 			p->p_flag &= ~P_CONTROLT;
    807 		} else {
    808 			sess = p->p_pgrp->pg_session;
    809 			SESSHOLD(sess);
    810 		}
    811 		pgrp->pg_session = sess;
    812 		sess = 0;
    813 
    814 		pgrp->pg_id = pgid;
    815 		LIST_INIT(&pgrp->pg_members);
    816 #ifdef DIAGNOSTIC
    817 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    818 			panic("enterpgrp: pgrp table slot in use");
    819 		if (__predict_false(mksess && p != curp))
    820 			panic("enterpgrp: mksession and p != curproc");
    821 #endif
    822 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    823 		pgrp->pg_jobc = 0;
    824 	}
    825 
    826 	/*
    827 	 * Adjust eligibility of affected pgrps to participate in job control.
    828 	 * Increment eligibility counts before decrementing, otherwise we
    829 	 * could reach 0 spuriously during the first call.
    830 	 */
    831 	fixjobc(p, pgrp, 1);
    832 	fixjobc(p, p->p_pgrp, 0);
    833 
    834 	/* Move process to requested group */
    835 	LIST_REMOVE(p, p_pglist);
    836 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    837 		/* defer delete until we've dumped the lock */
    838 		pg_id = p->p_pgrp->pg_id;
    839 	p->p_pgrp = pgrp;
    840 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    841 
    842     done:
    843 	proclist_unlock_write(s);
    844 	if (sess != NULL)
    845 		pool_put(&session_pool, sess);
    846 	if (new_pgrp != NULL)
    847 		pool_put(&pgrp_pool, new_pgrp);
    848 	if (pg_id != NO_PGID)
    849 		pg_delete(pg_id);
    850 #ifdef DEBUG_PGRP
    851 	if (__predict_false(rval))
    852 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    853 			pid, pgid, mksess, curp->p_pid, rval);
    854 #endif
    855 	return rval;
    856 }
    857 
    858 /*
    859  * remove process from process group
    860  */
    861 int
    862 leavepgrp(struct proc *p)
    863 {
    864 	int s;
    865 	struct pgrp *pgrp;
    866 	pid_t pg_id;
    867 
    868 	s = proclist_lock_write();
    869 	pgrp = p->p_pgrp;
    870 	LIST_REMOVE(p, p_pglist);
    871 	p->p_pgrp = 0;
    872 	pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
    873 	proclist_unlock_write(s);
    874 
    875 	if (pg_id != NO_PGID)
    876 		pg_delete(pg_id);
    877 	return 0;
    878 }
    879 
    880 static void
    881 pg_free(pid_t pg_id)
    882 {
    883 	struct pgrp *pgrp;
    884 	struct pid_table *pt;
    885 	int s;
    886 
    887 	s = proclist_lock_write();
    888 	pt = &pid_table[pg_id & pid_tbl_mask];
    889 	pgrp = pt->pt_pgrp;
    890 #ifdef DIAGNOSTIC
    891 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    892 	    || !LIST_EMPTY(&pgrp->pg_members)))
    893 		panic("pg_free: process group absent or has members");
    894 #endif
    895 	pt->pt_pgrp = 0;
    896 
    897 	if (!P_VALID(pt->pt_proc)) {
    898 		/* orphaned pgrp, put slot onto free list */
    899 #ifdef DIAGNOSTIC
    900 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    901 			panic("pg_free: process slot on free list");
    902 #endif
    903 
    904 		pg_id &= pid_tbl_mask;
    905 		pt = &pid_table[last_free_pt];
    906 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    907 		last_free_pt = pg_id;
    908 		pid_alloc_cnt--;
    909 	}
    910 	proclist_unlock_write(s);
    911 
    912 	pool_put(&pgrp_pool, pgrp);
    913 }
    914 
    915 /*
    916  * delete a process group
    917  */
    918 static void
    919 pg_delete(pid_t pg_id)
    920 {
    921 	struct pgrp *pgrp;
    922 	struct tty *ttyp;
    923 	struct session *ss;
    924 	int s, is_pgrp_leader;
    925 
    926 	s = proclist_lock_write();
    927 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    928 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    929 	    !LIST_EMPTY(&pgrp->pg_members)) {
    930 		proclist_unlock_write(s);
    931 		return;
    932 	}
    933 
    934 	ss = pgrp->pg_session;
    935 
    936 	/* Remove reference (if any) from tty to this process group */
    937 	ttyp = ss->s_ttyp;
    938 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    939 		ttyp->t_pgrp = NULL;
    940 #ifdef DIAGNOSTIC
    941 		if (ttyp->t_session != ss)
    942 			panic("pg_delete: wrong session on terminal");
    943 #endif
    944 	}
    945 
    946 	/*
    947 	 * The leading process group in a session is freed
    948 	 * by sessdelete() if last reference.
    949 	 */
    950 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    951 	proclist_unlock_write(s);
    952 	SESSRELE(ss);
    953 
    954 	if (is_pgrp_leader)
    955 		return;
    956 
    957 	pg_free(pg_id);
    958 }
    959 
    960 /*
    961  * Delete session - called from SESSRELE when s_count becomes zero.
    962  */
    963 void
    964 sessdelete(struct session *ss)
    965 {
    966 	/*
    967 	 * We keep the pgrp with the same id as the session in
    968 	 * order to stop a process being given the same pid.
    969 	 * Since the pgrp holds a reference to the session, it
    970 	 * must be a 'zombie' pgrp by now.
    971 	 */
    972 
    973 	pg_free(ss->s_sid);
    974 
    975 	pool_put(&session_pool, ss);
    976 }
    977 
    978 /*
    979  * Adjust pgrp jobc counters when specified process changes process group.
    980  * We count the number of processes in each process group that "qualify"
    981  * the group for terminal job control (those with a parent in a different
    982  * process group of the same session).  If that count reaches zero, the
    983  * process group becomes orphaned.  Check both the specified process'
    984  * process group and that of its children.
    985  * entering == 0 => p is leaving specified group.
    986  * entering == 1 => p is entering specified group.
    987  *
    988  * Call with proclist_lock held.
    989  */
    990 void
    991 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    992 {
    993 	struct pgrp *hispgrp;
    994 	struct session *mysession = pgrp->pg_session;
    995 	struct proc *child;
    996 
    997 	/*
    998 	 * Check p's parent to see whether p qualifies its own process
    999 	 * group; if so, adjust count for p's process group.
   1000 	 */
   1001 	hispgrp = p->p_pptr->p_pgrp;
   1002 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1003 		if (entering)
   1004 			pgrp->pg_jobc++;
   1005 		else if (--pgrp->pg_jobc == 0)
   1006 			orphanpg(pgrp);
   1007 	}
   1008 
   1009 	/*
   1010 	 * Check this process' children to see whether they qualify
   1011 	 * their process groups; if so, adjust counts for children's
   1012 	 * process groups.
   1013 	 */
   1014 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1015 		hispgrp = child->p_pgrp;
   1016 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1017 		    !P_ZOMBIE(child)) {
   1018 			if (entering)
   1019 				hispgrp->pg_jobc++;
   1020 			else if (--hispgrp->pg_jobc == 0)
   1021 				orphanpg(hispgrp);
   1022 		}
   1023 	}
   1024 }
   1025 
   1026 /*
   1027  * A process group has become orphaned;
   1028  * if there are any stopped processes in the group,
   1029  * hang-up all process in that group.
   1030  *
   1031  * Call with proclist_lock held.
   1032  */
   1033 static void
   1034 orphanpg(struct pgrp *pg)
   1035 {
   1036 	struct proc *p;
   1037 
   1038 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1039 		if (p->p_stat == SSTOP) {
   1040 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1041 				psignal(p, SIGHUP);
   1042 				psignal(p, SIGCONT);
   1043 			}
   1044 			return;
   1045 		}
   1046 	}
   1047 }
   1048 
   1049 /* mark process as suid/sgid, reset some values to defaults */
   1050 void
   1051 p_sugid(struct proc *p)
   1052 {
   1053 	struct plimit *lim;
   1054 	char *cn;
   1055 
   1056 	p->p_flag |= P_SUGID;
   1057 	/* reset what needs to be reset in plimit */
   1058 	lim = p->p_limit;
   1059 	if (lim->pl_corename != defcorename) {
   1060 		if (lim->p_refcnt > 1 &&
   1061 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1062 			p->p_limit = limcopy(lim);
   1063 			limfree(lim);
   1064 			lim = p->p_limit;
   1065 		}
   1066 		simple_lock(&lim->p_slock);
   1067 		cn = lim->pl_corename;
   1068 		lim->pl_corename = defcorename;
   1069 		simple_unlock(&lim->p_slock);
   1070 		if (cn != defcorename)
   1071 			free(cn, M_TEMP);
   1072 	}
   1073 }
   1074 
   1075 #ifdef DDB
   1076 #include <ddb/db_output.h>
   1077 void pidtbl_dump(void);
   1078 void
   1079 pidtbl_dump(void)
   1080 {
   1081 	struct pid_table *pt;
   1082 	struct proc *p;
   1083 	struct pgrp *pgrp;
   1084 	int id;
   1085 
   1086 	db_printf("pid table %p size %x, next %x, last %x\n",
   1087 		pid_table, pid_tbl_mask+1,
   1088 		next_free_pt, last_free_pt);
   1089 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1090 		p = pt->pt_proc;
   1091 		if (!P_VALID(p) && !pt->pt_pgrp)
   1092 			continue;
   1093 		db_printf("  id %x: ", id);
   1094 		if (P_VALID(p))
   1095 			db_printf("proc %p id %d (0x%x) %s\n",
   1096 				p, p->p_pid, p->p_pid, p->p_comm);
   1097 		else
   1098 			db_printf("next %x use %x\n",
   1099 				P_NEXT(p) & pid_tbl_mask,
   1100 				P_NEXT(p) & ~pid_tbl_mask);
   1101 		if ((pgrp = pt->pt_pgrp)) {
   1102 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1103 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1104 			    pgrp->pg_session->s_count,
   1105 			    pgrp->pg_session->s_login);
   1106 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1107 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1108 			    pgrp->pg_members.lh_first);
   1109 			for (p = pgrp->pg_members.lh_first; p != 0;
   1110 			    p = p->p_pglist.le_next) {
   1111 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1112 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1113 			}
   1114 		}
   1115 	}
   1116 }
   1117 #endif /* DDB */
   1118 
   1119 #ifdef KSTACK_CHECK_MAGIC
   1120 #include <sys/user.h>
   1121 
   1122 #define	KSTACK_MAGIC	0xdeadbeaf
   1123 
   1124 /* XXX should be per process basis? */
   1125 int kstackleftmin = KSTACK_SIZE;
   1126 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1127 					  less than this */
   1128 
   1129 void
   1130 kstack_setup_magic(const struct lwp *l)
   1131 {
   1132 	uint32_t *ip;
   1133 	uint32_t const *end;
   1134 
   1135 	KASSERT(l != NULL);
   1136 	KASSERT(l != &lwp0);
   1137 
   1138 	/*
   1139 	 * fill all the stack with magic number
   1140 	 * so that later modification on it can be detected.
   1141 	 */
   1142 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1143 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1144 	for (; ip < end; ip++) {
   1145 		*ip = KSTACK_MAGIC;
   1146 	}
   1147 }
   1148 
   1149 void
   1150 kstack_check_magic(const struct lwp *l)
   1151 {
   1152 	uint32_t const *ip, *end;
   1153 	int stackleft;
   1154 
   1155 	KASSERT(l != NULL);
   1156 
   1157 	/* don't check proc0 */ /*XXX*/
   1158 	if (l == &lwp0)
   1159 		return;
   1160 
   1161 #ifdef __MACHINE_STACK_GROWS_UP
   1162 	/* stack grows upwards (eg. hppa) */
   1163 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1164 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1165 	for (ip--; ip >= end; ip--)
   1166 		if (*ip != KSTACK_MAGIC)
   1167 			break;
   1168 
   1169 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1170 #else /* __MACHINE_STACK_GROWS_UP */
   1171 	/* stack grows downwards (eg. i386) */
   1172 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1173 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1174 	for (; ip < end; ip++)
   1175 		if (*ip != KSTACK_MAGIC)
   1176 			break;
   1177 
   1178 	stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
   1179 #endif /* __MACHINE_STACK_GROWS_UP */
   1180 
   1181 	if (kstackleftmin > stackleft) {
   1182 		kstackleftmin = stackleft;
   1183 		if (stackleft < kstackleftthres)
   1184 			printf("warning: kernel stack left %d bytes"
   1185 			    "(pid %u:lid %u)\n", stackleft,
   1186 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1187 	}
   1188 
   1189 	if (stackleft <= 0) {
   1190 		panic("magic on the top of kernel stack changed for "
   1191 		    "pid %u, lid %u: maybe kernel stack overflow",
   1192 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1193 	}
   1194 }
   1195 #endif /* KSTACK_CHECK_MAGIC */
   1196 
   1197 /* XXX shouldn't be here */
   1198 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1199 #define	PROCLIST_ASSERT_LOCKED_READ()	\
   1200 	KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
   1201 #else
   1202 #define	PROCLIST_ASSERT_LOCKED_READ()	/* nothing */
   1203 #endif
   1204 
   1205 int
   1206 proclist_foreach_call(struct proclist *list,
   1207     int (*callback)(struct proc *, void *arg), void *arg)
   1208 {
   1209 	struct proc marker;
   1210 	struct proc *p;
   1211 	struct lwp * const l = curlwp;
   1212 	int ret = 0;
   1213 
   1214 	marker.p_flag = P_MARKER;
   1215 	PHOLD(l);
   1216 	proclist_lock_read();
   1217 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1218 		if (p->p_flag & P_MARKER) {
   1219 			p = LIST_NEXT(p, p_list);
   1220 			continue;
   1221 		}
   1222 		LIST_INSERT_AFTER(p, &marker, p_list);
   1223 		ret = (*callback)(p, arg);
   1224 		PROCLIST_ASSERT_LOCKED_READ();
   1225 		p = LIST_NEXT(&marker, p_list);
   1226 		LIST_REMOVE(&marker, p_list);
   1227 	}
   1228 	proclist_unlock_read();
   1229 	PRELE(l);
   1230 
   1231 	return ret;
   1232 }
   1233 
   1234 int
   1235 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1236 {
   1237 
   1238 	/* XXXCDC: how should locking work here? */
   1239 
   1240 	if ((p->p_flag & P_WEXIT) != 0 ||
   1241 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1242 		return EFAULT;
   1243 	}
   1244 
   1245 	uvmspace_addref(p->p_vmspace);
   1246 	*vm = p->p_vmspace;
   1247 
   1248 	return 0;
   1249 }
   1250