kern_proc.c revision 1.94.4.3 1 /* $NetBSD: kern_proc.c,v 1.94.4.3 2006/10/21 15:20:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.3 2006/10/21 15:20:46 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are three locks on global process state.
115 *
116 * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 * examining process state from a process context. It protects our internal
118 * tables, all of the process lists, and a number of members of struct lwp
119 * and struct proc.
120
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when we must signal processes from an interrupt
123 * context. The proclist_lock should always be used in preference.
124 *
125 * 3. alllwp_mutex protects the "alllwp" list.
126 *
127 * proclist_lock proclist_mutex alllwp_mutex structure
128 * --------------- --------------- --------------- -----------------
129 * x zombproc
130 * x x pid_table
131 * x proc::p_pptr
132 * x proc::p_sibling
133 * x proc::p_children
134 * x x allproc
135 * x x proc::p_pgrp
136 * x x proc::p_pglist
137 * x x proc::p_session
138 * x x proc::p_list
139 * x alllwp
140 * x lwp::l_list
141 *
142 * The lock order for processes and LWPs is apporoximately as following:
143 *
144 * kernel_mutex
145 * -> proclist_lock
146 * -> proclist_mutex
147 * -> proc::p_crmutex
148 * -> proc::p_smutex
149 * -> alllwp_mutex
150 * -> lwp::l_mutex
151 * -> sched_mutex
152 */
153 krwlock_t proclist_lock;
154 kmutex_t proclist_mutex;
155
156 /*
157 * pid to proc lookup is done by indexing the pid_table array.
158 * Since pid numbers are only allocated when an empty slot
159 * has been found, there is no need to search any lists ever.
160 * (an orphaned pgrp will lock the slot, a session will lock
161 * the pgrp with the same number.)
162 * If the table is too small it is reallocated with twice the
163 * previous size and the entries 'unzipped' into the two halves.
164 * A linked list of free entries is passed through the pt_proc
165 * field of 'free' items - set odd to be an invalid ptr.
166 */
167
168 struct pid_table {
169 struct proc *pt_proc;
170 struct pgrp *pt_pgrp;
171 };
172 #if 1 /* strongly typed cast - should be a noop */
173 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
174 #else
175 #define p2u(p) ((uint)p)
176 #endif
177 #define P_VALID(p) (!(p2u(p) & 1))
178 #define P_NEXT(p) (p2u(p) >> 1)
179 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
180
181 #define INITIAL_PID_TABLE_SIZE (1 << 5)
182 static struct pid_table *pid_table;
183 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
184 static uint pid_alloc_lim; /* max we allocate before growing table */
185 static uint pid_alloc_cnt; /* number of allocated pids */
186
187 /* links through free slots - never empty! */
188 static uint next_free_pt, last_free_pt;
189 static pid_t pid_max = PID_MAX; /* largest value we allocate */
190
191 /* Components of the first process -- never freed. */
192 struct session session0;
193 struct pgrp pgrp0;
194 struct proc proc0;
195 struct lwp lwp0 __aligned(16);
196 kauth_cred_t cred0;
197 struct filedesc0 filedesc0;
198 struct cwdinfo cwdi0;
199 struct plimit limit0;
200 struct pstats pstat0;
201 struct vmspace vmspace0;
202 struct sigacts sigacts0;
203 struct turnstile turnstile0;
204
205 extern struct user *proc0paddr;
206
207 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
208
209 int nofile = NOFILE;
210 int maxuprc = MAXUPRC;
211 int cmask = CMASK;
212
213 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
214 &pool_allocator_nointr);
215 POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
216 &pool_allocator_nointr);
217 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
218 &pool_allocator_nointr);
219 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
220 &pool_allocator_nointr);
221 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
222 &pool_allocator_nointr);
223 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
224 &pool_allocator_nointr);
225 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
226 &pool_allocator_nointr);
227 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
228 &pool_allocator_nointr);
229 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
230 &pool_allocator_nointr);
231
232 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
233 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
234 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
235
236 /*
237 * The process list descriptors, used during pid allocation and
238 * by sysctl. No locking on this data structure is needed since
239 * it is completely static.
240 */
241 const struct proclist_desc proclists[] = {
242 { &allproc },
243 { &zombproc },
244 { NULL },
245 };
246
247 static void orphanpg(struct pgrp *);
248 static void pg_delete(pid_t);
249
250 /*
251 * Initialize global process hashing structures.
252 */
253 void
254 procinit(void)
255 {
256 const struct proclist_desc *pd;
257 int i;
258 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
259
260 for (pd = proclists; pd->pd_list != NULL; pd++)
261 LIST_INIT(pd->pd_list);
262
263 rw_init(&proclist_lock);
264 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
265 mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
266 mutex_init(&lwp_mutex, MUTEX_SPIN, IPL_SCHED);
267
268 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
269 M_PROC, M_WAITOK);
270 /* Set free list running through table...
271 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
272 for (i = 0; i <= pid_tbl_mask; i++) {
273 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
274 pid_table[i].pt_pgrp = 0;
275 }
276 /* slot 0 is just grabbed */
277 next_free_pt = 1;
278 /* Need to fix last entry. */
279 last_free_pt = pid_tbl_mask;
280 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
281 /* point at which we grow table - to avoid reusing pids too often */
282 pid_alloc_lim = pid_tbl_mask - 1;
283 #undef LINK_EMPTY
284
285 LIST_INIT(&alllwp);
286
287 uihashtbl =
288 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
289 }
290
291 /*
292 * Initialize process 0.
293 */
294 void
295 proc0_init(void)
296 {
297 struct proc *p;
298 struct pgrp *pg;
299 struct session *sess;
300 struct lwp *l;
301 u_int i;
302 rlim_t lim;
303
304 p = &proc0;
305 pg = &pgrp0;
306 sess = &session0;
307 l = &lwp0;
308
309 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
310 mutex_init(&p->p_crmutex, MUTEX_DEFAULT, IPL_NONE);
311 mutex_init(&p->p_rasmutex, MUTEX_DEFAULT, IPL_NONE);
312 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
313 LIST_INIT(&p->p_lwps);
314 LIST_INIT(&p->p_sigwaiters);
315 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
316 p->p_nlwps = 1;
317 p->p_nrlwps = 1;
318
319 pid_table[0].pt_proc = p;
320 LIST_INSERT_HEAD(&allproc, p, p_list);
321 LIST_INSERT_HEAD(&alllwp, l, l_list);
322
323 p->p_pgrp = pg;
324 pid_table[0].pt_pgrp = pg;
325 LIST_INIT(&pg->pg_members);
326 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
327
328 pg->pg_session = sess;
329 sess->s_count = 1;
330 sess->s_sid = 0;
331 sess->s_leader = p;
332
333 /*
334 * Set P_NOCLDWAIT so that kernel threads are reparented to
335 * init(8) when they exit. init(8) can easily wait them out
336 * for us.
337 */
338 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
339 p->p_stat = SACTIVE;
340 p->p_nice = NZERO;
341 p->p_emul = &emul_netbsd;
342 #ifdef __HAVE_SYSCALL_INTERN
343 (*p->p_emul->e_syscall_intern)(p);
344 #endif
345 strncpy(p->p_comm, "swapper", MAXCOMLEN);
346
347 l->l_mutex = &lwp_mutex;
348 l->l_flag = L_INMEM | L_SYSTEM;
349 l->l_stat = LSONPROC;
350 l->l_ts = &turnstile0;
351
352 callout_init(&l->l_tsleep_ch);
353
354 /* Create credentials. */
355 cred0 = kauth_cred_alloc();
356 p->p_cred = cred0;
357 kauth_cred_hold(cred0);
358 l->l_cred = cred0;
359
360 /* Create the CWD info. */
361 p->p_cwdi = &cwdi0;
362 cwdi0.cwdi_cmask = cmask;
363 cwdi0.cwdi_refcnt = 1;
364 simple_lock_init(&cwdi0.cwdi_slock);
365
366 /* Create the limits structures. */
367 p->p_limit = &limit0;
368 simple_lock_init(&limit0.p_slock);
369 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
370 limit0.pl_rlimit[i].rlim_cur =
371 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
372
373 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
374 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
375 maxfiles < nofile ? maxfiles : nofile;
376
377 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
378 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
379 maxproc < maxuprc ? maxproc : maxuprc;
380
381 lim = ptoa(uvmexp.free);
382 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
383 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
384 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
385 limit0.pl_corename = defcorename;
386 limit0.p_refcnt = 1;
387
388 /* Configure virtual memory system, set vm rlimits. */
389 uvm_init_limits(p);
390
391 /* Initialize file descriptor table for proc0. */
392 p->p_fd = &filedesc0.fd_fd;
393 fdinit1(&filedesc0);
394
395 /*
396 * Initialize proc0's vmspace, which uses the kernel pmap.
397 * All kernel processes (which never have user space mappings)
398 * share proc0's vmspace, and thus, the kernel pmap.
399 */
400 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
401 trunc_page(VM_MAX_ADDRESS));
402 p->p_vmspace = &vmspace0;
403
404 l->l_addr = proc0paddr; /* XXX */
405
406 p->p_stats = &pstat0;
407
408 /* Initialize signal state for proc0. */
409 p->p_sigacts = &sigacts0;
410 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_NONE);
411 siginit(p);
412 }
413
414 /*
415 * Check that the specified process group is in the session of the
416 * specified process.
417 * Treats -ve ids as process ids.
418 * Used to validate TIOCSPGRP requests.
419 */
420 int
421 pgid_in_session(struct proc *p, pid_t pg_id)
422 {
423 struct pgrp *pgrp;
424
425 if (pg_id < 0) {
426 struct proc *p1 = pfind(-pg_id);
427 if (p1 == NULL)
428 return EINVAL;
429 pgrp = p1->p_pgrp;
430 } else {
431 pgrp = pgfind(pg_id);
432 if (pgrp == NULL)
433 return EINVAL;
434 }
435 if (pgrp->pg_session != p->p_pgrp->pg_session)
436 return EPERM;
437 return 0;
438 }
439
440 /*
441 * Is p an inferior of q?
442 *
443 * Call with the proclist_lock held.
444 */
445 int
446 inferior(struct proc *p, struct proc *q)
447 {
448
449 for (; p != q; p = p->p_pptr)
450 if (p->p_pid == 0)
451 return 0;
452 return 1;
453 }
454
455 /*
456 * Locate a process by number
457 */
458 struct proc *
459 p_find(pid_t pid, uint flags)
460 {
461 struct proc *p;
462 char stat;
463
464 if (!(flags & PFIND_LOCKED))
465 rw_enter(&proclist_lock, RW_READER);
466
467 p = pid_table[pid & pid_tbl_mask].pt_proc;
468 /* Only allow live processes to be found by pid. */
469 if (P_VALID(p) && p->p_pid == pid &&
470 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
471 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
472 if (flags & PFIND_UNLOCK_OK)
473 rw_exit(&proclist_lock);
474 return p;
475 }
476 if (flags & PFIND_UNLOCK_FAIL)
477 rw_exit(&proclist_lock);
478 return NULL;
479 }
480
481
482 /*
483 * Locate a process group by number
484 */
485 struct pgrp *
486 pg_find(pid_t pgid, uint flags)
487 {
488 struct pgrp *pg;
489
490 if (!(flags & PFIND_LOCKED))
491 rw_enter(&proclist_lock, RW_READER);
492 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
493 /*
494 * Can't look up a pgrp that only exists because the session
495 * hasn't died yet (traditional)
496 */
497 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
498 if (flags & PFIND_UNLOCK_FAIL)
499 rw_exit(&proclist_lock);
500 return NULL;
501 }
502
503 if (flags & PFIND_UNLOCK_OK)
504 rw_exit(&proclist_lock);
505 return pg;
506 }
507
508 static void
509 expand_pid_table(void)
510 {
511 uint pt_size = pid_tbl_mask + 1;
512 struct pid_table *n_pt, *new_pt;
513 struct proc *proc;
514 struct pgrp *pgrp;
515 int i;
516 pid_t pid;
517
518 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
519
520 rw_enter(&proclist_lock, RW_WRITER);
521 if (pt_size != pid_tbl_mask + 1) {
522 /* Another process beat us to it... */
523 rw_exit(&proclist_lock);
524 FREE(new_pt, M_PROC);
525 return;
526 }
527
528 /*
529 * Copy entries from old table into new one.
530 * If 'pid' is 'odd' we need to place in the upper half,
531 * even pid's to the lower half.
532 * Free items stay in the low half so we don't have to
533 * fixup the reference to them.
534 * We stuff free items on the front of the freelist
535 * because we can't write to unmodified entries.
536 * Processing the table backwards maintains a semblance
537 * of issueing pid numbers that increase with time.
538 */
539 i = pt_size - 1;
540 n_pt = new_pt + i;
541 for (; ; i--, n_pt--) {
542 proc = pid_table[i].pt_proc;
543 pgrp = pid_table[i].pt_pgrp;
544 if (!P_VALID(proc)) {
545 /* Up 'use count' so that link is valid */
546 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
547 proc = P_FREE(pid);
548 if (pgrp)
549 pid = pgrp->pg_id;
550 } else
551 pid = proc->p_pid;
552
553 /* Save entry in appropriate half of table */
554 n_pt[pid & pt_size].pt_proc = proc;
555 n_pt[pid & pt_size].pt_pgrp = pgrp;
556
557 /* Put other piece on start of free list */
558 pid = (pid ^ pt_size) & ~pid_tbl_mask;
559 n_pt[pid & pt_size].pt_proc =
560 P_FREE((pid & ~pt_size) | next_free_pt);
561 n_pt[pid & pt_size].pt_pgrp = 0;
562 next_free_pt = i | (pid & pt_size);
563 if (i == 0)
564 break;
565 }
566
567 /* Switch tables */
568 mutex_enter(&proclist_mutex);
569 n_pt = pid_table;
570 pid_table = new_pt;
571 mutex_exit(&proclist_mutex);
572 pid_tbl_mask = pt_size * 2 - 1;
573
574 /*
575 * pid_max starts as PID_MAX (= 30000), once we have 16384
576 * allocated pids we need it to be larger!
577 */
578 if (pid_tbl_mask > PID_MAX) {
579 pid_max = pid_tbl_mask * 2 + 1;
580 pid_alloc_lim |= pid_alloc_lim << 1;
581 } else
582 pid_alloc_lim <<= 1; /* doubles number of free slots... */
583
584 rw_exit(&proclist_lock);
585 FREE(n_pt, M_PROC);
586 }
587
588 struct proc *
589 proc_alloc(void)
590 {
591 struct proc *p;
592 int nxt;
593 pid_t pid;
594 struct pid_table *pt;
595
596 p = pool_get(&proc_pool, PR_WAITOK);
597 p->p_stat = SIDL; /* protect against others */
598
599 /* allocate next free pid */
600
601 for (;;expand_pid_table()) {
602 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
603 /* ensure pids cycle through 2000+ values */
604 continue;
605 rw_enter(&proclist_lock, RW_WRITER);
606 pt = &pid_table[next_free_pt];
607 #ifdef DIAGNOSTIC
608 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
609 panic("proc_alloc: slot busy");
610 #endif
611 nxt = P_NEXT(pt->pt_proc);
612 if (nxt & pid_tbl_mask)
613 break;
614 /* Table full - expand (NB last entry not used....) */
615 rw_exit(&proclist_lock);
616 }
617
618 /* pid is 'saved use count' + 'size' + entry */
619 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
620 if ((uint)pid > (uint)pid_max)
621 pid &= pid_tbl_mask;
622 p->p_pid = pid;
623 next_free_pt = nxt & pid_tbl_mask;
624
625 /* Grab table slot */
626 mutex_enter(&proclist_mutex);
627 pt->pt_proc = p;
628 mutex_exit(&proclist_mutex);
629 pid_alloc_cnt++;
630
631 rw_exit(&proclist_lock);
632
633 return p;
634 }
635
636 /*
637 * Free last resources of a process - called from proc_free (in kern_exit.c)
638 *
639 * Called with the proclist_lock write held, and releases upon exit.
640 */
641 void
642 proc_free_mem(struct proc *p)
643 {
644 pid_t pid = p->p_pid;
645 struct pid_table *pt;
646
647 LOCK_ASSERT(rw_write_held(&proclist_lock));
648
649 pt = &pid_table[pid & pid_tbl_mask];
650 #ifdef DIAGNOSTIC
651 if (__predict_false(pt->pt_proc != p))
652 panic("proc_free: pid_table mismatch, pid %x, proc %p",
653 pid, p);
654 #endif
655 mutex_enter(&proclist_mutex);
656 /* save pid use count in slot */
657 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
658
659 if (pt->pt_pgrp == NULL) {
660 /* link last freed entry onto ours */
661 pid &= pid_tbl_mask;
662 pt = &pid_table[last_free_pt];
663 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
664 last_free_pt = pid;
665 pid_alloc_cnt--;
666 }
667 mutex_exit(&proclist_mutex);
668
669 nprocs--;
670 rw_exit(&proclist_lock);
671
672 pool_put(&proc_pool, p);
673 }
674
675 /*
676 * Move p to a new or existing process group (and session)
677 *
678 * If we are creating a new pgrp, the pgid should equal
679 * the calling process' pid.
680 * If is only valid to enter a process group that is in the session
681 * of the process.
682 * Also mksess should only be set if we are creating a process group
683 *
684 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
685 * SYSV setpgrp support for hpux.
686 */
687 int
688 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
689 {
690 struct pgrp *new_pgrp, *pgrp;
691 struct session *sess;
692 struct proc *p;
693 int rval;
694 pid_t pg_id = NO_PGID;
695
696 /* Allocate data areas we might need before doing any validity checks */
697 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
698 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
699 rw_exit(&proclist_lock);
700 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
701 } else {
702 rw_exit(&proclist_lock);
703 new_pgrp = NULL;
704 }
705 if (mksess)
706 sess = pool_get(&session_pool, M_WAITOK);
707 else
708 sess = NULL;
709
710 rw_enter(&proclist_lock, RW_WRITER);
711 rval = EPERM; /* most common error (to save typing) */
712
713 /* Check pgrp exists or can be created */
714 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
715 if (pgrp != NULL && pgrp->pg_id != pgid)
716 goto done;
717
718 /* Can only set another process under restricted circumstances. */
719 if (pid != curp->p_pid) {
720 /* must exist and be one of our children... */
721 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
722 !inferior(p, curp)) {
723 rval = ESRCH;
724 goto done;
725 }
726 /* ... in the same session... */
727 if (sess != NULL || p->p_session != curp->p_session)
728 goto done;
729 /* ... existing pgid must be in same session ... */
730 if (pgrp != NULL && pgrp->pg_session != p->p_session)
731 goto done;
732 /* ... and not done an exec. */
733 if (p->p_flag & P_EXEC) {
734 rval = EACCES;
735 goto done;
736 }
737 } else {
738 /* ... setsid() cannot re-enter a pgrp */
739 if (mksess && (curp->p_pgid == curp->p_pid ||
740 pg_find(curp->p_pid, PFIND_LOCKED)))
741 goto done;
742 p = curp;
743 }
744
745 /* Changing the process group/session of a session
746 leader is definitely off limits. */
747 if (SESS_LEADER(p)) {
748 if (sess == NULL && p->p_pgrp == pgrp)
749 /* unless it's a definite noop */
750 rval = 0;
751 goto done;
752 }
753
754 /* Can only create a process group with id of process */
755 if (pgrp == NULL && pgid != pid)
756 goto done;
757
758 /* Can only create a session if creating pgrp */
759 if (sess != NULL && pgrp != NULL)
760 goto done;
761
762 /* Check we allocated memory for a pgrp... */
763 if (pgrp == NULL && new_pgrp == NULL)
764 goto done;
765
766 /* Don't attach to 'zombie' pgrp */
767 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
768 goto done;
769
770 /* Expect to succeed now */
771 rval = 0;
772
773 if (pgrp == p->p_pgrp)
774 /* nothing to do */
775 goto done;
776
777 /* Ok all setup, link up required structures */
778
779 if (pgrp == NULL) {
780 pgrp = new_pgrp;
781 new_pgrp = 0;
782 if (sess != NULL) {
783 sess->s_sid = p->p_pid;
784 sess->s_leader = p;
785 sess->s_count = 1;
786 sess->s_ttyvp = NULL;
787 sess->s_ttyp = NULL;
788 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
789 memcpy(sess->s_login, p->p_session->s_login,
790 sizeof(sess->s_login));
791 p->p_flag &= ~P_CONTROLT;
792 } else {
793 sess = p->p_pgrp->pg_session;
794 SESSHOLD(sess);
795 }
796 pgrp->pg_session = sess;
797 sess = 0;
798
799 pgrp->pg_id = pgid;
800 LIST_INIT(&pgrp->pg_members);
801 #ifdef DIAGNOSTIC
802 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
803 panic("enterpgrp: pgrp table slot in use");
804 if (__predict_false(mksess && p != curp))
805 panic("enterpgrp: mksession and p != curproc");
806 #endif
807 mutex_enter(&proclist_mutex);
808 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
809 pgrp->pg_jobc = 0;
810 } else
811 mutex_enter(&proclist_mutex);
812
813 #ifdef notyet
814 /*
815 * If there's a controlling terminal for the current session, we
816 * have to interlock with it. See ttread().
817 */
818 if (p->p_session->s_ttyvp != NULL) {
819 tp = p->p_session->s_ttyp;
820 mutex_enter(&tp->t_mutex);
821 } else
822 tp = NULL;
823 #endif
824
825 /*
826 * Adjust eligibility of affected pgrps to participate in job control.
827 * Increment eligibility counts before decrementing, otherwise we
828 * could reach 0 spuriously during the first call.
829 */
830 fixjobc(p, pgrp, 1);
831 fixjobc(p, p->p_pgrp, 0);
832
833 /* Move process to requested group. */
834 LIST_REMOVE(p, p_pglist);
835 if (LIST_EMPTY(&p->p_pgrp->pg_members))
836 /* defer delete until we've dumped the lock */
837 pg_id = p->p_pgrp->pg_id;
838 p->p_pgrp = pgrp;
839 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
840 mutex_exit(&proclist_mutex);
841
842 #ifdef notyet
843 /* Done with the swap; we can release the tty mutex. */
844 if (tp != NULL)
845 mutex_exit(&tp->t_mutex);
846 #endif
847
848 done:
849 rw_exit(&proclist_lock);
850 if (sess != NULL)
851 pool_put(&session_pool, sess);
852 if (new_pgrp != NULL)
853 pool_put(&pgrp_pool, new_pgrp);
854 if (pg_id != NO_PGID)
855 pg_delete(pg_id);
856 #ifdef DEBUG_PGRP
857 if (__predict_false(rval))
858 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
859 pid, pgid, mksess, curp->p_pid, rval);
860 #endif
861 return rval;
862 }
863
864 /*
865 * Remove a process from its process group.
866 */
867 void
868 leavepgrp(struct proc *p)
869 {
870 struct pgrp *pgrp;
871
872 /*
873 * If there's a controlling terminal for the session, we have to
874 * interlock with it. See ttread().
875 */
876 rw_enter(&proclist_lock, RW_WRITER);
877 mutex_enter(&proclist_mutex);
878
879 #ifdef notyet
880 if (p_>p_session->s_ttyvp != NULL) {
881 tp = p->p_session->s_ttyp;
882 mutex_enter(&tp->t_mutex);
883 } else
884 tp = NULL;
885 #endif
886
887 pgrp = p->p_pgrp;
888 LIST_REMOVE(p, p_pglist);
889 p->p_pgrp = NULL;
890
891 #ifdef notyet
892 if (tp != NULL)
893 mutex_exit(&tp->t_mutex);
894 #endif
895 mutex_exit(&proclist_mutex);
896 rw_exit(&proclist_lock);
897
898 if (LIST_EMPTY(&pgrp->pg_members))
899 pg_delete(pgrp->pg_id);
900 }
901
902 static void
903 pg_free(pid_t pg_id)
904 {
905 struct pgrp *pgrp;
906 struct pid_table *pt;
907
908 rw_enter(&proclist_lock, RW_WRITER);
909 pt = &pid_table[pg_id & pid_tbl_mask];
910 pgrp = pt->pt_pgrp;
911 #ifdef DIAGNOSTIC
912 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
913 || !LIST_EMPTY(&pgrp->pg_members)))
914 panic("pg_free: process group absent or has members");
915 #endif
916 pt->pt_pgrp = 0;
917
918 if (!P_VALID(pt->pt_proc)) {
919 /* orphaned pgrp, put slot onto free list */
920 #ifdef DIAGNOSTIC
921 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
922 panic("pg_free: process slot on free list");
923 #endif
924 mutex_enter(&proclist_mutex);
925 pg_id &= pid_tbl_mask;
926 pt = &pid_table[last_free_pt];
927 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
928 mutex_exit(&proclist_mutex);
929 last_free_pt = pg_id;
930 pid_alloc_cnt--;
931 }
932 rw_exit(&proclist_lock);
933
934 pool_put(&pgrp_pool, pgrp);
935 }
936
937 /*
938 * delete a process group
939 */
940 static void
941 pg_delete(pid_t pg_id)
942 {
943 struct pgrp *pgrp;
944 struct tty *ttyp;
945 struct session *ss;
946 int is_pgrp_leader;
947
948 rw_enter(&proclist_lock, RW_WRITER);
949 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
950 if (pgrp == NULL || pgrp->pg_id != pg_id ||
951 !LIST_EMPTY(&pgrp->pg_members)) {
952 rw_exit(&proclist_lock);
953 return;
954 }
955
956 ss = pgrp->pg_session;
957
958 /* Remove reference (if any) from tty to this process group */
959 ttyp = ss->s_ttyp;
960 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
961 ttyp->t_pgrp = NULL;
962 #ifdef DIAGNOSTIC
963 if (ttyp->t_session != ss)
964 panic("pg_delete: wrong session on terminal");
965 #endif
966 }
967
968 /*
969 * The leading process group in a session is freed
970 * by sessdelete() if last reference.
971 */
972 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
973 rw_exit(&proclist_lock);
974 SESSRELE(ss);
975
976 if (is_pgrp_leader)
977 return;
978
979 pg_free(pg_id);
980 }
981
982 /*
983 * Delete session - called from SESSRELE when s_count becomes zero.
984 */
985 void
986 sessdelete(struct session *ss)
987 {
988 /*
989 * We keep the pgrp with the same id as the session in
990 * order to stop a process being given the same pid.
991 * Since the pgrp holds a reference to the session, it
992 * must be a 'zombie' pgrp by now.
993 */
994
995 pg_free(ss->s_sid);
996
997 pool_put(&session_pool, ss);
998 }
999
1000 /*
1001 * Adjust pgrp jobc counters when specified process changes process group.
1002 * We count the number of processes in each process group that "qualify"
1003 * the group for terminal job control (those with a parent in a different
1004 * process group of the same session). If that count reaches zero, the
1005 * process group becomes orphaned. Check both the specified process'
1006 * process group and that of its children.
1007 * entering == 0 => p is leaving specified group.
1008 * entering == 1 => p is entering specified group.
1009 *
1010 * Call with proclist_lock held.
1011 */
1012 void
1013 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1014 {
1015 struct pgrp *hispgrp;
1016 struct session *mysession = pgrp->pg_session;
1017 struct proc *child;
1018
1019 /*
1020 * Check p's parent to see whether p qualifies its own process
1021 * group; if so, adjust count for p's process group.
1022 */
1023 hispgrp = p->p_pptr->p_pgrp;
1024 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1025 if (entering) {
1026 p->p_flag &= ~P_ORPHANPG;
1027 pgrp->pg_jobc++;
1028 } else if (--pgrp->pg_jobc == 0)
1029 orphanpg(pgrp);
1030 }
1031
1032 /*
1033 * Check this process' children to see whether they qualify
1034 * their process groups; if so, adjust counts for children's
1035 * process groups.
1036 */
1037 LIST_FOREACH(child, &p->p_children, p_sibling) {
1038 hispgrp = child->p_pgrp;
1039 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1040 !P_ZOMBIE(child)) {
1041 if (entering) {
1042 p->p_flag &= ~P_ORPHANPG;
1043 hispgrp->pg_jobc++;
1044 } else if (--hispgrp->pg_jobc == 0)
1045 orphanpg(hispgrp);
1046 }
1047 }
1048 }
1049
1050 /*
1051 * A process group has become orphaned;
1052 * if there are any stopped processes in the group,
1053 * hang-up all process in that group.
1054 *
1055 * Call with proclist_lock held.
1056 */
1057 static void
1058 orphanpg(struct pgrp *pg)
1059 {
1060 struct proc *p;
1061 int doit;
1062
1063 doit = 0;
1064
1065 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1066 mutex_enter(&p->p_smutex);
1067 if (p->p_stat == SSTOP) {
1068 doit = 1;
1069 p->p_flag |= P_ORPHANPG;
1070 }
1071 mutex_exit(&p->p_smutex);
1072 }
1073
1074 if (doit) {
1075 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1076 psignal(p, SIGHUP);
1077 psignal(p, SIGCONT);
1078 }
1079 }
1080 }
1081
1082 /* mark process as suid/sgid, reset some values to defaults */
1083 void
1084 p_sugid(struct proc *p)
1085 {
1086 struct plimit *lim;
1087 char *cn;
1088
1089 p->p_flag |= P_SUGID;
1090 /* reset what needs to be reset in plimit */
1091 lim = p->p_limit;
1092 if (lim->pl_corename != defcorename) {
1093 if (lim->p_refcnt > 1 &&
1094 (lim->p_lflags & PL_SHAREMOD) == 0) {
1095 p->p_limit = limcopy(lim);
1096 limfree(lim);
1097 lim = p->p_limit;
1098 }
1099 simple_lock(&lim->p_slock);
1100 cn = lim->pl_corename;
1101 lim->pl_corename = defcorename;
1102 simple_unlock(&lim->p_slock);
1103 if (cn != defcorename)
1104 free(cn, M_TEMP);
1105 }
1106 }
1107
1108 #ifdef DDB
1109 #include <ddb/db_output.h>
1110 void pidtbl_dump(void);
1111 void
1112 pidtbl_dump(void)
1113 {
1114 struct pid_table *pt;
1115 struct proc *p;
1116 struct pgrp *pgrp;
1117 int id;
1118
1119 db_printf("pid table %p size %x, next %x, last %x\n",
1120 pid_table, pid_tbl_mask+1,
1121 next_free_pt, last_free_pt);
1122 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1123 p = pt->pt_proc;
1124 if (!P_VALID(p) && !pt->pt_pgrp)
1125 continue;
1126 db_printf(" id %x: ", id);
1127 if (P_VALID(p))
1128 db_printf("proc %p id %d (0x%x) %s\n",
1129 p, p->p_pid, p->p_pid, p->p_comm);
1130 else
1131 db_printf("next %x use %x\n",
1132 P_NEXT(p) & pid_tbl_mask,
1133 P_NEXT(p) & ~pid_tbl_mask);
1134 if ((pgrp = pt->pt_pgrp)) {
1135 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1136 pgrp->pg_session, pgrp->pg_session->s_sid,
1137 pgrp->pg_session->s_count,
1138 pgrp->pg_session->s_login);
1139 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1140 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1141 pgrp->pg_members.lh_first);
1142 for (p = pgrp->pg_members.lh_first; p != 0;
1143 p = p->p_pglist.le_next) {
1144 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1145 p->p_pid, p, p->p_pgrp, p->p_comm);
1146 }
1147 }
1148 }
1149 }
1150 #endif /* DDB */
1151
1152 #ifdef KSTACK_CHECK_MAGIC
1153 #include <sys/user.h>
1154
1155 #define KSTACK_MAGIC 0xdeadbeaf
1156
1157 /* XXX should be per process basis? */
1158 int kstackleftmin = KSTACK_SIZE;
1159 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1160 less than this */
1161
1162 void
1163 kstack_setup_magic(const struct lwp *l)
1164 {
1165 uint32_t *ip;
1166 uint32_t const *end;
1167
1168 KASSERT(l != NULL);
1169 KASSERT(l != &lwp0);
1170
1171 /*
1172 * fill all the stack with magic number
1173 * so that later modification on it can be detected.
1174 */
1175 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1176 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1177 for (; ip < end; ip++) {
1178 *ip = KSTACK_MAGIC;
1179 }
1180 }
1181
1182 void
1183 kstack_check_magic(const struct lwp *l)
1184 {
1185 uint32_t const *ip, *end;
1186 int stackleft;
1187
1188 KASSERT(l != NULL);
1189
1190 /* don't check proc0 */ /*XXX*/
1191 if (l == &lwp0)
1192 return;
1193
1194 #ifdef __MACHINE_STACK_GROWS_UP
1195 /* stack grows upwards (eg. hppa) */
1196 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1197 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1198 for (ip--; ip >= end; ip--)
1199 if (*ip != KSTACK_MAGIC)
1200 break;
1201
1202 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1203 #else /* __MACHINE_STACK_GROWS_UP */
1204 /* stack grows downwards (eg. i386) */
1205 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1206 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1207 for (; ip < end; ip++)
1208 if (*ip != KSTACK_MAGIC)
1209 break;
1210
1211 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1212 #endif /* __MACHINE_STACK_GROWS_UP */
1213
1214 if (kstackleftmin > stackleft) {
1215 kstackleftmin = stackleft;
1216 if (stackleft < kstackleftthres)
1217 printf("warning: kernel stack left %d bytes"
1218 "(pid %u:lid %u)\n", stackleft,
1219 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1220 }
1221
1222 if (stackleft <= 0) {
1223 panic("magic on the top of kernel stack changed for "
1224 "pid %u, lid %u: maybe kernel stack overflow",
1225 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1226 }
1227 }
1228 #endif /* KSTACK_CHECK_MAGIC */
1229
1230 /*
1231 * XXXSMP this is bust, it grabs a read lock and then messes about
1232 * with allproc.
1233 */
1234 int
1235 proclist_foreach_call(struct proclist *list,
1236 int (*callback)(struct proc *, void *arg), void *arg)
1237 {
1238 struct proc marker;
1239 struct proc *p;
1240 struct lwp * const l = curlwp;
1241 int ret = 0;
1242
1243 marker.p_flag = P_MARKER;
1244 PHOLD(l);
1245 rw_enter(&proclist_lock, RW_READER);
1246 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1247 if (p->p_flag & P_MARKER) {
1248 p = LIST_NEXT(p, p_list);
1249 continue;
1250 }
1251 LIST_INSERT_AFTER(p, &marker, p_list);
1252 ret = (*callback)(p, arg);
1253 KASSERT(rw_read_held(&proclist_lock));
1254 p = LIST_NEXT(&marker, p_list);
1255 LIST_REMOVE(&marker, p_list);
1256 }
1257 rw_exit(&proclist_lock);
1258 PRELE(l);
1259
1260 return ret;
1261 }
1262
1263 int
1264 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1265 {
1266
1267 /* XXXCDC: how should locking work here? */
1268
1269 /* curproc exception is for coredump. */
1270
1271 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1272 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1273 return EFAULT;
1274 }
1275
1276 uvmspace_addref(p->p_vmspace);
1277 *vm = p->p_vmspace;
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Acquire a write lock on the process credential.
1284 */
1285 void
1286 proc_crmod_enter(struct proc *p)
1287 {
1288
1289 mutex_enter(&p->p_crmutex);
1290 }
1291
1292 /*
1293 * Set in a new process credential, and drop the write lock. The credential
1294 * must have a reference already. Optionally, free a no-longer required
1295 * credential. The scheduler also needs to inspect p_cred, so we also
1296 * briefly acquire the sched state mutex.
1297 */
1298 void
1299 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
1300 {
1301
1302 mutex_enter(&p->p_smutex);
1303 p->p_cred = scred;
1304 mutex_exit(&p->p_smutex);
1305 mutex_exit(&p->p_crmutex);
1306 if (fcred != NULL)
1307 kauth_cred_free(fcred);
1308 }
1309