kern_proc.c revision 1.90.2.1 1 /* $NetBSD: kern_proc.c,v 1.90.2.1 2006/07/13 17:49:50 gdamore Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.90.2.1 2006/07/13 17:49:50 gdamore Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112
113 /*
114 * Process list locking:
115 *
116 * We have two types of locks on the proclists: read locks and write
117 * locks. Read locks can be used in interrupt context, so while we
118 * hold the write lock, we must also block clock interrupts to
119 * lock out any scheduling changes that may happen in interrupt
120 * context.
121 *
122 * The proclist lock locks the following structures:
123 *
124 * allproc
125 * zombproc
126 * pid_table
127 */
128 struct lock proclist_lock;
129
130 /*
131 * pid to proc lookup is done by indexing the pid_table array.
132 * Since pid numbers are only allocated when an empty slot
133 * has been found, there is no need to search any lists ever.
134 * (an orphaned pgrp will lock the slot, a session will lock
135 * the pgrp with the same number.)
136 * If the table is too small it is reallocated with twice the
137 * previous size and the entries 'unzipped' into the two halves.
138 * A linked list of free entries is passed through the pt_proc
139 * field of 'free' items - set odd to be an invalid ptr.
140 */
141
142 struct pid_table {
143 struct proc *pt_proc;
144 struct pgrp *pt_pgrp;
145 };
146 #if 1 /* strongly typed cast - should be a noop */
147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
148 #else
149 #define p2u(p) ((uint)p)
150 #endif
151 #define P_VALID(p) (!(p2u(p) & 1))
152 #define P_NEXT(p) (p2u(p) >> 1)
153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
154
155 #define INITIAL_PID_TABLE_SIZE (1 << 5)
156 static struct pid_table *pid_table;
157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
158 static uint pid_alloc_lim; /* max we allocate before growing table */
159 static uint pid_alloc_cnt; /* number of allocated pids */
160
161 /* links through free slots - never empty! */
162 static uint next_free_pt, last_free_pt;
163 static pid_t pid_max = PID_MAX; /* largest value we allocate */
164
165 /* Components of the first process -- never freed. */
166 struct session session0;
167 struct pgrp pgrp0;
168 struct proc proc0;
169 struct lwp lwp0;
170 kauth_cred_t cred0;
171 struct filedesc0 filedesc0;
172 struct cwdinfo cwdi0;
173 struct plimit limit0;
174 struct pstats pstat0;
175 struct vmspace vmspace0;
176 struct sigacts sigacts0;
177
178 extern struct user *proc0paddr;
179
180 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
181
182 int nofile = NOFILE;
183 int maxuprc = MAXUPRC;
184 int cmask = CMASK;
185
186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
187 &pool_allocator_nointr);
188 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
189 &pool_allocator_nointr);
190 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
191 &pool_allocator_nointr);
192 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
193 &pool_allocator_nointr);
194 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
195 &pool_allocator_nointr);
196 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
197 &pool_allocator_nointr);
198 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
199 &pool_allocator_nointr);
200 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
201 &pool_allocator_nointr);
202 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
203 &pool_allocator_nointr);
204
205 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
206 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
207 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
208
209 /*
210 * The process list descriptors, used during pid allocation and
211 * by sysctl. No locking on this data structure is needed since
212 * it is completely static.
213 */
214 const struct proclist_desc proclists[] = {
215 { &allproc },
216 { &zombproc },
217 { NULL },
218 };
219
220 static void orphanpg(struct pgrp *);
221 static void pg_delete(pid_t);
222
223 /*
224 * Initialize global process hashing structures.
225 */
226 void
227 procinit(void)
228 {
229 const struct proclist_desc *pd;
230 int i;
231 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
232
233 for (pd = proclists; pd->pd_list != NULL; pd++)
234 LIST_INIT(pd->pd_list);
235
236 spinlockinit(&proclist_lock, "proclk", 0);
237
238 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
239 M_PROC, M_WAITOK);
240 /* Set free list running through table...
241 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
242 for (i = 0; i <= pid_tbl_mask; i++) {
243 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
244 pid_table[i].pt_pgrp = 0;
245 }
246 /* slot 0 is just grabbed */
247 next_free_pt = 1;
248 /* Need to fix last entry. */
249 last_free_pt = pid_tbl_mask;
250 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
251 /* point at which we grow table - to avoid reusing pids too often */
252 pid_alloc_lim = pid_tbl_mask - 1;
253 #undef LINK_EMPTY
254
255 LIST_INIT(&alllwp);
256
257 uihashtbl =
258 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
259 }
260
261 /*
262 * Initialize process 0.
263 */
264 void
265 proc0_init(void)
266 {
267 struct proc *p;
268 struct pgrp *pg;
269 struct session *sess;
270 struct lwp *l;
271 int s;
272 u_int i;
273 rlim_t lim;
274
275 p = &proc0;
276 pg = &pgrp0;
277 sess = &session0;
278 l = &lwp0;
279
280 simple_lock_init(&p->p_lock);
281 LIST_INIT(&p->p_lwps);
282 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
283 p->p_nlwps = 1;
284 simple_lock_init(&p->p_sigctx.ps_silock);
285 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
286
287 s = proclist_lock_write();
288
289 pid_table[0].pt_proc = p;
290 LIST_INSERT_HEAD(&allproc, p, p_list);
291 LIST_INSERT_HEAD(&alllwp, l, l_list);
292
293 p->p_pgrp = pg;
294 pid_table[0].pt_pgrp = pg;
295 LIST_INIT(&pg->pg_members);
296 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
297
298 pg->pg_session = sess;
299 sess->s_count = 1;
300 sess->s_sid = 0;
301 sess->s_leader = p;
302
303 proclist_unlock_write(s);
304
305 /*
306 * Set P_NOCLDWAIT so that kernel threads are reparented to
307 * init(8) when they exit. init(8) can easily wait them out
308 * for us.
309 */
310 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
311 p->p_stat = SACTIVE;
312 p->p_nice = NZERO;
313 p->p_emul = &emul_netbsd;
314 #ifdef __HAVE_SYSCALL_INTERN
315 (*p->p_emul->e_syscall_intern)(p);
316 #endif
317 strncpy(p->p_comm, "swapper", MAXCOMLEN);
318
319 l->l_flag = L_INMEM;
320 l->l_stat = LSONPROC;
321 p->p_nrlwps = 1;
322
323 callout_init(&l->l_tsleep_ch);
324
325 /* Create credentials. */
326 cred0 = kauth_cred_alloc();
327 p->p_cred = cred0;
328
329 /* Create the CWD info. */
330 p->p_cwdi = &cwdi0;
331 cwdi0.cwdi_cmask = cmask;
332 cwdi0.cwdi_refcnt = 1;
333 simple_lock_init(&cwdi0.cwdi_slock);
334
335 /* Create the limits structures. */
336 p->p_limit = &limit0;
337 simple_lock_init(&limit0.p_slock);
338 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
339 limit0.pl_rlimit[i].rlim_cur =
340 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
341
342 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
343 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
344 maxfiles < nofile ? maxfiles : nofile;
345
346 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
347 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
348 maxproc < maxuprc ? maxproc : maxuprc;
349
350 lim = ptoa(uvmexp.free);
351 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
352 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
353 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
354 limit0.pl_corename = defcorename;
355 limit0.p_refcnt = 1;
356
357 /* Configure virtual memory system, set vm rlimits. */
358 uvm_init_limits(p);
359
360 /* Initialize file descriptor table for proc0. */
361 p->p_fd = &filedesc0.fd_fd;
362 fdinit1(&filedesc0);
363
364 /*
365 * Initialize proc0's vmspace, which uses the kernel pmap.
366 * All kernel processes (which never have user space mappings)
367 * share proc0's vmspace, and thus, the kernel pmap.
368 */
369 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
370 trunc_page(VM_MAX_ADDRESS));
371 p->p_vmspace = &vmspace0;
372
373 l->l_addr = proc0paddr; /* XXX */
374
375 p->p_stats = &pstat0;
376
377 /* Initialize signal state for proc0. */
378 p->p_sigacts = &sigacts0;
379 siginit(p);
380 }
381
382 /*
383 * Acquire a read lock on the proclist.
384 */
385 void
386 proclist_lock_read(void)
387 {
388 int error;
389
390 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
391 #ifdef DIAGNOSTIC
392 if (__predict_false(error != 0))
393 panic("proclist_lock_read: failed to acquire lock");
394 #endif
395 }
396
397 /*
398 * Release a read lock on the proclist.
399 */
400 void
401 proclist_unlock_read(void)
402 {
403
404 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
405 }
406
407 /*
408 * Acquire a write lock on the proclist.
409 */
410 int
411 proclist_lock_write(void)
412 {
413 int s, error;
414
415 s = splclock();
416 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
417 #ifdef DIAGNOSTIC
418 if (__predict_false(error != 0))
419 panic("proclist_lock: failed to acquire lock");
420 #endif
421 return s;
422 }
423
424 /*
425 * Release a write lock on the proclist.
426 */
427 void
428 proclist_unlock_write(int s)
429 {
430
431 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
432 splx(s);
433 }
434
435 /*
436 * Check that the specified process group is in the session of the
437 * specified process.
438 * Treats -ve ids as process ids.
439 * Used to validate TIOCSPGRP requests.
440 */
441 int
442 pgid_in_session(struct proc *p, pid_t pg_id)
443 {
444 struct pgrp *pgrp;
445
446 if (pg_id < 0) {
447 struct proc *p1 = pfind(-pg_id);
448 if (p1 == NULL)
449 return EINVAL;
450 pgrp = p1->p_pgrp;
451 } else {
452 pgrp = pgfind(pg_id);
453 if (pgrp == NULL)
454 return EINVAL;
455 }
456 if (pgrp->pg_session != p->p_pgrp->pg_session)
457 return EPERM;
458 return 0;
459 }
460
461 /*
462 * Is p an inferior of q?
463 */
464 int
465 inferior(struct proc *p, struct proc *q)
466 {
467
468 for (; p != q; p = p->p_pptr)
469 if (p->p_pid == 0)
470 return 0;
471 return 1;
472 }
473
474 /*
475 * Locate a process by number
476 */
477 struct proc *
478 p_find(pid_t pid, uint flags)
479 {
480 struct proc *p;
481 char stat;
482
483 if (!(flags & PFIND_LOCKED))
484 proclist_lock_read();
485 p = pid_table[pid & pid_tbl_mask].pt_proc;
486 /* Only allow live processes to be found by pid. */
487 if (P_VALID(p) && p->p_pid == pid &&
488 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
489 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
490 if (flags & PFIND_UNLOCK_OK)
491 proclist_unlock_read();
492 return p;
493 }
494 if (flags & PFIND_UNLOCK_FAIL)
495 proclist_unlock_read();
496 return NULL;
497 }
498
499
500 /*
501 * Locate a process group by number
502 */
503 struct pgrp *
504 pg_find(pid_t pgid, uint flags)
505 {
506 struct pgrp *pg;
507
508 if (!(flags & PFIND_LOCKED))
509 proclist_lock_read();
510 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
511 /*
512 * Can't look up a pgrp that only exists because the session
513 * hasn't died yet (traditional)
514 */
515 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
516 if (flags & PFIND_UNLOCK_FAIL)
517 proclist_unlock_read();
518 return NULL;
519 }
520
521 if (flags & PFIND_UNLOCK_OK)
522 proclist_unlock_read();
523 return pg;
524 }
525
526 static void
527 expand_pid_table(void)
528 {
529 uint pt_size = pid_tbl_mask + 1;
530 struct pid_table *n_pt, *new_pt;
531 struct proc *proc;
532 struct pgrp *pgrp;
533 int i;
534 int s;
535 pid_t pid;
536
537 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
538
539 s = proclist_lock_write();
540 if (pt_size != pid_tbl_mask + 1) {
541 /* Another process beat us to it... */
542 proclist_unlock_write(s);
543 FREE(new_pt, M_PROC);
544 return;
545 }
546
547 /*
548 * Copy entries from old table into new one.
549 * If 'pid' is 'odd' we need to place in the upper half,
550 * even pid's to the lower half.
551 * Free items stay in the low half so we don't have to
552 * fixup the reference to them.
553 * We stuff free items on the front of the freelist
554 * because we can't write to unmodified entries.
555 * Processing the table backwards maintains a semblance
556 * of issueing pid numbers that increase with time.
557 */
558 i = pt_size - 1;
559 n_pt = new_pt + i;
560 for (; ; i--, n_pt--) {
561 proc = pid_table[i].pt_proc;
562 pgrp = pid_table[i].pt_pgrp;
563 if (!P_VALID(proc)) {
564 /* Up 'use count' so that link is valid */
565 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
566 proc = P_FREE(pid);
567 if (pgrp)
568 pid = pgrp->pg_id;
569 } else
570 pid = proc->p_pid;
571
572 /* Save entry in appropriate half of table */
573 n_pt[pid & pt_size].pt_proc = proc;
574 n_pt[pid & pt_size].pt_pgrp = pgrp;
575
576 /* Put other piece on start of free list */
577 pid = (pid ^ pt_size) & ~pid_tbl_mask;
578 n_pt[pid & pt_size].pt_proc =
579 P_FREE((pid & ~pt_size) | next_free_pt);
580 n_pt[pid & pt_size].pt_pgrp = 0;
581 next_free_pt = i | (pid & pt_size);
582 if (i == 0)
583 break;
584 }
585
586 /* Switch tables */
587 n_pt = pid_table;
588 pid_table = new_pt;
589 pid_tbl_mask = pt_size * 2 - 1;
590
591 /*
592 * pid_max starts as PID_MAX (= 30000), once we have 16384
593 * allocated pids we need it to be larger!
594 */
595 if (pid_tbl_mask > PID_MAX) {
596 pid_max = pid_tbl_mask * 2 + 1;
597 pid_alloc_lim |= pid_alloc_lim << 1;
598 } else
599 pid_alloc_lim <<= 1; /* doubles number of free slots... */
600
601 proclist_unlock_write(s);
602 FREE(n_pt, M_PROC);
603 }
604
605 struct proc *
606 proc_alloc(void)
607 {
608 struct proc *p;
609 int s;
610 int nxt;
611 pid_t pid;
612 struct pid_table *pt;
613
614 p = pool_get(&proc_pool, PR_WAITOK);
615 p->p_stat = SIDL; /* protect against others */
616
617 /* allocate next free pid */
618
619 for (;;expand_pid_table()) {
620 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
621 /* ensure pids cycle through 2000+ values */
622 continue;
623 s = proclist_lock_write();
624 pt = &pid_table[next_free_pt];
625 #ifdef DIAGNOSTIC
626 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
627 panic("proc_alloc: slot busy");
628 #endif
629 nxt = P_NEXT(pt->pt_proc);
630 if (nxt & pid_tbl_mask)
631 break;
632 /* Table full - expand (NB last entry not used....) */
633 proclist_unlock_write(s);
634 }
635
636 /* pid is 'saved use count' + 'size' + entry */
637 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
638 if ((uint)pid > (uint)pid_max)
639 pid &= pid_tbl_mask;
640 p->p_pid = pid;
641 next_free_pt = nxt & pid_tbl_mask;
642
643 /* Grab table slot */
644 pt->pt_proc = p;
645 pid_alloc_cnt++;
646
647 proclist_unlock_write(s);
648
649 return p;
650 }
651
652 /*
653 * Free last resources of a process - called from proc_free (in kern_exit.c)
654 */
655 void
656 proc_free_mem(struct proc *p)
657 {
658 int s;
659 pid_t pid = p->p_pid;
660 struct pid_table *pt;
661
662 s = proclist_lock_write();
663
664 pt = &pid_table[pid & pid_tbl_mask];
665 #ifdef DIAGNOSTIC
666 if (__predict_false(pt->pt_proc != p))
667 panic("proc_free: pid_table mismatch, pid %x, proc %p",
668 pid, p);
669 #endif
670 /* save pid use count in slot */
671 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
672
673 if (pt->pt_pgrp == NULL) {
674 /* link last freed entry onto ours */
675 pid &= pid_tbl_mask;
676 pt = &pid_table[last_free_pt];
677 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
678 last_free_pt = pid;
679 pid_alloc_cnt--;
680 }
681
682 nprocs--;
683 proclist_unlock_write(s);
684
685 pool_put(&proc_pool, p);
686 }
687
688 /*
689 * Move p to a new or existing process group (and session)
690 *
691 * If we are creating a new pgrp, the pgid should equal
692 * the calling process' pid.
693 * If is only valid to enter a process group that is in the session
694 * of the process.
695 * Also mksess should only be set if we are creating a process group
696 *
697 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
698 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
699 */
700 int
701 enterpgrp(struct proc *p, pid_t pgid, int mksess)
702 {
703 struct pgrp *new_pgrp, *pgrp;
704 struct session *sess;
705 struct proc *curp = curproc;
706 pid_t pid = p->p_pid;
707 int rval;
708 int s;
709 pid_t pg_id = NO_PGID;
710
711 /* Allocate data areas we might need before doing any validity checks */
712 proclist_lock_read(); /* Because pid_table might change */
713 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
714 proclist_unlock_read();
715 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
716 } else {
717 proclist_unlock_read();
718 new_pgrp = NULL;
719 }
720 if (mksess)
721 sess = pool_get(&session_pool, M_WAITOK);
722 else
723 sess = NULL;
724
725 s = proclist_lock_write();
726 rval = EPERM; /* most common error (to save typing) */
727
728 /* Check pgrp exists or can be created */
729 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
730 if (pgrp != NULL && pgrp->pg_id != pgid)
731 goto done;
732
733 /* Can only set another process under restricted circumstances. */
734 if (p != curp) {
735 /* must exist and be one of our children... */
736 if (p != pid_table[pid & pid_tbl_mask].pt_proc
737 || !inferior(p, curp)) {
738 rval = ESRCH;
739 goto done;
740 }
741 /* ... in the same session... */
742 if (sess != NULL || p->p_session != curp->p_session)
743 goto done;
744 /* ... existing pgid must be in same session ... */
745 if (pgrp != NULL && pgrp->pg_session != p->p_session)
746 goto done;
747 /* ... and not done an exec. */
748 if (p->p_flag & P_EXEC) {
749 rval = EACCES;
750 goto done;
751 }
752 }
753
754 /* Changing the process group/session of a session
755 leader is definitely off limits. */
756 if (SESS_LEADER(p)) {
757 if (sess == NULL && p->p_pgrp == pgrp)
758 /* unless it's a definite noop */
759 rval = 0;
760 goto done;
761 }
762
763 /* Can only create a process group with id of process */
764 if (pgrp == NULL && pgid != pid)
765 goto done;
766
767 /* Can only create a session if creating pgrp */
768 if (sess != NULL && pgrp != NULL)
769 goto done;
770
771 /* Check we allocated memory for a pgrp... */
772 if (pgrp == NULL && new_pgrp == NULL)
773 goto done;
774
775 /* Don't attach to 'zombie' pgrp */
776 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
777 goto done;
778
779 /* Expect to succeed now */
780 rval = 0;
781
782 if (pgrp == p->p_pgrp)
783 /* nothing to do */
784 goto done;
785
786 /* Ok all setup, link up required structures */
787 if (pgrp == NULL) {
788 pgrp = new_pgrp;
789 new_pgrp = 0;
790 if (sess != NULL) {
791 sess->s_sid = p->p_pid;
792 sess->s_leader = p;
793 sess->s_count = 1;
794 sess->s_ttyvp = NULL;
795 sess->s_ttyp = NULL;
796 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
797 memcpy(sess->s_login, p->p_session->s_login,
798 sizeof(sess->s_login));
799 p->p_flag &= ~P_CONTROLT;
800 } else {
801 sess = p->p_pgrp->pg_session;
802 SESSHOLD(sess);
803 }
804 pgrp->pg_session = sess;
805 sess = 0;
806
807 pgrp->pg_id = pgid;
808 LIST_INIT(&pgrp->pg_members);
809 #ifdef DIAGNOSTIC
810 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
811 panic("enterpgrp: pgrp table slot in use");
812 if (__predict_false(mksess && p != curp))
813 panic("enterpgrp: mksession and p != curproc");
814 #endif
815 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
816 pgrp->pg_jobc = 0;
817 }
818
819 /*
820 * Adjust eligibility of affected pgrps to participate in job control.
821 * Increment eligibility counts before decrementing, otherwise we
822 * could reach 0 spuriously during the first call.
823 */
824 fixjobc(p, pgrp, 1);
825 fixjobc(p, p->p_pgrp, 0);
826
827 /* Move process to requested group */
828 LIST_REMOVE(p, p_pglist);
829 if (LIST_EMPTY(&p->p_pgrp->pg_members))
830 /* defer delete until we've dumped the lock */
831 pg_id = p->p_pgrp->pg_id;
832 p->p_pgrp = pgrp;
833 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
834
835 done:
836 proclist_unlock_write(s);
837 if (sess != NULL)
838 pool_put(&session_pool, sess);
839 if (new_pgrp != NULL)
840 pool_put(&pgrp_pool, new_pgrp);
841 if (pg_id != NO_PGID)
842 pg_delete(pg_id);
843 #ifdef DEBUG_PGRP
844 if (__predict_false(rval))
845 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
846 pid, pgid, mksess, curp->p_pid, rval);
847 #endif
848 return rval;
849 }
850
851 /*
852 * remove process from process group
853 */
854 int
855 leavepgrp(struct proc *p)
856 {
857 int s;
858 struct pgrp *pgrp;
859 pid_t pg_id;
860
861 s = proclist_lock_write();
862 pgrp = p->p_pgrp;
863 LIST_REMOVE(p, p_pglist);
864 p->p_pgrp = 0;
865 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
866 proclist_unlock_write(s);
867
868 if (pg_id != NO_PGID)
869 pg_delete(pg_id);
870 return 0;
871 }
872
873 static void
874 pg_free(pid_t pg_id)
875 {
876 struct pgrp *pgrp;
877 struct pid_table *pt;
878 int s;
879
880 s = proclist_lock_write();
881 pt = &pid_table[pg_id & pid_tbl_mask];
882 pgrp = pt->pt_pgrp;
883 #ifdef DIAGNOSTIC
884 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
885 || !LIST_EMPTY(&pgrp->pg_members)))
886 panic("pg_free: process group absent or has members");
887 #endif
888 pt->pt_pgrp = 0;
889
890 if (!P_VALID(pt->pt_proc)) {
891 /* orphaned pgrp, put slot onto free list */
892 #ifdef DIAGNOSTIC
893 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
894 panic("pg_free: process slot on free list");
895 #endif
896
897 pg_id &= pid_tbl_mask;
898 pt = &pid_table[last_free_pt];
899 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
900 last_free_pt = pg_id;
901 pid_alloc_cnt--;
902 }
903 proclist_unlock_write(s);
904
905 pool_put(&pgrp_pool, pgrp);
906 }
907
908 /*
909 * delete a process group
910 */
911 static void
912 pg_delete(pid_t pg_id)
913 {
914 struct pgrp *pgrp;
915 struct tty *ttyp;
916 struct session *ss;
917 int s, is_pgrp_leader;
918
919 s = proclist_lock_write();
920 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
921 if (pgrp == NULL || pgrp->pg_id != pg_id ||
922 !LIST_EMPTY(&pgrp->pg_members)) {
923 proclist_unlock_write(s);
924 return;
925 }
926
927 ss = pgrp->pg_session;
928
929 /* Remove reference (if any) from tty to this process group */
930 ttyp = ss->s_ttyp;
931 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
932 ttyp->t_pgrp = NULL;
933 #ifdef DIAGNOSTIC
934 if (ttyp->t_session != ss)
935 panic("pg_delete: wrong session on terminal");
936 #endif
937 }
938
939 /*
940 * The leading process group in a session is freed
941 * by sessdelete() if last reference.
942 */
943 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
944 proclist_unlock_write(s);
945 SESSRELE(ss);
946
947 if (is_pgrp_leader)
948 return;
949
950 pg_free(pg_id);
951 }
952
953 /*
954 * Delete session - called from SESSRELE when s_count becomes zero.
955 */
956 void
957 sessdelete(struct session *ss)
958 {
959 /*
960 * We keep the pgrp with the same id as the session in
961 * order to stop a process being given the same pid.
962 * Since the pgrp holds a reference to the session, it
963 * must be a 'zombie' pgrp by now.
964 */
965
966 pg_free(ss->s_sid);
967
968 pool_put(&session_pool, ss);
969 }
970
971 /*
972 * Adjust pgrp jobc counters when specified process changes process group.
973 * We count the number of processes in each process group that "qualify"
974 * the group for terminal job control (those with a parent in a different
975 * process group of the same session). If that count reaches zero, the
976 * process group becomes orphaned. Check both the specified process'
977 * process group and that of its children.
978 * entering == 0 => p is leaving specified group.
979 * entering == 1 => p is entering specified group.
980 *
981 * Call with proclist_lock held.
982 */
983 void
984 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
985 {
986 struct pgrp *hispgrp;
987 struct session *mysession = pgrp->pg_session;
988 struct proc *child;
989
990 /*
991 * Check p's parent to see whether p qualifies its own process
992 * group; if so, adjust count for p's process group.
993 */
994 hispgrp = p->p_pptr->p_pgrp;
995 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
996 if (entering)
997 pgrp->pg_jobc++;
998 else if (--pgrp->pg_jobc == 0)
999 orphanpg(pgrp);
1000 }
1001
1002 /*
1003 * Check this process' children to see whether they qualify
1004 * their process groups; if so, adjust counts for children's
1005 * process groups.
1006 */
1007 LIST_FOREACH(child, &p->p_children, p_sibling) {
1008 hispgrp = child->p_pgrp;
1009 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1010 !P_ZOMBIE(child)) {
1011 if (entering)
1012 hispgrp->pg_jobc++;
1013 else if (--hispgrp->pg_jobc == 0)
1014 orphanpg(hispgrp);
1015 }
1016 }
1017 }
1018
1019 /*
1020 * A process group has become orphaned;
1021 * if there are any stopped processes in the group,
1022 * hang-up all process in that group.
1023 *
1024 * Call with proclist_lock held.
1025 */
1026 static void
1027 orphanpg(struct pgrp *pg)
1028 {
1029 struct proc *p;
1030
1031 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1032 if (p->p_stat == SSTOP) {
1033 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1034 psignal(p, SIGHUP);
1035 psignal(p, SIGCONT);
1036 }
1037 return;
1038 }
1039 }
1040 }
1041
1042 /* mark process as suid/sgid, reset some values to defaults */
1043 void
1044 p_sugid(struct proc *p)
1045 {
1046 struct plimit *lim;
1047 char *cn;
1048
1049 p->p_flag |= P_SUGID;
1050 /* reset what needs to be reset in plimit */
1051 lim = p->p_limit;
1052 if (lim->pl_corename != defcorename) {
1053 if (lim->p_refcnt > 1 &&
1054 (lim->p_lflags & PL_SHAREMOD) == 0) {
1055 p->p_limit = limcopy(lim);
1056 limfree(lim);
1057 lim = p->p_limit;
1058 }
1059 simple_lock(&lim->p_slock);
1060 cn = lim->pl_corename;
1061 lim->pl_corename = defcorename;
1062 simple_unlock(&lim->p_slock);
1063 if (cn != defcorename)
1064 free(cn, M_TEMP);
1065 }
1066 }
1067
1068 #ifdef DDB
1069 #include <ddb/db_output.h>
1070 void pidtbl_dump(void);
1071 void
1072 pidtbl_dump(void)
1073 {
1074 struct pid_table *pt;
1075 struct proc *p;
1076 struct pgrp *pgrp;
1077 int id;
1078
1079 db_printf("pid table %p size %x, next %x, last %x\n",
1080 pid_table, pid_tbl_mask+1,
1081 next_free_pt, last_free_pt);
1082 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1083 p = pt->pt_proc;
1084 if (!P_VALID(p) && !pt->pt_pgrp)
1085 continue;
1086 db_printf(" id %x: ", id);
1087 if (P_VALID(p))
1088 db_printf("proc %p id %d (0x%x) %s\n",
1089 p, p->p_pid, p->p_pid, p->p_comm);
1090 else
1091 db_printf("next %x use %x\n",
1092 P_NEXT(p) & pid_tbl_mask,
1093 P_NEXT(p) & ~pid_tbl_mask);
1094 if ((pgrp = pt->pt_pgrp)) {
1095 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1096 pgrp->pg_session, pgrp->pg_session->s_sid,
1097 pgrp->pg_session->s_count,
1098 pgrp->pg_session->s_login);
1099 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1100 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1101 pgrp->pg_members.lh_first);
1102 for (p = pgrp->pg_members.lh_first; p != 0;
1103 p = p->p_pglist.le_next) {
1104 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1105 p->p_pid, p, p->p_pgrp, p->p_comm);
1106 }
1107 }
1108 }
1109 }
1110 #endif /* DDB */
1111
1112 #ifdef KSTACK_CHECK_MAGIC
1113 #include <sys/user.h>
1114
1115 #define KSTACK_MAGIC 0xdeadbeaf
1116
1117 /* XXX should be per process basis? */
1118 int kstackleftmin = KSTACK_SIZE;
1119 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1120 less than this */
1121
1122 void
1123 kstack_setup_magic(const struct lwp *l)
1124 {
1125 uint32_t *ip;
1126 uint32_t const *end;
1127
1128 KASSERT(l != NULL);
1129 KASSERT(l != &lwp0);
1130
1131 /*
1132 * fill all the stack with magic number
1133 * so that later modification on it can be detected.
1134 */
1135 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1136 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1137 for (; ip < end; ip++) {
1138 *ip = KSTACK_MAGIC;
1139 }
1140 }
1141
1142 void
1143 kstack_check_magic(const struct lwp *l)
1144 {
1145 uint32_t const *ip, *end;
1146 int stackleft;
1147
1148 KASSERT(l != NULL);
1149
1150 /* don't check proc0 */ /*XXX*/
1151 if (l == &lwp0)
1152 return;
1153
1154 #ifdef __MACHINE_STACK_GROWS_UP
1155 /* stack grows upwards (eg. hppa) */
1156 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1157 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1158 for (ip--; ip >= end; ip--)
1159 if (*ip != KSTACK_MAGIC)
1160 break;
1161
1162 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1163 #else /* __MACHINE_STACK_GROWS_UP */
1164 /* stack grows downwards (eg. i386) */
1165 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1166 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1167 for (; ip < end; ip++)
1168 if (*ip != KSTACK_MAGIC)
1169 break;
1170
1171 stackleft = (caddr_t)ip - KSTACK_LOWEST_ADDR(l);
1172 #endif /* __MACHINE_STACK_GROWS_UP */
1173
1174 if (kstackleftmin > stackleft) {
1175 kstackleftmin = stackleft;
1176 if (stackleft < kstackleftthres)
1177 printf("warning: kernel stack left %d bytes"
1178 "(pid %u:lid %u)\n", stackleft,
1179 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1180 }
1181
1182 if (stackleft <= 0) {
1183 panic("magic on the top of kernel stack changed for "
1184 "pid %u, lid %u: maybe kernel stack overflow",
1185 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1186 }
1187 }
1188 #endif /* KSTACK_CHECK_MAGIC */
1189
1190 /* XXX shouldn't be here */
1191 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1192 #define PROCLIST_ASSERT_LOCKED_READ() \
1193 KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1194 #else
1195 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */
1196 #endif
1197
1198 int
1199 proclist_foreach_call(struct proclist *list,
1200 int (*callback)(struct proc *, void *arg), void *arg)
1201 {
1202 struct proc marker;
1203 struct proc *p;
1204 struct lwp * const l = curlwp;
1205 int ret = 0;
1206
1207 marker.p_flag = P_MARKER;
1208 PHOLD(l);
1209 proclist_lock_read();
1210 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1211 if (p->p_flag & P_MARKER) {
1212 p = LIST_NEXT(p, p_list);
1213 continue;
1214 }
1215 LIST_INSERT_AFTER(p, &marker, p_list);
1216 ret = (*callback)(p, arg);
1217 PROCLIST_ASSERT_LOCKED_READ();
1218 p = LIST_NEXT(&marker, p_list);
1219 LIST_REMOVE(&marker, p_list);
1220 }
1221 proclist_unlock_read();
1222 PRELE(l);
1223
1224 return ret;
1225 }
1226
1227 int
1228 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1229 {
1230
1231 /* XXXCDC: how should locking work here? */
1232
1233 /* curproc exception is for coredump. */
1234
1235 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1236 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1237 return EFAULT;
1238 }
1239
1240 uvmspace_addref(p->p_vmspace);
1241 *vm = p->p_vmspace;
1242
1243 return 0;
1244 }
1245