Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.94.4.11
      1 /*	$NetBSD: kern_proc.c,v 1.94.4.11 2007/01/30 13:51:40 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.11 2007/01/30 13:51:40 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/kauth.h>
     99 #include <sys/sleepq.h>
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 /*
    105  * Other process lists
    106  */
    107 
    108 struct proclist allproc;
    109 struct proclist zombproc;	/* resources have been freed */
    110 
    111 /*
    112  * There are two locks on global process state.
    113  *
    114  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    115  * examining process state from a process context.  It protects our internal
    116  * tables, all of the process lists, and a number of members of struct lwp
    117  * and struct proc.
    118 
    119  * 2. proclist_mutex is used when allproc must be traversed from an
    120  * interrupt context, or when we must signal processes from an interrupt
    121  * context.  The proclist_lock should always be used in preference.
    122  *
    123  *	proclist_lock	proclist_mutex	structure
    124  *	--------------- --------------- -----------------
    125  *	x				zombproc
    126  *	x		x		pid_table
    127  *	x				proc::p_pptr
    128  *	x				proc::p_sibling
    129  *	x				proc::p_children
    130  *	x		x		allproc
    131  *	x		x		proc::p_pgrp
    132  *	x		x		proc::p_pglist
    133  *	x		x		proc::p_session
    134  *	x		x		proc::p_list
    135  *			x		alllwp
    136  *			x		lwp::l_list
    137  *
    138  * The lock order for processes and LWPs is apporoximately as following:
    139  *
    140  * kernel_mutex
    141  * -> proclist_lock
    142  *    -> proclist_mutex
    143  *	-> proc::p_mutex
    144  *         -> proc::p_smutex
    145  */
    146 krwlock_t	proclist_lock;
    147 kmutex_t	proclist_mutex;
    148 
    149 /*
    150  * pid to proc lookup is done by indexing the pid_table array.
    151  * Since pid numbers are only allocated when an empty slot
    152  * has been found, there is no need to search any lists ever.
    153  * (an orphaned pgrp will lock the slot, a session will lock
    154  * the pgrp with the same number.)
    155  * If the table is too small it is reallocated with twice the
    156  * previous size and the entries 'unzipped' into the two halves.
    157  * A linked list of free entries is passed through the pt_proc
    158  * field of 'free' items - set odd to be an invalid ptr.
    159  */
    160 
    161 struct pid_table {
    162 	struct proc	*pt_proc;
    163 	struct pgrp	*pt_pgrp;
    164 };
    165 #if 1	/* strongly typed cast - should be a noop */
    166 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    167 #else
    168 #define p2u(p) ((uint)p)
    169 #endif
    170 #define P_VALID(p) (!(p2u(p) & 1))
    171 #define P_NEXT(p) (p2u(p) >> 1)
    172 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    173 
    174 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    175 static struct pid_table *pid_table;
    176 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    177 static uint pid_alloc_lim;	/* max we allocate before growing table */
    178 static uint pid_alloc_cnt;	/* number of allocated pids */
    179 
    180 /* links through free slots - never empty! */
    181 static uint next_free_pt, last_free_pt;
    182 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    183 
    184 /* Components of the first process -- never freed. */
    185 struct session session0;
    186 struct pgrp pgrp0;
    187 struct proc proc0;
    188 struct lwp lwp0 __aligned(32);
    189 kauth_cred_t cred0;
    190 struct filedesc0 filedesc0;
    191 struct cwdinfo cwdi0;
    192 struct plimit limit0;
    193 struct pstats pstat0;
    194 struct vmspace vmspace0;
    195 struct sigacts sigacts0;
    196 struct turnstile turnstile0;
    197 
    198 extern struct user *proc0paddr;
    199 
    200 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    201 
    202 int nofile = NOFILE;
    203 int maxuprc = MAXUPRC;
    204 int cmask = CMASK;
    205 
    206 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    207     &pool_allocator_nointr);
    208 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    209     &pool_allocator_nointr);
    210 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    211     &pool_allocator_nointr);
    212 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    213     &pool_allocator_nointr);
    214 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    215     &pool_allocator_nointr);
    216 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    217     &pool_allocator_nointr);
    218 
    219 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    220 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    221 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    222 
    223 /*
    224  * The process list descriptors, used during pid allocation and
    225  * by sysctl.  No locking on this data structure is needed since
    226  * it is completely static.
    227  */
    228 const struct proclist_desc proclists[] = {
    229 	{ &allproc	},
    230 	{ &zombproc	},
    231 	{ NULL		},
    232 };
    233 
    234 static void orphanpg(struct pgrp *);
    235 static void pg_delete(pid_t);
    236 
    237 static specificdata_domain_t proc_specificdata_domain;
    238 
    239 /*
    240  * Initialize global process hashing structures.
    241  */
    242 void
    243 procinit(void)
    244 {
    245 	const struct proclist_desc *pd;
    246 	int i;
    247 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    248 
    249 	for (pd = proclists; pd->pd_list != NULL; pd++)
    250 		LIST_INIT(pd->pd_list);
    251 
    252 	rw_init(&proclist_lock);
    253 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_VM);
    254 
    255 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    256 			    M_PROC, M_WAITOK);
    257 	/* Set free list running through table...
    258 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    259 	for (i = 0; i <= pid_tbl_mask; i++) {
    260 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    261 		pid_table[i].pt_pgrp = 0;
    262 	}
    263 	/* slot 0 is just grabbed */
    264 	next_free_pt = 1;
    265 	/* Need to fix last entry. */
    266 	last_free_pt = pid_tbl_mask;
    267 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    268 	/* point at which we grow table - to avoid reusing pids too often */
    269 	pid_alloc_lim = pid_tbl_mask - 1;
    270 #undef LINK_EMPTY
    271 
    272 	LIST_INIT(&alllwp);
    273 
    274 	uihashtbl =
    275 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    276 
    277 	proc_specificdata_domain = specificdata_domain_create();
    278 	KASSERT(proc_specificdata_domain != NULL);
    279 }
    280 
    281 /*
    282  * Initialize process 0.
    283  */
    284 void
    285 proc0_init(void)
    286 {
    287 	struct proc *p;
    288 	struct pgrp *pg;
    289 	struct session *sess;
    290 	struct lwp *l;
    291 	u_int i;
    292 	rlim_t lim;
    293 
    294 	p = &proc0;
    295 	pg = &pgrp0;
    296 	sess = &session0;
    297 	l = &lwp0;
    298 
    299 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_VM);
    300 	mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
    301 	mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
    302 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    303 	cv_init(&p->p_refcv, "drainref");
    304 	cv_init(&p->p_waitcv, "wait");
    305 	cv_init(&p->p_lwpcv, "lwpwait");
    306 
    307 	LIST_INIT(&p->p_lwps);
    308 	LIST_INIT(&p->p_sigwaiters);
    309 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    310 
    311 	p->p_nlwps = 1;
    312 	p->p_nrlwps = 1;
    313 	p->p_refcnt = 1;
    314 
    315 	pid_table[0].pt_proc = p;
    316 	LIST_INSERT_HEAD(&allproc, p, p_list);
    317 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    318 
    319 	p->p_pgrp = pg;
    320 	pid_table[0].pt_pgrp = pg;
    321 	LIST_INIT(&pg->pg_members);
    322 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    323 
    324 	pg->pg_session = sess;
    325 	sess->s_count = 1;
    326 	sess->s_sid = 0;
    327 	sess->s_leader = p;
    328 
    329 	/*
    330 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    331 	 * init(8) when they exit.  init(8) can easily wait them out
    332 	 * for us.
    333 	 */
    334 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    335 	p->p_stat = SACTIVE;
    336 	p->p_nice = NZERO;
    337 	p->p_emul = &emul_netbsd;
    338 #ifdef __HAVE_SYSCALL_INTERN
    339 	(*p->p_emul->e_syscall_intern)(p);
    340 #endif
    341 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    342 
    343 	l->l_mutex = &sched_mutex;
    344 	l->l_flag = L_INMEM | L_SYSTEM;
    345 	l->l_stat = LSONPROC;
    346 	l->l_ts = &turnstile0;
    347 	l->l_syncobj = &sched_syncobj;
    348 	l->l_refcnt = 1;
    349 	l->l_cpu = curcpu();
    350 	l->l_priority = PRIBIO;
    351 	l->l_usrpri = PRIBIO;
    352 
    353 	callout_init(&l->l_tsleep_ch);
    354 	cv_init(&l->l_sigcv, "sigwait");
    355 
    356 	/* Create credentials. */
    357 	cred0 = kauth_cred_alloc();
    358 	p->p_cred = cred0;
    359 	kauth_cred_hold(cred0);
    360 	l->l_cred = cred0;
    361 
    362 	/* Create the CWD info. */
    363 	p->p_cwdi = &cwdi0;
    364 	cwdi0.cwdi_cmask = cmask;
    365 	cwdi0.cwdi_refcnt = 1;
    366 	simple_lock_init(&cwdi0.cwdi_slock);
    367 
    368 	/* Create the limits structures. */
    369 	p->p_limit = &limit0;
    370 	simple_lock_init(&limit0.p_slock);
    371 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    372 		limit0.pl_rlimit[i].rlim_cur =
    373 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    374 
    375 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    376 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    377 	    maxfiles < nofile ? maxfiles : nofile;
    378 
    379 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    380 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    381 	    maxproc < maxuprc ? maxproc : maxuprc;
    382 
    383 	lim = ptoa(uvmexp.free);
    384 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    385 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    386 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    387 	limit0.pl_corename = defcorename;
    388 	limit0.p_refcnt = 1;
    389 
    390 	/* Configure virtual memory system, set vm rlimits. */
    391 	uvm_init_limits(p);
    392 
    393 	/* Initialize file descriptor table for proc0. */
    394 	p->p_fd = &filedesc0.fd_fd;
    395 	fdinit1(&filedesc0);
    396 
    397 	/*
    398 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    399 	 * All kernel processes (which never have user space mappings)
    400 	 * share proc0's vmspace, and thus, the kernel pmap.
    401 	 */
    402 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    403 	    trunc_page(VM_MAX_ADDRESS));
    404 	p->p_vmspace = &vmspace0;
    405 
    406 	l->l_addr = proc0paddr;				/* XXX */
    407 
    408 	p->p_stats = &pstat0;
    409 
    410 	/* Initialize signal state for proc0. */
    411 	p->p_sigacts = &sigacts0;
    412 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    413 	siginit(p);
    414 
    415 	proc_initspecific(p);
    416 	lwp_initspecific(l);
    417 }
    418 
    419 /*
    420  * Check that the specified process group is in the session of the
    421  * specified process.
    422  * Treats -ve ids as process ids.
    423  * Used to validate TIOCSPGRP requests.
    424  */
    425 int
    426 pgid_in_session(struct proc *p, pid_t pg_id)
    427 {
    428 	struct pgrp *pgrp;
    429 
    430 	if (pg_id < 0) {
    431 		struct proc *p1 = pfind(-pg_id);
    432 		if (p1 == NULL)
    433 			return EINVAL;
    434 		pgrp = p1->p_pgrp;
    435 	} else {
    436 		pgrp = pgfind(pg_id);
    437 		if (pgrp == NULL)
    438 			return EINVAL;
    439 	}
    440 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    441 		return EPERM;
    442 	return 0;
    443 }
    444 
    445 /*
    446  * Is p an inferior of q?
    447  *
    448  * Call with the proclist_lock held.
    449  */
    450 int
    451 inferior(struct proc *p, struct proc *q)
    452 {
    453 
    454 	for (; p != q; p = p->p_pptr)
    455 		if (p->p_pid == 0)
    456 			return 0;
    457 	return 1;
    458 }
    459 
    460 /*
    461  * Locate a process by number
    462  */
    463 struct proc *
    464 p_find(pid_t pid, uint flags)
    465 {
    466 	struct proc *p;
    467 	char stat;
    468 
    469 	if (!(flags & PFIND_LOCKED))
    470 		rw_enter(&proclist_lock, RW_READER);
    471 
    472 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    473 
    474 	/* Only allow live processes to be found by pid. */
    475 	/* XXXSMP p_stat */
    476 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
    477 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
    478 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
    479 		if (flags & PFIND_UNLOCK_OK)
    480 			 rw_exit(&proclist_lock);
    481 		return p;
    482 	}
    483 	if (flags & PFIND_UNLOCK_FAIL)
    484 		 rw_exit(&proclist_lock);
    485 	return NULL;
    486 }
    487 
    488 
    489 /*
    490  * Locate a process group by number
    491  */
    492 struct pgrp *
    493 pg_find(pid_t pgid, uint flags)
    494 {
    495 	struct pgrp *pg;
    496 
    497 	if (!(flags & PFIND_LOCKED))
    498 		rw_enter(&proclist_lock, RW_READER);
    499 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    500 	/*
    501 	 * Can't look up a pgrp that only exists because the session
    502 	 * hasn't died yet (traditional)
    503 	 */
    504 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    505 		if (flags & PFIND_UNLOCK_FAIL)
    506 			 rw_exit(&proclist_lock);
    507 		return NULL;
    508 	}
    509 
    510 	if (flags & PFIND_UNLOCK_OK)
    511 		rw_exit(&proclist_lock);
    512 	return pg;
    513 }
    514 
    515 static void
    516 expand_pid_table(void)
    517 {
    518 	uint pt_size = pid_tbl_mask + 1;
    519 	struct pid_table *n_pt, *new_pt;
    520 	struct proc *proc;
    521 	struct pgrp *pgrp;
    522 	int i;
    523 	pid_t pid;
    524 
    525 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    526 
    527 	rw_enter(&proclist_lock, RW_WRITER);
    528 	if (pt_size != pid_tbl_mask + 1) {
    529 		/* Another process beat us to it... */
    530 		rw_exit(&proclist_lock);
    531 		FREE(new_pt, M_PROC);
    532 		return;
    533 	}
    534 
    535 	/*
    536 	 * Copy entries from old table into new one.
    537 	 * If 'pid' is 'odd' we need to place in the upper half,
    538 	 * even pid's to the lower half.
    539 	 * Free items stay in the low half so we don't have to
    540 	 * fixup the reference to them.
    541 	 * We stuff free items on the front of the freelist
    542 	 * because we can't write to unmodified entries.
    543 	 * Processing the table backwards maintains a semblance
    544 	 * of issueing pid numbers that increase with time.
    545 	 */
    546 	i = pt_size - 1;
    547 	n_pt = new_pt + i;
    548 	for (; ; i--, n_pt--) {
    549 		proc = pid_table[i].pt_proc;
    550 		pgrp = pid_table[i].pt_pgrp;
    551 		if (!P_VALID(proc)) {
    552 			/* Up 'use count' so that link is valid */
    553 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    554 			proc = P_FREE(pid);
    555 			if (pgrp)
    556 				pid = pgrp->pg_id;
    557 		} else
    558 			pid = proc->p_pid;
    559 
    560 		/* Save entry in appropriate half of table */
    561 		n_pt[pid & pt_size].pt_proc = proc;
    562 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    563 
    564 		/* Put other piece on start of free list */
    565 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    566 		n_pt[pid & pt_size].pt_proc =
    567 				    P_FREE((pid & ~pt_size) | next_free_pt);
    568 		n_pt[pid & pt_size].pt_pgrp = 0;
    569 		next_free_pt = i | (pid & pt_size);
    570 		if (i == 0)
    571 			break;
    572 	}
    573 
    574 	/* Switch tables */
    575 	mutex_enter(&proclist_mutex);
    576 	n_pt = pid_table;
    577 	pid_table = new_pt;
    578 	mutex_exit(&proclist_mutex);
    579 	pid_tbl_mask = pt_size * 2 - 1;
    580 
    581 	/*
    582 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    583 	 * allocated pids we need it to be larger!
    584 	 */
    585 	if (pid_tbl_mask > PID_MAX) {
    586 		pid_max = pid_tbl_mask * 2 + 1;
    587 		pid_alloc_lim |= pid_alloc_lim << 1;
    588 	} else
    589 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    590 
    591 	rw_exit(&proclist_lock);
    592 	FREE(n_pt, M_PROC);
    593 }
    594 
    595 struct proc *
    596 proc_alloc(void)
    597 {
    598 	struct proc *p;
    599 	int nxt;
    600 	pid_t pid;
    601 	struct pid_table *pt;
    602 
    603 	p = pool_get(&proc_pool, PR_WAITOK);
    604 	p->p_stat = SIDL;			/* protect against others */
    605 
    606 	proc_initspecific(p);
    607 	/* allocate next free pid */
    608 
    609 	for (;;expand_pid_table()) {
    610 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    611 			/* ensure pids cycle through 2000+ values */
    612 			continue;
    613 		rw_enter(&proclist_lock, RW_WRITER);
    614 		pt = &pid_table[next_free_pt];
    615 #ifdef DIAGNOSTIC
    616 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    617 			panic("proc_alloc: slot busy");
    618 #endif
    619 		nxt = P_NEXT(pt->pt_proc);
    620 		if (nxt & pid_tbl_mask)
    621 			break;
    622 		/* Table full - expand (NB last entry not used....) */
    623 		rw_exit(&proclist_lock);
    624 	}
    625 
    626 	/* pid is 'saved use count' + 'size' + entry */
    627 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    628 	if ((uint)pid > (uint)pid_max)
    629 		pid &= pid_tbl_mask;
    630 	p->p_pid = pid;
    631 	next_free_pt = nxt & pid_tbl_mask;
    632 
    633 	/* Grab table slot */
    634 	mutex_enter(&proclist_mutex);
    635 	pt->pt_proc = p;
    636 	mutex_exit(&proclist_mutex);
    637 	pid_alloc_cnt++;
    638 
    639 	rw_exit(&proclist_lock);
    640 
    641 	return p;
    642 }
    643 
    644 /*
    645  * Free last resources of a process - called from proc_free (in kern_exit.c)
    646  *
    647  * Called with the proclist_lock write held, and releases upon exit.
    648  */
    649 void
    650 proc_free_mem(struct proc *p)
    651 {
    652 	pid_t pid = p->p_pid;
    653 	struct pid_table *pt;
    654 
    655 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    656 
    657 	pt = &pid_table[pid & pid_tbl_mask];
    658 #ifdef DIAGNOSTIC
    659 	if (__predict_false(pt->pt_proc != p))
    660 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    661 			pid, p);
    662 #endif
    663 	mutex_enter(&proclist_mutex);
    664 	/* save pid use count in slot */
    665 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    666 
    667 	if (pt->pt_pgrp == NULL) {
    668 		/* link last freed entry onto ours */
    669 		pid &= pid_tbl_mask;
    670 		pt = &pid_table[last_free_pt];
    671 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    672 		last_free_pt = pid;
    673 		pid_alloc_cnt--;
    674 	}
    675 	mutex_exit(&proclist_mutex);
    676 
    677 	nprocs--;
    678 	rw_exit(&proclist_lock);
    679 
    680 	pool_put(&proc_pool, p);
    681 }
    682 
    683 /*
    684  * Move p to a new or existing process group (and session)
    685  *
    686  * If we are creating a new pgrp, the pgid should equal
    687  * the calling process' pid.
    688  * If is only valid to enter a process group that is in the session
    689  * of the process.
    690  * Also mksess should only be set if we are creating a process group
    691  *
    692  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    693  * SYSV setpgrp support for hpux.
    694  */
    695 int
    696 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    697 {
    698 	struct pgrp *new_pgrp, *pgrp;
    699 	struct session *sess;
    700 	struct proc *p;
    701 	int rval;
    702 	pid_t pg_id = NO_PGID;
    703 
    704 	/* Allocate data areas we might need before doing any validity checks */
    705 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    706 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    707 		rw_exit(&proclist_lock);
    708 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    709 	} else {
    710 		rw_exit(&proclist_lock);
    711 		new_pgrp = NULL;
    712 	}
    713 	if (mksess)
    714 		sess = pool_get(&session_pool, PR_WAITOK);
    715 	else
    716 		sess = NULL;
    717 
    718 	rw_enter(&proclist_lock, RW_WRITER);
    719 	rval = EPERM;	/* most common error (to save typing) */
    720 
    721 	/* Check pgrp exists or can be created */
    722 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    723 	if (pgrp != NULL && pgrp->pg_id != pgid)
    724 		goto done;
    725 
    726 	/* Can only set another process under restricted circumstances. */
    727 	if (pid != curp->p_pid) {
    728 		/* must exist and be one of our children... */
    729 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    730 		    !inferior(p, curp)) {
    731 			rval = ESRCH;
    732 			goto done;
    733 		}
    734 		/* ... in the same session... */
    735 		if (sess != NULL || p->p_session != curp->p_session)
    736 			goto done;
    737 		/* ... existing pgid must be in same session ... */
    738 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    739 			goto done;
    740 		/* ... and not done an exec. */
    741 		if (p->p_flag & P_EXEC) {
    742 			rval = EACCES;
    743 			goto done;
    744 		}
    745 	} else {
    746 		/* ... setsid() cannot re-enter a pgrp */
    747 		if (mksess && (curp->p_pgid == curp->p_pid ||
    748 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    749 			goto done;
    750 		p = curp;
    751 	}
    752 
    753 	/* Changing the process group/session of a session
    754 	   leader is definitely off limits. */
    755 	if (SESS_LEADER(p)) {
    756 		if (sess == NULL && p->p_pgrp == pgrp)
    757 			/* unless it's a definite noop */
    758 			rval = 0;
    759 		goto done;
    760 	}
    761 
    762 	/* Can only create a process group with id of process */
    763 	if (pgrp == NULL && pgid != pid)
    764 		goto done;
    765 
    766 	/* Can only create a session if creating pgrp */
    767 	if (sess != NULL && pgrp != NULL)
    768 		goto done;
    769 
    770 	/* Check we allocated memory for a pgrp... */
    771 	if (pgrp == NULL && new_pgrp == NULL)
    772 		goto done;
    773 
    774 	/* Don't attach to 'zombie' pgrp */
    775 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    776 		goto done;
    777 
    778 	/* Expect to succeed now */
    779 	rval = 0;
    780 
    781 	if (pgrp == p->p_pgrp)
    782 		/* nothing to do */
    783 		goto done;
    784 
    785 	/* Ok all setup, link up required structures */
    786 
    787 	if (pgrp == NULL) {
    788 		pgrp = new_pgrp;
    789 		new_pgrp = 0;
    790 		if (sess != NULL) {
    791 			sess->s_sid = p->p_pid;
    792 			sess->s_leader = p;
    793 			sess->s_count = 1;
    794 			sess->s_ttyvp = NULL;
    795 			sess->s_ttyp = NULL;
    796 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    797 			memcpy(sess->s_login, p->p_session->s_login,
    798 			    sizeof(sess->s_login));
    799 			p->p_lflag &= ~PL_CONTROLT;
    800 		} else {
    801 			sess = p->p_pgrp->pg_session;
    802 			SESSHOLD(sess);
    803 		}
    804 		pgrp->pg_session = sess;
    805 		sess = 0;
    806 
    807 		pgrp->pg_id = pgid;
    808 		LIST_INIT(&pgrp->pg_members);
    809 #ifdef DIAGNOSTIC
    810 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    811 			panic("enterpgrp: pgrp table slot in use");
    812 		if (__predict_false(mksess && p != curp))
    813 			panic("enterpgrp: mksession and p != curproc");
    814 #endif
    815 		mutex_enter(&proclist_mutex);
    816 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    817 		pgrp->pg_jobc = 0;
    818 	} else
    819 		mutex_enter(&proclist_mutex);
    820 
    821 #ifdef notyet
    822 	/*
    823 	 * If there's a controlling terminal for the current session, we
    824 	 * have to interlock with it.  See ttread().
    825 	 */
    826 	if (p->p_session->s_ttyvp != NULL) {
    827 		tp = p->p_session->s_ttyp;
    828 		mutex_enter(&tp->t_mutex);
    829 	} else
    830 		tp = NULL;
    831 #endif
    832 
    833 	/*
    834 	 * Adjust eligibility of affected pgrps to participate in job control.
    835 	 * Increment eligibility counts before decrementing, otherwise we
    836 	 * could reach 0 spuriously during the first call.
    837 	 */
    838 	fixjobc(p, pgrp, 1);
    839 	fixjobc(p, p->p_pgrp, 0);
    840 
    841 	/* Move process to requested group. */
    842 	LIST_REMOVE(p, p_pglist);
    843 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    844 		/* defer delete until we've dumped the lock */
    845 		pg_id = p->p_pgrp->pg_id;
    846 	p->p_pgrp = pgrp;
    847 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    848 	mutex_exit(&proclist_mutex);
    849 
    850 #ifdef notyet
    851 	/* Done with the swap; we can release the tty mutex. */
    852 	if (tp != NULL)
    853 		mutex_exit(&tp->t_mutex);
    854 #endif
    855 
    856     done:
    857 	if (pg_id != NO_PGID)
    858 		pg_delete(pg_id);
    859 	rw_exit(&proclist_lock);
    860 	if (sess != NULL)
    861 		pool_put(&session_pool, sess);
    862 	if (new_pgrp != NULL)
    863 		pool_put(&pgrp_pool, new_pgrp);
    864 #ifdef DEBUG_PGRP
    865 	if (__predict_false(rval))
    866 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    867 			pid, pgid, mksess, curp->p_pid, rval);
    868 #endif
    869 	return rval;
    870 }
    871 
    872 /*
    873  * Remove a process from its process group.  Must be called with the
    874  * proclist_lock write held.
    875  */
    876 void
    877 leavepgrp(struct proc *p)
    878 {
    879 	struct pgrp *pgrp;
    880 
    881 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    882 
    883 	/*
    884 	 * If there's a controlling terminal for the session, we have to
    885 	 * interlock with it.  See ttread().
    886 	 */
    887 	mutex_enter(&proclist_mutex);
    888 #ifdef notyet
    889 	if (p_>p_session->s_ttyvp != NULL) {
    890 		tp = p->p_session->s_ttyp;
    891 		mutex_enter(&tp->t_mutex);
    892 	} else
    893 		tp = NULL;
    894 #endif
    895 
    896 	pgrp = p->p_pgrp;
    897 	LIST_REMOVE(p, p_pglist);
    898 	p->p_pgrp = NULL;
    899 
    900 #ifdef notyet
    901 	if (tp != NULL)
    902 		mutex_exit(&tp->t_mutex);
    903 #endif
    904 	mutex_exit(&proclist_mutex);
    905 
    906 	if (LIST_EMPTY(&pgrp->pg_members))
    907 		pg_delete(pgrp->pg_id);
    908 }
    909 
    910 /*
    911  * Free a process group.  Must be called with the proclist_lock write held.
    912  */
    913 static void
    914 pg_free(pid_t pg_id)
    915 {
    916 	struct pgrp *pgrp;
    917 	struct pid_table *pt;
    918 
    919 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    920 
    921 	pt = &pid_table[pg_id & pid_tbl_mask];
    922 	pgrp = pt->pt_pgrp;
    923 #ifdef DIAGNOSTIC
    924 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    925 	    || !LIST_EMPTY(&pgrp->pg_members)))
    926 		panic("pg_free: process group absent or has members");
    927 #endif
    928 	pt->pt_pgrp = 0;
    929 
    930 	if (!P_VALID(pt->pt_proc)) {
    931 		/* orphaned pgrp, put slot onto free list */
    932 #ifdef DIAGNOSTIC
    933 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    934 			panic("pg_free: process slot on free list");
    935 #endif
    936 		mutex_enter(&proclist_mutex);
    937 		pg_id &= pid_tbl_mask;
    938 		pt = &pid_table[last_free_pt];
    939 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    940 		mutex_exit(&proclist_mutex);
    941 		last_free_pt = pg_id;
    942 		pid_alloc_cnt--;
    943 	}
    944 	pool_put(&pgrp_pool, pgrp);
    945 }
    946 
    947 /*
    948  * Delete a process group.  Must be called with the proclist_lock write
    949  * held.
    950  */
    951 static void
    952 pg_delete(pid_t pg_id)
    953 {
    954 	struct pgrp *pgrp;
    955 	struct tty *ttyp;
    956 	struct session *ss;
    957 	int is_pgrp_leader;
    958 
    959 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    960 
    961 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    962 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    963 	    !LIST_EMPTY(&pgrp->pg_members))
    964 		return;
    965 
    966 	ss = pgrp->pg_session;
    967 
    968 	/* Remove reference (if any) from tty to this process group */
    969 	ttyp = ss->s_ttyp;
    970 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    971 		ttyp->t_pgrp = NULL;
    972 #ifdef DIAGNOSTIC
    973 		if (ttyp->t_session != ss)
    974 			panic("pg_delete: wrong session on terminal");
    975 #endif
    976 	}
    977 
    978 	/*
    979 	 * The leading process group in a session is freed
    980 	 * by sessdelete() if last reference.
    981 	 */
    982 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    983 	SESSRELE(ss);
    984 
    985 	if (is_pgrp_leader)
    986 		return;
    987 
    988 	pg_free(pg_id);
    989 }
    990 
    991 /*
    992  * Delete session - called from SESSRELE when s_count becomes zero.
    993  * Must be called with the proclist_lock write held.
    994  */
    995 void
    996 sessdelete(struct session *ss)
    997 {
    998 
    999 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1000 
   1001 	/*
   1002 	 * We keep the pgrp with the same id as the session in
   1003 	 * order to stop a process being given the same pid.
   1004 	 * Since the pgrp holds a reference to the session, it
   1005 	 * must be a 'zombie' pgrp by now.
   1006 	 */
   1007 	pg_free(ss->s_sid);
   1008 	pool_put(&session_pool, ss);
   1009 }
   1010 
   1011 /*
   1012  * Adjust pgrp jobc counters when specified process changes process group.
   1013  * We count the number of processes in each process group that "qualify"
   1014  * the group for terminal job control (those with a parent in a different
   1015  * process group of the same session).  If that count reaches zero, the
   1016  * process group becomes orphaned.  Check both the specified process'
   1017  * process group and that of its children.
   1018  * entering == 0 => p is leaving specified group.
   1019  * entering == 1 => p is entering specified group.
   1020  *
   1021  * Call with proclist_lock write held.
   1022  */
   1023 void
   1024 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1025 {
   1026 	struct pgrp *hispgrp;
   1027 	struct session *mysession = pgrp->pg_session;
   1028 	struct proc *child;
   1029 
   1030 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1031 
   1032 	/*
   1033 	 * Check p's parent to see whether p qualifies its own process
   1034 	 * group; if so, adjust count for p's process group.
   1035 	 */
   1036 	hispgrp = p->p_pptr->p_pgrp;
   1037 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1038 		if (entering) {
   1039 			mutex_enter(&p->p_smutex);
   1040 			p->p_sflag &= ~PS_ORPHANPG;
   1041 			mutex_exit(&p->p_smutex);
   1042 			pgrp->pg_jobc++;
   1043 		} else if (--pgrp->pg_jobc == 0)
   1044 			orphanpg(pgrp);
   1045 	}
   1046 
   1047 	/*
   1048 	 * Check this process' children to see whether they qualify
   1049 	 * their process groups; if so, adjust counts for children's
   1050 	 * process groups.
   1051 	 */
   1052 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1053 		hispgrp = child->p_pgrp;
   1054 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1055 		    !P_ZOMBIE(child)) {
   1056 			if (entering) {
   1057 				mutex_enter(&child->p_smutex);
   1058 				child->p_sflag &= ~PS_ORPHANPG;
   1059 				mutex_exit(&child->p_smutex);
   1060 				hispgrp->pg_jobc++;
   1061 			} else if (--hispgrp->pg_jobc == 0)
   1062 				orphanpg(hispgrp);
   1063 		}
   1064 	}
   1065 }
   1066 
   1067 /*
   1068  * A process group has become orphaned;
   1069  * if there are any stopped processes in the group,
   1070  * hang-up all process in that group.
   1071  *
   1072  * Call with proclist_lock write held.
   1073  */
   1074 static void
   1075 orphanpg(struct pgrp *pg)
   1076 {
   1077 	struct proc *p;
   1078 	int doit;
   1079 
   1080 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1081 
   1082 	doit = 0;
   1083 
   1084 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1085 		mutex_enter(&p->p_smutex);
   1086 		if (p->p_stat == SSTOP) {
   1087 			doit = 1;
   1088 			p->p_sflag |= PS_ORPHANPG;
   1089 		}
   1090 		mutex_exit(&p->p_smutex);
   1091 	}
   1092 
   1093 	if (doit) {
   1094 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1095 			psignal(p, SIGHUP);
   1096 			psignal(p, SIGCONT);
   1097 		}
   1098 	}
   1099 }
   1100 
   1101 /* mark process as suid/sgid, reset some values to defaults */
   1102 void
   1103 p_sugid(struct proc *p)
   1104 {
   1105 	struct plimit *lim;
   1106 	char *cn;
   1107 
   1108 	p->p_flag |= P_SUGID;
   1109 	/* reset what needs to be reset in plimit */
   1110 	lim = p->p_limit;
   1111 	if (lim->pl_corename != defcorename) {
   1112 		if (lim->p_refcnt > 1 &&
   1113 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1114 			p->p_limit = limcopy(lim);
   1115 			limfree(lim);
   1116 			lim = p->p_limit;
   1117 		}
   1118 		simple_lock(&lim->p_slock);
   1119 		cn = lim->pl_corename;
   1120 		lim->pl_corename = defcorename;
   1121 		simple_unlock(&lim->p_slock);
   1122 		if (cn != defcorename)
   1123 			free(cn, M_TEMP);
   1124 	}
   1125 }
   1126 
   1127 #ifdef DDB
   1128 #include <ddb/db_output.h>
   1129 void pidtbl_dump(void);
   1130 void
   1131 pidtbl_dump(void)
   1132 {
   1133 	struct pid_table *pt;
   1134 	struct proc *p;
   1135 	struct pgrp *pgrp;
   1136 	int id;
   1137 
   1138 	db_printf("pid table %p size %x, next %x, last %x\n",
   1139 		pid_table, pid_tbl_mask+1,
   1140 		next_free_pt, last_free_pt);
   1141 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1142 		p = pt->pt_proc;
   1143 		if (!P_VALID(p) && !pt->pt_pgrp)
   1144 			continue;
   1145 		db_printf("  id %x: ", id);
   1146 		if (P_VALID(p))
   1147 			db_printf("proc %p id %d (0x%x) %s\n",
   1148 				p, p->p_pid, p->p_pid, p->p_comm);
   1149 		else
   1150 			db_printf("next %x use %x\n",
   1151 				P_NEXT(p) & pid_tbl_mask,
   1152 				P_NEXT(p) & ~pid_tbl_mask);
   1153 		if ((pgrp = pt->pt_pgrp)) {
   1154 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1155 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1156 			    pgrp->pg_session->s_count,
   1157 			    pgrp->pg_session->s_login);
   1158 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1159 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1160 			    pgrp->pg_members.lh_first);
   1161 			for (p = pgrp->pg_members.lh_first; p != 0;
   1162 			    p = p->p_pglist.le_next) {
   1163 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1164 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1165 			}
   1166 		}
   1167 	}
   1168 }
   1169 #endif /* DDB */
   1170 
   1171 #ifdef KSTACK_CHECK_MAGIC
   1172 #include <sys/user.h>
   1173 
   1174 #define	KSTACK_MAGIC	0xdeadbeaf
   1175 
   1176 /* XXX should be per process basis? */
   1177 int kstackleftmin = KSTACK_SIZE;
   1178 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1179 					  less than this */
   1180 
   1181 void
   1182 kstack_setup_magic(const struct lwp *l)
   1183 {
   1184 	uint32_t *ip;
   1185 	uint32_t const *end;
   1186 
   1187 	KASSERT(l != NULL);
   1188 	KASSERT(l != &lwp0);
   1189 
   1190 	/*
   1191 	 * fill all the stack with magic number
   1192 	 * so that later modification on it can be detected.
   1193 	 */
   1194 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1195 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1196 	for (; ip < end; ip++) {
   1197 		*ip = KSTACK_MAGIC;
   1198 	}
   1199 }
   1200 
   1201 void
   1202 kstack_check_magic(const struct lwp *l)
   1203 {
   1204 	uint32_t const *ip, *end;
   1205 	int stackleft;
   1206 
   1207 	KASSERT(l != NULL);
   1208 
   1209 	/* don't check proc0 */ /*XXX*/
   1210 	if (l == &lwp0)
   1211 		return;
   1212 
   1213 #ifdef __MACHINE_STACK_GROWS_UP
   1214 	/* stack grows upwards (eg. hppa) */
   1215 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1216 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1217 	for (ip--; ip >= end; ip--)
   1218 		if (*ip != KSTACK_MAGIC)
   1219 			break;
   1220 
   1221 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1222 #else /* __MACHINE_STACK_GROWS_UP */
   1223 	/* stack grows downwards (eg. i386) */
   1224 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1225 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1226 	for (; ip < end; ip++)
   1227 		if (*ip != KSTACK_MAGIC)
   1228 			break;
   1229 
   1230 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1231 #endif /* __MACHINE_STACK_GROWS_UP */
   1232 
   1233 	if (kstackleftmin > stackleft) {
   1234 		kstackleftmin = stackleft;
   1235 		if (stackleft < kstackleftthres)
   1236 			printf("warning: kernel stack left %d bytes"
   1237 			    "(pid %u:lid %u)\n", stackleft,
   1238 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1239 	}
   1240 
   1241 	if (stackleft <= 0) {
   1242 		panic("magic on the top of kernel stack changed for "
   1243 		    "pid %u, lid %u: maybe kernel stack overflow",
   1244 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1245 	}
   1246 }
   1247 #endif /* KSTACK_CHECK_MAGIC */
   1248 
   1249 /*
   1250  * XXXSMP this is bust, it grabs a read lock and then messes about
   1251  * with allproc.
   1252  */
   1253 int
   1254 proclist_foreach_call(struct proclist *list,
   1255     int (*callback)(struct proc *, void *arg), void *arg)
   1256 {
   1257 	struct proc marker;
   1258 	struct proc *p;
   1259 	struct lwp * const l = curlwp;
   1260 	int ret = 0;
   1261 
   1262 	marker.p_flag = P_MARKER;
   1263 	PHOLD(l);
   1264 	rw_enter(&proclist_lock, RW_READER);
   1265 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1266 		if (p->p_flag & P_MARKER) {
   1267 			p = LIST_NEXT(p, p_list);
   1268 			continue;
   1269 		}
   1270 		LIST_INSERT_AFTER(p, &marker, p_list);
   1271 		ret = (*callback)(p, arg);
   1272 		KASSERT(rw_read_held(&proclist_lock));
   1273 		p = LIST_NEXT(&marker, p_list);
   1274 		LIST_REMOVE(&marker, p_list);
   1275 	}
   1276 	rw_exit(&proclist_lock);
   1277 	PRELE(l);
   1278 
   1279 	return ret;
   1280 }
   1281 
   1282 int
   1283 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1284 {
   1285 
   1286 	/* XXXCDC: how should locking work here? */
   1287 
   1288 	/* curproc exception is for coredump. */
   1289 
   1290 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1291 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1292 		return EFAULT;
   1293 	}
   1294 
   1295 	uvmspace_addref(p->p_vmspace);
   1296 	*vm = p->p_vmspace;
   1297 
   1298 	return 0;
   1299 }
   1300 
   1301 /*
   1302  * Acquire a write lock on the process credential.
   1303  */
   1304 void
   1305 proc_crmod_enter(void)
   1306 {
   1307 	struct lwp *l = curlwp;
   1308 	struct proc *p = l->l_proc;
   1309 	kauth_cred_t oc;
   1310 
   1311 	mutex_enter(&p->p_mutex);
   1312 
   1313 	/* Ensure the LWP cached credentials are up to date. */
   1314 	if ((oc = l->l_cred) != p->p_cred) {
   1315 		kauth_cred_hold(p->p_cred);
   1316 		l->l_cred = p->p_cred;
   1317 		kauth_cred_free(oc);
   1318 	}
   1319 }
   1320 
   1321 /*
   1322  * Set in a new process credential, and drop the write lock.  The credential
   1323  * must have a reference already.  Optionally, free a no-longer required
   1324  * credential.  The scheduler also needs to inspect p_cred, so we also
   1325  * briefly acquire the sched state mutex.
   1326  */
   1327 void
   1328 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
   1329 {
   1330 	struct lwp *l = curlwp;
   1331 	struct proc *p = l->l_proc;
   1332 	kauth_cred_t oc;
   1333 
   1334 	mutex_enter(&p->p_smutex);
   1335 	p->p_cred = scred;
   1336 	mutex_exit(&p->p_smutex);
   1337 
   1338 	/* Ensure the LWP cached credentials are up to date. */
   1339 	if ((oc = l->l_cred) != scred) {
   1340 		kauth_cred_hold(scred);
   1341 		l->l_cred = scred;
   1342 	}
   1343 
   1344 	mutex_exit(&p->p_mutex);
   1345 	kauth_cred_free(fcred);
   1346 	if (oc != scred)
   1347 		kauth_cred_free(oc);
   1348 }
   1349 
   1350 /*
   1351  * Acquire a reference on a process, to prevent it from exiting or execing.
   1352  */
   1353 int
   1354 proc_addref(struct proc *p)
   1355 {
   1356 
   1357 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1358 
   1359 	if (p->p_refcnt <= 0)
   1360 		return EAGAIN;
   1361 	p->p_refcnt++;
   1362 
   1363 	return 0;
   1364 }
   1365 
   1366 /*
   1367  * Release a reference on a process.
   1368  */
   1369 void
   1370 proc_delref(struct proc *p)
   1371 {
   1372 
   1373 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1374 
   1375 	if (p->p_refcnt < 0) {
   1376 		if (++p->p_refcnt == 0)
   1377 			cv_broadcast(&p->p_refcv);
   1378 	} else {
   1379 		p->p_refcnt--;
   1380 		KASSERT(p->p_refcnt != 0);
   1381 	}
   1382 }
   1383 
   1384 /*
   1385  * Wait for all references on the process to drain, and prevent new
   1386  * references from being acquired.
   1387  */
   1388 void
   1389 proc_drainrefs(struct proc *p)
   1390 {
   1391 
   1392 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1393 	KASSERT(p->p_refcnt > 0);
   1394 
   1395 	/*
   1396 	 * The process itself holds the last reference.  Once it's released,
   1397 	 * no new references will be granted.  If we have already locked out
   1398 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1399 	 * there is nothing more to do.
   1400 	 */
   1401 	p->p_refcnt = 1 - p->p_refcnt;
   1402 	while (p->p_refcnt != 0)
   1403 		cv_wait(&p->p_refcv, &p->p_mutex);
   1404 }
   1405 
   1406 /*
   1407  * proc_specific_key_create --
   1408  *	Create a key for subsystem proc-specific data.
   1409  */
   1410 int
   1411 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1412 {
   1413 
   1414 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
   1415 }
   1416 
   1417 /*
   1418  * proc_specific_key_delete --
   1419  *	Delete a key for subsystem proc-specific data.
   1420  */
   1421 void
   1422 proc_specific_key_delete(specificdata_key_t key)
   1423 {
   1424 
   1425 	specificdata_key_delete(proc_specificdata_domain, key);
   1426 }
   1427 
   1428 /*
   1429  * proc_initspecific --
   1430  *	Initialize a proc's specificdata container.
   1431  */
   1432 void
   1433 proc_initspecific(struct proc *p)
   1434 {
   1435 	int error;
   1436 
   1437 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
   1438 	KASSERT(error == 0);
   1439 }
   1440 
   1441 /*
   1442  * proc_finispecific --
   1443  *	Finalize a proc's specificdata container.
   1444  */
   1445 void
   1446 proc_finispecific(struct proc *p)
   1447 {
   1448 
   1449 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
   1450 }
   1451 
   1452 /*
   1453  * proc_getspecific --
   1454  *	Return proc-specific data corresponding to the specified key.
   1455  */
   1456 void *
   1457 proc_getspecific(struct proc *p, specificdata_key_t key)
   1458 {
   1459 
   1460 	return (specificdata_getspecific(proc_specificdata_domain,
   1461 					 &p->p_specdataref, key));
   1462 }
   1463 
   1464 /*
   1465  * proc_setspecific --
   1466  *	Set proc-specific data corresponding to the specified key.
   1467  */
   1468 void
   1469 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
   1470 {
   1471 
   1472 	specificdata_setspecific(proc_specificdata_domain,
   1473 				 &p->p_specdataref, key, data);
   1474 }
   1475