Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.94.4.1
      1 /*	$NetBSD: kern_proc.c,v 1.94.4.1 2006/09/11 18:19:09 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.1 2006/09/11 18:19:09 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/sa.h>
     98 #include <sys/savar.h>
     99 #include <sys/filedesc.h>
    100 #include <sys/kauth.h>
    101 #include <sys/turnstile.h>
    102 
    103 #include <uvm/uvm.h>
    104 #include <uvm/uvm_extern.h>
    105 
    106 /*
    107  * Other process lists
    108  */
    109 
    110 struct proclist allproc;
    111 struct proclist zombproc;	/* resources have been freed */
    112 
    113 /*
    114  * There are three locks on global process state.
    115  *
    116  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    117  * examining process state from a process context.  It protects our internal
    118  * tables, all of the process lists, and a number of members of struct lwp
    119  * and struct proc.
    120 
    121  * 2. proclist_mutex is used when allproc must be traversed from an
    122  * interrupt context, or when we must signal processes from an interrupt
    123  * context.  The proclist_lock should always be used in preference.
    124  *
    125  * 3. alllwp_mutex protects the "alllwp" list.
    126  *
    127  *	proclist_lock	proclist_mutex	alllwp_mutex	structure
    128  *	--------------- --------------- --------------- -----------------
    129  *	x						zombproc
    130  *	x						pid_table
    131  *	x						proc::p_pptr
    132  *	x						proc::p_sibling
    133  *	x						proc::p_children
    134  *	x		x				allproc
    135  *	x		x				proc::p_pgrp
    136  *	x		x				proc::p_pglist
    137  *	x		x				proc::p_session
    138  *	x		x				proc::p_list
    139  *					x		alllwp
    140  *					x		lwp::l_list
    141  */
    142 krwlock_t	proclist_lock;
    143 kmutex_t	proclist_mutex;
    144 
    145 /*
    146  * pid to proc lookup is done by indexing the pid_table array.
    147  * Since pid numbers are only allocated when an empty slot
    148  * has been found, there is no need to search any lists ever.
    149  * (an orphaned pgrp will lock the slot, a session will lock
    150  * the pgrp with the same number.)
    151  * If the table is too small it is reallocated with twice the
    152  * previous size and the entries 'unzipped' into the two halves.
    153  * A linked list of free entries is passed through the pt_proc
    154  * field of 'free' items - set odd to be an invalid ptr.
    155  */
    156 
    157 struct pid_table {
    158 	struct proc	*pt_proc;
    159 	struct pgrp	*pt_pgrp;
    160 };
    161 #if 1	/* strongly typed cast - should be a noop */
    162 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    163 #else
    164 #define p2u(p) ((uint)p)
    165 #endif
    166 #define P_VALID(p) (!(p2u(p) & 1))
    167 #define P_NEXT(p) (p2u(p) >> 1)
    168 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    169 
    170 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    171 static struct pid_table *pid_table;
    172 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    173 static uint pid_alloc_lim;	/* max we allocate before growing table */
    174 static uint pid_alloc_cnt;	/* number of allocated pids */
    175 
    176 /* links through free slots - never empty! */
    177 static uint next_free_pt, last_free_pt;
    178 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    179 
    180 /* Components of the first process -- never freed. */
    181 struct session session0;
    182 struct pgrp pgrp0;
    183 struct proc proc0;
    184 struct lwp lwp0;
    185 kauth_cred_t cred0;
    186 struct filedesc0 filedesc0;
    187 struct cwdinfo cwdi0;
    188 struct plimit limit0;
    189 struct pstats pstat0;
    190 struct vmspace vmspace0;
    191 struct sigacts sigacts0;
    192 struct turnstile turnstile0;
    193 
    194 extern struct user *proc0paddr;
    195 
    196 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    197 
    198 int nofile = NOFILE;
    199 int maxuprc = MAXUPRC;
    200 int cmask = CMASK;
    201 
    202 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    203     &pool_allocator_nointr);
    204 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
    205     &pool_allocator_nointr);
    206 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    207     &pool_allocator_nointr);
    208 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    209     &pool_allocator_nointr);
    210 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    211     &pool_allocator_nointr);
    212 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    213     &pool_allocator_nointr);
    214 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    215     &pool_allocator_nointr);
    216 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
    217     &pool_allocator_nointr);
    218 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    219     &pool_allocator_nointr);
    220 
    221 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    222 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    223 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    224 
    225 /*
    226  * The process list descriptors, used during pid allocation and
    227  * by sysctl.  No locking on this data structure is needed since
    228  * it is completely static.
    229  */
    230 const struct proclist_desc proclists[] = {
    231 	{ &allproc	},
    232 	{ &zombproc	},
    233 	{ NULL		},
    234 };
    235 
    236 static void orphanpg(struct pgrp *);
    237 static void pg_delete(pid_t);
    238 
    239 /*
    240  * Initialize global process hashing structures.
    241  */
    242 void
    243 procinit(void)
    244 {
    245 	const struct proclist_desc *pd;
    246 	int i;
    247 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    248 
    249 	for (pd = proclists; pd->pd_list != NULL; pd++)
    250 		LIST_INIT(pd->pd_list);
    251 
    252 	rw_init(&proclist_lock);
    253 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    254 	mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
    255 
    256 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    257 			    M_PROC, M_WAITOK);
    258 	/* Set free list running through table...
    259 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    260 	for (i = 0; i <= pid_tbl_mask; i++) {
    261 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    262 		pid_table[i].pt_pgrp = 0;
    263 	}
    264 	/* slot 0 is just grabbed */
    265 	next_free_pt = 1;
    266 	/* Need to fix last entry. */
    267 	last_free_pt = pid_tbl_mask;
    268 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    269 	/* point at which we grow table - to avoid reusing pids too often */
    270 	pid_alloc_lim = pid_tbl_mask - 1;
    271 #undef LINK_EMPTY
    272 
    273 	LIST_INIT(&alllwp);
    274 
    275 	uihashtbl =
    276 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    277 }
    278 
    279 /*
    280  * Initialize process 0.
    281  */
    282 void
    283 proc0_init(void)
    284 {
    285 	struct proc *p;
    286 	struct pgrp *pg;
    287 	struct session *sess;
    288 	struct lwp *l;
    289 	u_int i;
    290 	rlim_t lim;
    291 
    292 	p = &proc0;
    293 	pg = &pgrp0;
    294 	sess = &session0;
    295 	l = &lwp0;
    296 
    297 	simple_lock_init(&p->p_lock);
    298 	mutex_init(&p->p_crmutex, MUTEX_DEFAULT, IPL_NONE);
    299 	LIST_INIT(&p->p_lwps);
    300 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    301 	p->p_nlwps = 1;
    302 	simple_lock_init(&p->p_sigctx.ps_silock);
    303 	CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
    304 
    305 	pid_table[0].pt_proc = p;
    306 	LIST_INSERT_HEAD(&allproc, p, p_list);
    307 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    308 
    309 	p->p_pgrp = pg;
    310 	pid_table[0].pt_pgrp = pg;
    311 	LIST_INIT(&pg->pg_members);
    312 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    313 
    314 	pg->pg_session = sess;
    315 	sess->s_count = 1;
    316 	sess->s_sid = 0;
    317 	sess->s_leader = p;
    318 
    319 	/*
    320 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    321 	 * init(8) when they exit.  init(8) can easily wait them out
    322 	 * for us.
    323 	 */
    324 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    325 	p->p_stat = SACTIVE;
    326 	p->p_nice = NZERO;
    327 	p->p_emul = &emul_netbsd;
    328 #ifdef __HAVE_SYSCALL_INTERN
    329 	(*p->p_emul->e_syscall_intern)(p);
    330 #endif
    331 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    332 
    333 	l->l_flag = L_INMEM;
    334 	l->l_stat = LSONPROC;
    335 	l->l_ts = &turnstile0;
    336 	p->p_nrlwps = 1;
    337 
    338 	callout_init(&l->l_tsleep_ch);
    339 
    340 	/* Create credentials. */
    341 	cred0 = kauth_cred_alloc();
    342 	p->p_cred = cred0;
    343 	kauth_cred_hold(cred0);
    344 	l->l_cred = cred0;
    345 
    346 	/* Create the CWD info. */
    347 	p->p_cwdi = &cwdi0;
    348 	cwdi0.cwdi_cmask = cmask;
    349 	cwdi0.cwdi_refcnt = 1;
    350 	simple_lock_init(&cwdi0.cwdi_slock);
    351 
    352 	/* Create the limits structures. */
    353 	p->p_limit = &limit0;
    354 	simple_lock_init(&limit0.p_slock);
    355 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    356 		limit0.pl_rlimit[i].rlim_cur =
    357 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    358 
    359 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    360 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    361 	    maxfiles < nofile ? maxfiles : nofile;
    362 
    363 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    364 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    365 	    maxproc < maxuprc ? maxproc : maxuprc;
    366 
    367 	lim = ptoa(uvmexp.free);
    368 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    369 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    370 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    371 	limit0.pl_corename = defcorename;
    372 	limit0.p_refcnt = 1;
    373 
    374 	/* Configure virtual memory system, set vm rlimits. */
    375 	uvm_init_limits(p);
    376 
    377 	/* Initialize file descriptor table for proc0. */
    378 	p->p_fd = &filedesc0.fd_fd;
    379 	fdinit1(&filedesc0);
    380 
    381 	/*
    382 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    383 	 * All kernel processes (which never have user space mappings)
    384 	 * share proc0's vmspace, and thus, the kernel pmap.
    385 	 */
    386 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    387 	    trunc_page(VM_MAX_ADDRESS));
    388 	p->p_vmspace = &vmspace0;
    389 
    390 	l->l_addr = proc0paddr;				/* XXX */
    391 
    392 	p->p_stats = &pstat0;
    393 
    394 	/* Initialize signal state for proc0. */
    395 	p->p_sigacts = &sigacts0;
    396 	siginit(p);
    397 }
    398 
    399 /*
    400  * Check that the specified process group is in the session of the
    401  * specified process.
    402  * Treats -ve ids as process ids.
    403  * Used to validate TIOCSPGRP requests.
    404  */
    405 int
    406 pgid_in_session(struct proc *p, pid_t pg_id)
    407 {
    408 	struct pgrp *pgrp;
    409 
    410 	if (pg_id < 0) {
    411 		struct proc *p1 = pfind(-pg_id);
    412 		if (p1 == NULL)
    413 			return EINVAL;
    414 		pgrp = p1->p_pgrp;
    415 	} else {
    416 		pgrp = pgfind(pg_id);
    417 		if (pgrp == NULL)
    418 			return EINVAL;
    419 	}
    420 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    421 		return EPERM;
    422 	return 0;
    423 }
    424 
    425 /*
    426  * Is p an inferior of q?
    427  *
    428  * Call with the proclist_lock held.
    429  */
    430 int
    431 inferior(struct proc *p, struct proc *q)
    432 {
    433 
    434 	for (; p != q; p = p->p_pptr)
    435 		if (p->p_pid == 0)
    436 			return 0;
    437 	return 1;
    438 }
    439 
    440 /*
    441  * Locate a process by number
    442  */
    443 struct proc *
    444 p_find(pid_t pid, uint flags)
    445 {
    446 	struct proc *p;
    447 	char stat;
    448 
    449 	if (!(flags & PFIND_LOCKED))
    450 		rw_enter(&proclist_lock, RW_READER);
    451 
    452 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    453 	/* Only allow live processes to be found by pid. */
    454 	if (P_VALID(p) && p->p_pid == pid &&
    455 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
    456 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
    457 		if (flags & PFIND_UNLOCK_OK)
    458 			 rw_exit(&proclist_lock);
    459 		return p;
    460 	}
    461 	if (flags & PFIND_UNLOCK_FAIL)
    462 		 rw_exit(&proclist_lock);
    463 	return NULL;
    464 }
    465 
    466 
    467 /*
    468  * Locate a process group by number
    469  */
    470 struct pgrp *
    471 pg_find(pid_t pgid, uint flags)
    472 {
    473 	struct pgrp *pg;
    474 
    475 	if (!(flags & PFIND_LOCKED))
    476 		rw_enter(&proclist_lock, RW_READER);
    477 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    478 	/*
    479 	 * Can't look up a pgrp that only exists because the session
    480 	 * hasn't died yet (traditional)
    481 	 */
    482 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    483 		if (flags & PFIND_UNLOCK_FAIL)
    484 			 rw_exit(&proclist_lock);
    485 		return NULL;
    486 	}
    487 
    488 	if (flags & PFIND_UNLOCK_OK)
    489 		rw_exit(&proclist_lock);
    490 	return pg;
    491 }
    492 
    493 static void
    494 expand_pid_table(void)
    495 {
    496 	uint pt_size = pid_tbl_mask + 1;
    497 	struct pid_table *n_pt, *new_pt;
    498 	struct proc *proc;
    499 	struct pgrp *pgrp;
    500 	int i;
    501 	pid_t pid;
    502 
    503 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    504 
    505 	rw_enter(&proclist_lock, RW_WRITER);
    506 	if (pt_size != pid_tbl_mask + 1) {
    507 		/* Another process beat us to it... */
    508 		rw_exit(&proclist_lock);
    509 		FREE(new_pt, M_PROC);
    510 		return;
    511 	}
    512 
    513 	/*
    514 	 * Copy entries from old table into new one.
    515 	 * If 'pid' is 'odd' we need to place in the upper half,
    516 	 * even pid's to the lower half.
    517 	 * Free items stay in the low half so we don't have to
    518 	 * fixup the reference to them.
    519 	 * We stuff free items on the front of the freelist
    520 	 * because we can't write to unmodified entries.
    521 	 * Processing the table backwards maintains a semblance
    522 	 * of issueing pid numbers that increase with time.
    523 	 */
    524 	i = pt_size - 1;
    525 	n_pt = new_pt + i;
    526 	for (; ; i--, n_pt--) {
    527 		proc = pid_table[i].pt_proc;
    528 		pgrp = pid_table[i].pt_pgrp;
    529 		if (!P_VALID(proc)) {
    530 			/* Up 'use count' so that link is valid */
    531 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    532 			proc = P_FREE(pid);
    533 			if (pgrp)
    534 				pid = pgrp->pg_id;
    535 		} else
    536 			pid = proc->p_pid;
    537 
    538 		/* Save entry in appropriate half of table */
    539 		n_pt[pid & pt_size].pt_proc = proc;
    540 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    541 
    542 		/* Put other piece on start of free list */
    543 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    544 		n_pt[pid & pt_size].pt_proc =
    545 				    P_FREE((pid & ~pt_size) | next_free_pt);
    546 		n_pt[pid & pt_size].pt_pgrp = 0;
    547 		next_free_pt = i | (pid & pt_size);
    548 		if (i == 0)
    549 			break;
    550 	}
    551 
    552 	/* Switch tables */
    553 	n_pt = pid_table;
    554 	pid_table = new_pt;
    555 	pid_tbl_mask = pt_size * 2 - 1;
    556 
    557 	/*
    558 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    559 	 * allocated pids we need it to be larger!
    560 	 */
    561 	if (pid_tbl_mask > PID_MAX) {
    562 		pid_max = pid_tbl_mask * 2 + 1;
    563 		pid_alloc_lim |= pid_alloc_lim << 1;
    564 	} else
    565 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    566 
    567 	rw_exit(&proclist_lock);
    568 	FREE(n_pt, M_PROC);
    569 }
    570 
    571 struct proc *
    572 proc_alloc(void)
    573 {
    574 	struct proc *p;
    575 	int nxt;
    576 	pid_t pid;
    577 	struct pid_table *pt;
    578 
    579 	p = pool_get(&proc_pool, PR_WAITOK);
    580 	p->p_stat = SIDL;			/* protect against others */
    581 
    582 	/* allocate next free pid */
    583 
    584 	for (;;expand_pid_table()) {
    585 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    586 			/* ensure pids cycle through 2000+ values */
    587 			continue;
    588 		rw_enter(&proclist_lock, RW_WRITER);
    589 		pt = &pid_table[next_free_pt];
    590 #ifdef DIAGNOSTIC
    591 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    592 			panic("proc_alloc: slot busy");
    593 #endif
    594 		nxt = P_NEXT(pt->pt_proc);
    595 		if (nxt & pid_tbl_mask)
    596 			break;
    597 		/* Table full - expand (NB last entry not used....) */
    598 		rw_exit(&proclist_lock);
    599 	}
    600 
    601 	/* pid is 'saved use count' + 'size' + entry */
    602 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    603 	if ((uint)pid > (uint)pid_max)
    604 		pid &= pid_tbl_mask;
    605 	p->p_pid = pid;
    606 	next_free_pt = nxt & pid_tbl_mask;
    607 
    608 	/* Grab table slot */
    609 	pt->pt_proc = p;
    610 	pid_alloc_cnt++;
    611 
    612 	rw_exit(&proclist_lock);
    613 
    614 	return p;
    615 }
    616 
    617 /*
    618  * Free last resources of a process - called from proc_free (in kern_exit.c)
    619  *
    620  * Called with the proclist_lock write held, and releases upon exit.
    621  */
    622 void
    623 proc_free_mem(struct proc *p)
    624 {
    625 	pid_t pid = p->p_pid;
    626 	struct pid_table *pt;
    627 
    628 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    629 
    630 	pt = &pid_table[pid & pid_tbl_mask];
    631 #ifdef DIAGNOSTIC
    632 	if (__predict_false(pt->pt_proc != p))
    633 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    634 			pid, p);
    635 #endif
    636 	/* save pid use count in slot */
    637 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    638 
    639 	if (pt->pt_pgrp == NULL) {
    640 		/* link last freed entry onto ours */
    641 		pid &= pid_tbl_mask;
    642 		pt = &pid_table[last_free_pt];
    643 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    644 		last_free_pt = pid;
    645 		pid_alloc_cnt--;
    646 	}
    647 
    648 	nprocs--;
    649 	rw_exit(&proclist_lock);
    650 
    651 	pool_put(&proc_pool, p);
    652 }
    653 
    654 /*
    655  * Move p to a new or existing process group (and session)
    656  *
    657  * If we are creating a new pgrp, the pgid should equal
    658  * the calling process' pid.
    659  * If is only valid to enter a process group that is in the session
    660  * of the process.
    661  * Also mksess should only be set if we are creating a process group
    662  *
    663  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    664  * SYSV setpgrp support for hpux.
    665  */
    666 int
    667 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    668 {
    669 	struct pgrp *new_pgrp, *pgrp;
    670 	struct session *sess;
    671 	struct proc *p;
    672 	int rval;
    673 	pid_t pg_id = NO_PGID;
    674 
    675 	/* Allocate data areas we might need before doing any validity checks */
    676 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    677 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    678 		rw_exit(&proclist_lock);
    679 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    680 	} else {
    681 		rw_exit(&proclist_lock);
    682 		new_pgrp = NULL;
    683 	}
    684 	if (mksess)
    685 		sess = pool_get(&session_pool, M_WAITOK);
    686 	else
    687 		sess = NULL;
    688 
    689 	rw_enter(&proclist_lock, RW_WRITER);
    690 	rval = EPERM;	/* most common error (to save typing) */
    691 
    692 	/* Check pgrp exists or can be created */
    693 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    694 	if (pgrp != NULL && pgrp->pg_id != pgid)
    695 		goto done;
    696 
    697 	/* Can only set another process under restricted circumstances. */
    698 	if (pid != curp->p_pid) {
    699 		/* must exist and be one of our children... */
    700 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    701 		    !inferior(p, curp)) {
    702 			rval = ESRCH;
    703 			goto done;
    704 		}
    705 		/* ... in the same session... */
    706 		if (sess != NULL || p->p_session != curp->p_session)
    707 			goto done;
    708 		/* ... existing pgid must be in same session ... */
    709 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    710 			goto done;
    711 		/* ... and not done an exec. */
    712 		if (p->p_flag & P_EXEC) {
    713 			rval = EACCES;
    714 			goto done;
    715 		}
    716 	} else {
    717 		/* ... setsid() cannot re-enter a pgrp */
    718 		if (mksess && (curp->p_pgid == curp->p_pid ||
    719 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    720 			goto done;
    721 		p = curp;
    722 	}
    723 
    724 	/* Changing the process group/session of a session
    725 	   leader is definitely off limits. */
    726 	if (SESS_LEADER(p)) {
    727 		if (sess == NULL && p->p_pgrp == pgrp)
    728 			/* unless it's a definite noop */
    729 			rval = 0;
    730 		goto done;
    731 	}
    732 
    733 	/* Can only create a process group with id of process */
    734 	if (pgrp == NULL && pgid != pid)
    735 		goto done;
    736 
    737 	/* Can only create a session if creating pgrp */
    738 	if (sess != NULL && pgrp != NULL)
    739 		goto done;
    740 
    741 	/* Check we allocated memory for a pgrp... */
    742 	if (pgrp == NULL && new_pgrp == NULL)
    743 		goto done;
    744 
    745 	/* Don't attach to 'zombie' pgrp */
    746 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    747 		goto done;
    748 
    749 	/* Expect to succeed now */
    750 	rval = 0;
    751 
    752 	if (pgrp == p->p_pgrp)
    753 		/* nothing to do */
    754 		goto done;
    755 
    756 	/* Ok all setup, link up required structures */
    757 	if (pgrp == NULL) {
    758 		pgrp = new_pgrp;
    759 		new_pgrp = 0;
    760 		if (sess != NULL) {
    761 			sess->s_sid = p->p_pid;
    762 			sess->s_leader = p;
    763 			sess->s_count = 1;
    764 			sess->s_ttyvp = NULL;
    765 			sess->s_ttyp = NULL;
    766 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    767 			memcpy(sess->s_login, p->p_session->s_login,
    768 			    sizeof(sess->s_login));
    769 			p->p_flag &= ~P_CONTROLT;
    770 		} else {
    771 			sess = p->p_pgrp->pg_session;
    772 			SESSHOLD(sess);
    773 		}
    774 		pgrp->pg_session = sess;
    775 		sess = 0;
    776 
    777 		pgrp->pg_id = pgid;
    778 		LIST_INIT(&pgrp->pg_members);
    779 #ifdef DIAGNOSTIC
    780 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    781 			panic("enterpgrp: pgrp table slot in use");
    782 		if (__predict_false(mksess && p != curp))
    783 			panic("enterpgrp: mksession and p != curproc");
    784 #endif
    785 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    786 		pgrp->pg_jobc = 0;
    787 	}
    788 
    789 #ifdef notyet
    790 	/*
    791 	 * If there's a controlling terminal for the current session, we
    792 	 * have to interlock with it.  See ttread().
    793 	 */
    794 	if (p->p_session->s_ttyvp != NULL) {
    795 		tp = p->p_session->s_ttyp;
    796 		mutex_enter(&tp->t_mutex);
    797 	} else
    798 		tp = NULL;
    799 #endif
    800 
    801 	/*
    802 	 * Adjust eligibility of affected pgrps to participate in job control.
    803 	 * Increment eligibility counts before decrementing, otherwise we
    804 	 * could reach 0 spuriously during the first call.
    805 	 */
    806 	fixjobc(p, pgrp, 1);
    807 	fixjobc(p, p->p_pgrp, 0);
    808 
    809 	/* Move process to requested group. */
    810 	mutex_enter(&proclist_mutex);
    811 	LIST_REMOVE(p, p_pglist);
    812 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    813 		/* defer delete until we've dumped the lock */
    814 		pg_id = p->p_pgrp->pg_id;
    815 	p->p_pgrp = pgrp;
    816 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    817 	mutex_exit(&proclist_mutex);
    818 
    819 #ifdef notyet
    820 	/* Done with the swap; we can release the tty mutex. */
    821 	if (tp != NULL)
    822 		mutex_exit(&tp->t_mutex);
    823 #endif
    824 
    825     done:
    826 	rw_exit(&proclist_lock);
    827 	if (sess != NULL)
    828 		pool_put(&session_pool, sess);
    829 	if (new_pgrp != NULL)
    830 		pool_put(&pgrp_pool, new_pgrp);
    831 	if (pg_id != NO_PGID)
    832 		pg_delete(pg_id);
    833 #ifdef DEBUG_PGRP
    834 	if (__predict_false(rval))
    835 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    836 			pid, pgid, mksess, curp->p_pid, rval);
    837 #endif
    838 	return rval;
    839 }
    840 
    841 /*
    842  * Remove a process from its process group.
    843  */
    844 void
    845 leavepgrp(struct proc *p)
    846 {
    847 	struct pgrp *pgrp;
    848 
    849 	/*
    850 	 * If there's a controlling terminal for the session, we have to
    851 	 * interlock with it.  See ttread().
    852 	 */
    853 	rw_enter(&proclist_lock, RW_WRITER);
    854 	mutex_enter(&proclist_mutex);
    855 
    856 #ifdef notyet
    857 	if (p_>p_session->s_ttyvp != NULL) {
    858 		tp = p->p_session->s_ttyp;
    859 		mutex_enter(&tp->t_mutex);
    860 	} else
    861 		tp = NULL;
    862 #endif
    863 
    864 	pgrp = p->p_pgrp;
    865 	LIST_REMOVE(p, p_pglist);
    866 	p->p_pgrp = NULL;
    867 
    868 #ifdef notyet
    869 	if (tp != NULL)
    870 		mutex_exit(&tp->t_mutex);
    871 #endif
    872 	mutex_exit(&proclist_mutex);
    873 	rw_exit(&proclist_lock);
    874 
    875 	if (LIST_EMPTY(&pgrp->pg_members))
    876 		pg_delete(pgrp->pg_id);
    877 }
    878 
    879 static void
    880 pg_free(pid_t pg_id)
    881 {
    882 	struct pgrp *pgrp;
    883 	struct pid_table *pt;
    884 
    885 	rw_enter(&proclist_lock, RW_WRITER);
    886 	pt = &pid_table[pg_id & pid_tbl_mask];
    887 	pgrp = pt->pt_pgrp;
    888 #ifdef DIAGNOSTIC
    889 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    890 	    || !LIST_EMPTY(&pgrp->pg_members)))
    891 		panic("pg_free: process group absent or has members");
    892 #endif
    893 	pt->pt_pgrp = 0;
    894 
    895 	if (!P_VALID(pt->pt_proc)) {
    896 		/* orphaned pgrp, put slot onto free list */
    897 #ifdef DIAGNOSTIC
    898 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    899 			panic("pg_free: process slot on free list");
    900 #endif
    901 
    902 		pg_id &= pid_tbl_mask;
    903 		pt = &pid_table[last_free_pt];
    904 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    905 		last_free_pt = pg_id;
    906 		pid_alloc_cnt--;
    907 	}
    908 	rw_exit(&proclist_lock);
    909 
    910 	pool_put(&pgrp_pool, pgrp);
    911 }
    912 
    913 /*
    914  * delete a process group
    915  */
    916 static void
    917 pg_delete(pid_t pg_id)
    918 {
    919 	struct pgrp *pgrp;
    920 	struct tty *ttyp;
    921 	struct session *ss;
    922 	int is_pgrp_leader;
    923 
    924 	rw_enter(&proclist_lock, RW_WRITER);
    925 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    926 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    927 	    !LIST_EMPTY(&pgrp->pg_members)) {
    928 		rw_exit(&proclist_lock);
    929 		return;
    930 	}
    931 
    932 	ss = pgrp->pg_session;
    933 
    934 	/* Remove reference (if any) from tty to this process group */
    935 	ttyp = ss->s_ttyp;
    936 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    937 		ttyp->t_pgrp = NULL;
    938 #ifdef DIAGNOSTIC
    939 		if (ttyp->t_session != ss)
    940 			panic("pg_delete: wrong session on terminal");
    941 #endif
    942 	}
    943 
    944 	/*
    945 	 * The leading process group in a session is freed
    946 	 * by sessdelete() if last reference.
    947 	 */
    948 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    949 	rw_exit(&proclist_lock);
    950 	SESSRELE(ss);
    951 
    952 	if (is_pgrp_leader)
    953 		return;
    954 
    955 	pg_free(pg_id);
    956 }
    957 
    958 /*
    959  * Delete session - called from SESSRELE when s_count becomes zero.
    960  */
    961 void
    962 sessdelete(struct session *ss)
    963 {
    964 	/*
    965 	 * We keep the pgrp with the same id as the session in
    966 	 * order to stop a process being given the same pid.
    967 	 * Since the pgrp holds a reference to the session, it
    968 	 * must be a 'zombie' pgrp by now.
    969 	 */
    970 
    971 	pg_free(ss->s_sid);
    972 
    973 	pool_put(&session_pool, ss);
    974 }
    975 
    976 /*
    977  * Adjust pgrp jobc counters when specified process changes process group.
    978  * We count the number of processes in each process group that "qualify"
    979  * the group for terminal job control (those with a parent in a different
    980  * process group of the same session).  If that count reaches zero, the
    981  * process group becomes orphaned.  Check both the specified process'
    982  * process group and that of its children.
    983  * entering == 0 => p is leaving specified group.
    984  * entering == 1 => p is entering specified group.
    985  *
    986  * Call with proclist_lock held.
    987  */
    988 void
    989 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
    990 {
    991 	struct pgrp *hispgrp;
    992 	struct session *mysession = pgrp->pg_session;
    993 	struct proc *child;
    994 
    995 	/*
    996 	 * Check p's parent to see whether p qualifies its own process
    997 	 * group; if so, adjust count for p's process group.
    998 	 */
    999 	hispgrp = p->p_pptr->p_pgrp;
   1000 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1001 		if (entering)
   1002 			pgrp->pg_jobc++;
   1003 		else if (--pgrp->pg_jobc == 0)
   1004 			orphanpg(pgrp);
   1005 	}
   1006 
   1007 	/*
   1008 	 * Check this process' children to see whether they qualify
   1009 	 * their process groups; if so, adjust counts for children's
   1010 	 * process groups.
   1011 	 */
   1012 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1013 		hispgrp = child->p_pgrp;
   1014 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1015 		    !P_ZOMBIE(child)) {
   1016 			if (entering)
   1017 				hispgrp->pg_jobc++;
   1018 			else if (--hispgrp->pg_jobc == 0)
   1019 				orphanpg(hispgrp);
   1020 		}
   1021 	}
   1022 }
   1023 
   1024 /*
   1025  * A process group has become orphaned;
   1026  * if there are any stopped processes in the group,
   1027  * hang-up all process in that group.
   1028  *
   1029  * Call with proclist_lock held.
   1030  */
   1031 static void
   1032 orphanpg(struct pgrp *pg)
   1033 {
   1034 	struct proc *p;
   1035 
   1036 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1037 		if (p->p_stat == SSTOP) {
   1038 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1039 				psignal(p, SIGHUP);
   1040 				psignal(p, SIGCONT);
   1041 			}
   1042 			return;
   1043 		}
   1044 	}
   1045 }
   1046 
   1047 /* mark process as suid/sgid, reset some values to defaults */
   1048 void
   1049 p_sugid(struct proc *p)
   1050 {
   1051 	struct plimit *lim;
   1052 	char *cn;
   1053 
   1054 	p->p_flag |= P_SUGID;
   1055 	/* reset what needs to be reset in plimit */
   1056 	lim = p->p_limit;
   1057 	if (lim->pl_corename != defcorename) {
   1058 		if (lim->p_refcnt > 1 &&
   1059 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1060 			p->p_limit = limcopy(lim);
   1061 			limfree(lim);
   1062 			lim = p->p_limit;
   1063 		}
   1064 		simple_lock(&lim->p_slock);
   1065 		cn = lim->pl_corename;
   1066 		lim->pl_corename = defcorename;
   1067 		simple_unlock(&lim->p_slock);
   1068 		if (cn != defcorename)
   1069 			free(cn, M_TEMP);
   1070 	}
   1071 }
   1072 
   1073 #ifdef DDB
   1074 #include <ddb/db_output.h>
   1075 void pidtbl_dump(void);
   1076 void
   1077 pidtbl_dump(void)
   1078 {
   1079 	struct pid_table *pt;
   1080 	struct proc *p;
   1081 	struct pgrp *pgrp;
   1082 	int id;
   1083 
   1084 	db_printf("pid table %p size %x, next %x, last %x\n",
   1085 		pid_table, pid_tbl_mask+1,
   1086 		next_free_pt, last_free_pt);
   1087 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1088 		p = pt->pt_proc;
   1089 		if (!P_VALID(p) && !pt->pt_pgrp)
   1090 			continue;
   1091 		db_printf("  id %x: ", id);
   1092 		if (P_VALID(p))
   1093 			db_printf("proc %p id %d (0x%x) %s\n",
   1094 				p, p->p_pid, p->p_pid, p->p_comm);
   1095 		else
   1096 			db_printf("next %x use %x\n",
   1097 				P_NEXT(p) & pid_tbl_mask,
   1098 				P_NEXT(p) & ~pid_tbl_mask);
   1099 		if ((pgrp = pt->pt_pgrp)) {
   1100 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1101 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1102 			    pgrp->pg_session->s_count,
   1103 			    pgrp->pg_session->s_login);
   1104 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1105 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1106 			    pgrp->pg_members.lh_first);
   1107 			for (p = pgrp->pg_members.lh_first; p != 0;
   1108 			    p = p->p_pglist.le_next) {
   1109 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1110 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1111 			}
   1112 		}
   1113 	}
   1114 }
   1115 #endif /* DDB */
   1116 
   1117 #ifdef KSTACK_CHECK_MAGIC
   1118 #include <sys/user.h>
   1119 
   1120 #define	KSTACK_MAGIC	0xdeadbeaf
   1121 
   1122 /* XXX should be per process basis? */
   1123 int kstackleftmin = KSTACK_SIZE;
   1124 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1125 					  less than this */
   1126 
   1127 void
   1128 kstack_setup_magic(const struct lwp *l)
   1129 {
   1130 	uint32_t *ip;
   1131 	uint32_t const *end;
   1132 
   1133 	KASSERT(l != NULL);
   1134 	KASSERT(l != &lwp0);
   1135 
   1136 	/*
   1137 	 * fill all the stack with magic number
   1138 	 * so that later modification on it can be detected.
   1139 	 */
   1140 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1141 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1142 	for (; ip < end; ip++) {
   1143 		*ip = KSTACK_MAGIC;
   1144 	}
   1145 }
   1146 
   1147 void
   1148 kstack_check_magic(const struct lwp *l)
   1149 {
   1150 	uint32_t const *ip, *end;
   1151 	int stackleft;
   1152 
   1153 	KASSERT(l != NULL);
   1154 
   1155 	/* don't check proc0 */ /*XXX*/
   1156 	if (l == &lwp0)
   1157 		return;
   1158 
   1159 #ifdef __MACHINE_STACK_GROWS_UP
   1160 	/* stack grows upwards (eg. hppa) */
   1161 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1162 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1163 	for (ip--; ip >= end; ip--)
   1164 		if (*ip != KSTACK_MAGIC)
   1165 			break;
   1166 
   1167 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1168 #else /* __MACHINE_STACK_GROWS_UP */
   1169 	/* stack grows downwards (eg. i386) */
   1170 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1171 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1172 	for (; ip < end; ip++)
   1173 		if (*ip != KSTACK_MAGIC)
   1174 			break;
   1175 
   1176 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1177 #endif /* __MACHINE_STACK_GROWS_UP */
   1178 
   1179 	if (kstackleftmin > stackleft) {
   1180 		kstackleftmin = stackleft;
   1181 		if (stackleft < kstackleftthres)
   1182 			printf("warning: kernel stack left %d bytes"
   1183 			    "(pid %u:lid %u)\n", stackleft,
   1184 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1185 	}
   1186 
   1187 	if (stackleft <= 0) {
   1188 		panic("magic on the top of kernel stack changed for "
   1189 		    "pid %u, lid %u: maybe kernel stack overflow",
   1190 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1191 	}
   1192 }
   1193 #endif /* KSTACK_CHECK_MAGIC */
   1194 
   1195 /*
   1196  * XXXSMP this is bust, it grabs a read lock and then messes about
   1197  * with allproc.
   1198  */
   1199 int
   1200 proclist_foreach_call(struct proclist *list,
   1201     int (*callback)(struct proc *, void *arg), void *arg)
   1202 {
   1203 	struct proc marker;
   1204 	struct proc *p;
   1205 	struct lwp * const l = curlwp;
   1206 	int ret = 0;
   1207 
   1208 	marker.p_flag = P_MARKER;
   1209 	PHOLD(l);
   1210 	rw_enter(&proclist_lock, RW_READER);
   1211 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1212 		if (p->p_flag & P_MARKER) {
   1213 			p = LIST_NEXT(p, p_list);
   1214 			continue;
   1215 		}
   1216 		LIST_INSERT_AFTER(p, &marker, p_list);
   1217 		ret = (*callback)(p, arg);
   1218 		KASSERT(rw_read_held(&proclist_lock));
   1219 		p = LIST_NEXT(&marker, p_list);
   1220 		LIST_REMOVE(&marker, p_list);
   1221 	}
   1222 	rw_exit(&proclist_lock);
   1223 	PRELE(l);
   1224 
   1225 	return ret;
   1226 }
   1227 
   1228 int
   1229 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1230 {
   1231 
   1232 	/* XXXCDC: how should locking work here? */
   1233 
   1234 	/* curproc exception is for coredump. */
   1235 
   1236 	if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
   1237 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1238 		return EFAULT;
   1239 	}
   1240 
   1241 	uvmspace_addref(p->p_vmspace);
   1242 	*vm = p->p_vmspace;
   1243 
   1244 	return 0;
   1245 }
   1246 
   1247 /*
   1248  * Acquire a write lock on the process credential.
   1249  */
   1250 void
   1251 proc_crmod_enter(struct proc *p)
   1252 {
   1253 
   1254 	mutex_enter(&p->p_crmutex);
   1255 }
   1256 
   1257 /*
   1258  * Block out readers, set in a new process credential, and drop the write
   1259  * lock.  The credential must have a reference already.  Optionally, free a
   1260  * no-longer required credential.
   1261  */
   1262 void
   1263 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
   1264 {
   1265 
   1266 	p->p_cred = scred;
   1267 	mutex_exit(&p->p_crmutex);
   1268 	if (fcred != NULL)
   1269 		kauth_cred_free(fcred);
   1270 }
   1271