kern_proc.c revision 1.94.4.4 1 /* $NetBSD: kern_proc.c,v 1.94.4.4 2006/10/24 21:10:21 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.4 2006/10/24 21:10:21 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are three locks on global process state.
115 *
116 * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 * examining process state from a process context. It protects our internal
118 * tables, all of the process lists, and a number of members of struct lwp
119 * and struct proc.
120
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when we must signal processes from an interrupt
123 * context. The proclist_lock should always be used in preference.
124 *
125 * 3. alllwp_mutex protects the "alllwp" list.
126 *
127 * proclist_lock proclist_mutex alllwp_mutex structure
128 * --------------- --------------- --------------- -----------------
129 * x zombproc
130 * x x pid_table
131 * x proc::p_pptr
132 * x proc::p_sibling
133 * x proc::p_children
134 * x x allproc
135 * x x proc::p_pgrp
136 * x x proc::p_pglist
137 * x x proc::p_session
138 * x x proc::p_list
139 * x alllwp
140 * x lwp::l_list
141 *
142 * The lock order for processes and LWPs is apporoximately as following:
143 *
144 * kernel_mutex
145 * -> proclist_lock
146 * -> proclist_mutex
147 * -> proc::p_crmutex
148 * -> proc::p_smutex
149 * -> alllwp_mutex
150 * -> lwp::l_mutex
151 * -> sched_mutex
152 */
153 krwlock_t proclist_lock;
154 kmutex_t proclist_mutex;
155
156 /*
157 * pid to proc lookup is done by indexing the pid_table array.
158 * Since pid numbers are only allocated when an empty slot
159 * has been found, there is no need to search any lists ever.
160 * (an orphaned pgrp will lock the slot, a session will lock
161 * the pgrp with the same number.)
162 * If the table is too small it is reallocated with twice the
163 * previous size and the entries 'unzipped' into the two halves.
164 * A linked list of free entries is passed through the pt_proc
165 * field of 'free' items - set odd to be an invalid ptr.
166 */
167
168 struct pid_table {
169 struct proc *pt_proc;
170 struct pgrp *pt_pgrp;
171 };
172 #if 1 /* strongly typed cast - should be a noop */
173 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
174 #else
175 #define p2u(p) ((uint)p)
176 #endif
177 #define P_VALID(p) (!(p2u(p) & 1))
178 #define P_NEXT(p) (p2u(p) >> 1)
179 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
180
181 #define INITIAL_PID_TABLE_SIZE (1 << 5)
182 static struct pid_table *pid_table;
183 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
184 static uint pid_alloc_lim; /* max we allocate before growing table */
185 static uint pid_alloc_cnt; /* number of allocated pids */
186
187 /* links through free slots - never empty! */
188 static uint next_free_pt, last_free_pt;
189 static pid_t pid_max = PID_MAX; /* largest value we allocate */
190
191 /* Components of the first process -- never freed. */
192 struct session session0;
193 struct pgrp pgrp0;
194 struct proc proc0;
195 struct lwp lwp0 __aligned(16);
196 kauth_cred_t cred0;
197 struct filedesc0 filedesc0;
198 struct cwdinfo cwdi0;
199 struct plimit limit0;
200 struct pstats pstat0;
201 struct vmspace vmspace0;
202 struct sigacts sigacts0;
203 struct turnstile turnstile0;
204
205 extern struct user *proc0paddr;
206
207 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
208
209 int nofile = NOFILE;
210 int maxuprc = MAXUPRC;
211 int cmask = CMASK;
212
213 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
214 &pool_allocator_nointr);
215 POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
216 &pool_allocator_nointr);
217 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
218 &pool_allocator_nointr);
219 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
220 &pool_allocator_nointr);
221 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
222 &pool_allocator_nointr);
223 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
224 &pool_allocator_nointr);
225 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
226 &pool_allocator_nointr);
227 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
228 &pool_allocator_nointr);
229 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
230 &pool_allocator_nointr);
231
232 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
233 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
234 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
235
236 /*
237 * The process list descriptors, used during pid allocation and
238 * by sysctl. No locking on this data structure is needed since
239 * it is completely static.
240 */
241 const struct proclist_desc proclists[] = {
242 { &allproc },
243 { &zombproc },
244 { NULL },
245 };
246
247 static void orphanpg(struct pgrp *);
248 static void pg_delete(pid_t);
249
250 /*
251 * Initialize global process hashing structures.
252 */
253 void
254 procinit(void)
255 {
256 const struct proclist_desc *pd;
257 int i;
258 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
259
260 for (pd = proclists; pd->pd_list != NULL; pd++)
261 LIST_INIT(pd->pd_list);
262
263 rw_init(&proclist_lock);
264 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
265 mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
266 mutex_init(&lwp_mutex, MUTEX_SPIN, IPL_SCHED);
267
268 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
269 M_PROC, M_WAITOK);
270 /* Set free list running through table...
271 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
272 for (i = 0; i <= pid_tbl_mask; i++) {
273 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
274 pid_table[i].pt_pgrp = 0;
275 }
276 /* slot 0 is just grabbed */
277 next_free_pt = 1;
278 /* Need to fix last entry. */
279 last_free_pt = pid_tbl_mask;
280 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
281 /* point at which we grow table - to avoid reusing pids too often */
282 pid_alloc_lim = pid_tbl_mask - 1;
283 #undef LINK_EMPTY
284
285 LIST_INIT(&alllwp);
286
287 uihashtbl =
288 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
289 }
290
291 /*
292 * Initialize process 0.
293 */
294 void
295 proc0_init(void)
296 {
297 struct proc *p;
298 struct pgrp *pg;
299 struct session *sess;
300 struct lwp *l;
301 u_int i;
302 rlim_t lim;
303
304 p = &proc0;
305 pg = &pgrp0;
306 sess = &session0;
307 l = &lwp0;
308
309 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
310 mutex_init(&p->p_crmutex, MUTEX_DEFAULT, IPL_NONE);
311 mutex_init(&p->p_rasmutex, MUTEX_DEFAULT, IPL_NONE);
312 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
313 LIST_INIT(&p->p_lwps);
314 LIST_INIT(&p->p_sigwaiters);
315 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
316 p->p_nlwps = 1;
317 p->p_nrlwps = 1;
318
319 pid_table[0].pt_proc = p;
320 LIST_INSERT_HEAD(&allproc, p, p_list);
321 LIST_INSERT_HEAD(&alllwp, l, l_list);
322
323 p->p_pgrp = pg;
324 pid_table[0].pt_pgrp = pg;
325 LIST_INIT(&pg->pg_members);
326 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
327
328 pg->pg_session = sess;
329 sess->s_count = 1;
330 sess->s_sid = 0;
331 sess->s_leader = p;
332
333 /*
334 * Set P_NOCLDWAIT so that kernel threads are reparented to
335 * init(8) when they exit. init(8) can easily wait them out
336 * for us.
337 */
338 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
339 p->p_stat = SACTIVE;
340 p->p_nice = NZERO;
341 p->p_emul = &emul_netbsd;
342 #ifdef __HAVE_SYSCALL_INTERN
343 (*p->p_emul->e_syscall_intern)(p);
344 #endif
345 strncpy(p->p_comm, "swapper", MAXCOMLEN);
346
347 #ifdef MULTIPROCESSOR
348 l->l_mutex = &lwp_mutex;
349 #else
350 l->l_mutex = &sched_mutex;
351 #endif
352 l->l_flag = L_INMEM | L_SYSTEM;
353 l->l_stat = LSONPROC;
354 l->l_ts = &turnstile0;
355
356 callout_init(&l->l_tsleep_ch);
357
358 /* Create credentials. */
359 cred0 = kauth_cred_alloc();
360 p->p_cred = cred0;
361 kauth_cred_hold(cred0);
362 l->l_cred = cred0;
363
364 /* Create the CWD info. */
365 p->p_cwdi = &cwdi0;
366 cwdi0.cwdi_cmask = cmask;
367 cwdi0.cwdi_refcnt = 1;
368 simple_lock_init(&cwdi0.cwdi_slock);
369
370 /* Create the limits structures. */
371 p->p_limit = &limit0;
372 simple_lock_init(&limit0.p_slock);
373 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
374 limit0.pl_rlimit[i].rlim_cur =
375 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
376
377 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
378 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
379 maxfiles < nofile ? maxfiles : nofile;
380
381 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
382 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
383 maxproc < maxuprc ? maxproc : maxuprc;
384
385 lim = ptoa(uvmexp.free);
386 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
387 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
388 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
389 limit0.pl_corename = defcorename;
390 limit0.p_refcnt = 1;
391
392 /* Configure virtual memory system, set vm rlimits. */
393 uvm_init_limits(p);
394
395 /* Initialize file descriptor table for proc0. */
396 p->p_fd = &filedesc0.fd_fd;
397 fdinit1(&filedesc0);
398
399 /*
400 * Initialize proc0's vmspace, which uses the kernel pmap.
401 * All kernel processes (which never have user space mappings)
402 * share proc0's vmspace, and thus, the kernel pmap.
403 */
404 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
405 trunc_page(VM_MAX_ADDRESS));
406 p->p_vmspace = &vmspace0;
407
408 l->l_addr = proc0paddr; /* XXX */
409
410 p->p_stats = &pstat0;
411
412 /* Initialize signal state for proc0. */
413 p->p_sigacts = &sigacts0;
414 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_NONE);
415 siginit(p);
416 }
417
418 /*
419 * Check that the specified process group is in the session of the
420 * specified process.
421 * Treats -ve ids as process ids.
422 * Used to validate TIOCSPGRP requests.
423 */
424 int
425 pgid_in_session(struct proc *p, pid_t pg_id)
426 {
427 struct pgrp *pgrp;
428
429 if (pg_id < 0) {
430 struct proc *p1 = pfind(-pg_id);
431 if (p1 == NULL)
432 return EINVAL;
433 pgrp = p1->p_pgrp;
434 } else {
435 pgrp = pgfind(pg_id);
436 if (pgrp == NULL)
437 return EINVAL;
438 }
439 if (pgrp->pg_session != p->p_pgrp->pg_session)
440 return EPERM;
441 return 0;
442 }
443
444 /*
445 * Is p an inferior of q?
446 *
447 * Call with the proclist_lock held.
448 */
449 int
450 inferior(struct proc *p, struct proc *q)
451 {
452
453 for (; p != q; p = p->p_pptr)
454 if (p->p_pid == 0)
455 return 0;
456 return 1;
457 }
458
459 /*
460 * Locate a process by number
461 */
462 struct proc *
463 p_find(pid_t pid, uint flags)
464 {
465 struct proc *p;
466 char stat;
467
468 if (!(flags & PFIND_LOCKED))
469 rw_enter(&proclist_lock, RW_READER);
470
471 p = pid_table[pid & pid_tbl_mask].pt_proc;
472 /* Only allow live processes to be found by pid. */
473 if (P_VALID(p) && p->p_pid == pid &&
474 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
475 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
476 if (flags & PFIND_UNLOCK_OK)
477 rw_exit(&proclist_lock);
478 return p;
479 }
480 if (flags & PFIND_UNLOCK_FAIL)
481 rw_exit(&proclist_lock);
482 return NULL;
483 }
484
485
486 /*
487 * Locate a process group by number
488 */
489 struct pgrp *
490 pg_find(pid_t pgid, uint flags)
491 {
492 struct pgrp *pg;
493
494 if (!(flags & PFIND_LOCKED))
495 rw_enter(&proclist_lock, RW_READER);
496 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
497 /*
498 * Can't look up a pgrp that only exists because the session
499 * hasn't died yet (traditional)
500 */
501 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
502 if (flags & PFIND_UNLOCK_FAIL)
503 rw_exit(&proclist_lock);
504 return NULL;
505 }
506
507 if (flags & PFIND_UNLOCK_OK)
508 rw_exit(&proclist_lock);
509 return pg;
510 }
511
512 static void
513 expand_pid_table(void)
514 {
515 uint pt_size = pid_tbl_mask + 1;
516 struct pid_table *n_pt, *new_pt;
517 struct proc *proc;
518 struct pgrp *pgrp;
519 int i;
520 pid_t pid;
521
522 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
523
524 rw_enter(&proclist_lock, RW_WRITER);
525 if (pt_size != pid_tbl_mask + 1) {
526 /* Another process beat us to it... */
527 rw_exit(&proclist_lock);
528 FREE(new_pt, M_PROC);
529 return;
530 }
531
532 /*
533 * Copy entries from old table into new one.
534 * If 'pid' is 'odd' we need to place in the upper half,
535 * even pid's to the lower half.
536 * Free items stay in the low half so we don't have to
537 * fixup the reference to them.
538 * We stuff free items on the front of the freelist
539 * because we can't write to unmodified entries.
540 * Processing the table backwards maintains a semblance
541 * of issueing pid numbers that increase with time.
542 */
543 i = pt_size - 1;
544 n_pt = new_pt + i;
545 for (; ; i--, n_pt--) {
546 proc = pid_table[i].pt_proc;
547 pgrp = pid_table[i].pt_pgrp;
548 if (!P_VALID(proc)) {
549 /* Up 'use count' so that link is valid */
550 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
551 proc = P_FREE(pid);
552 if (pgrp)
553 pid = pgrp->pg_id;
554 } else
555 pid = proc->p_pid;
556
557 /* Save entry in appropriate half of table */
558 n_pt[pid & pt_size].pt_proc = proc;
559 n_pt[pid & pt_size].pt_pgrp = pgrp;
560
561 /* Put other piece on start of free list */
562 pid = (pid ^ pt_size) & ~pid_tbl_mask;
563 n_pt[pid & pt_size].pt_proc =
564 P_FREE((pid & ~pt_size) | next_free_pt);
565 n_pt[pid & pt_size].pt_pgrp = 0;
566 next_free_pt = i | (pid & pt_size);
567 if (i == 0)
568 break;
569 }
570
571 /* Switch tables */
572 mutex_enter(&proclist_mutex);
573 n_pt = pid_table;
574 pid_table = new_pt;
575 mutex_exit(&proclist_mutex);
576 pid_tbl_mask = pt_size * 2 - 1;
577
578 /*
579 * pid_max starts as PID_MAX (= 30000), once we have 16384
580 * allocated pids we need it to be larger!
581 */
582 if (pid_tbl_mask > PID_MAX) {
583 pid_max = pid_tbl_mask * 2 + 1;
584 pid_alloc_lim |= pid_alloc_lim << 1;
585 } else
586 pid_alloc_lim <<= 1; /* doubles number of free slots... */
587
588 rw_exit(&proclist_lock);
589 FREE(n_pt, M_PROC);
590 }
591
592 struct proc *
593 proc_alloc(void)
594 {
595 struct proc *p;
596 int nxt;
597 pid_t pid;
598 struct pid_table *pt;
599
600 p = pool_get(&proc_pool, PR_WAITOK);
601 p->p_stat = SIDL; /* protect against others */
602
603 /* allocate next free pid */
604
605 for (;;expand_pid_table()) {
606 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
607 /* ensure pids cycle through 2000+ values */
608 continue;
609 rw_enter(&proclist_lock, RW_WRITER);
610 pt = &pid_table[next_free_pt];
611 #ifdef DIAGNOSTIC
612 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
613 panic("proc_alloc: slot busy");
614 #endif
615 nxt = P_NEXT(pt->pt_proc);
616 if (nxt & pid_tbl_mask)
617 break;
618 /* Table full - expand (NB last entry not used....) */
619 rw_exit(&proclist_lock);
620 }
621
622 /* pid is 'saved use count' + 'size' + entry */
623 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
624 if ((uint)pid > (uint)pid_max)
625 pid &= pid_tbl_mask;
626 p->p_pid = pid;
627 next_free_pt = nxt & pid_tbl_mask;
628
629 /* Grab table slot */
630 mutex_enter(&proclist_mutex);
631 pt->pt_proc = p;
632 mutex_exit(&proclist_mutex);
633 pid_alloc_cnt++;
634
635 rw_exit(&proclist_lock);
636
637 return p;
638 }
639
640 /*
641 * Free last resources of a process - called from proc_free (in kern_exit.c)
642 *
643 * Called with the proclist_lock write held, and releases upon exit.
644 */
645 void
646 proc_free_mem(struct proc *p)
647 {
648 pid_t pid = p->p_pid;
649 struct pid_table *pt;
650
651 LOCK_ASSERT(rw_write_held(&proclist_lock));
652
653 pt = &pid_table[pid & pid_tbl_mask];
654 #ifdef DIAGNOSTIC
655 if (__predict_false(pt->pt_proc != p))
656 panic("proc_free: pid_table mismatch, pid %x, proc %p",
657 pid, p);
658 #endif
659 mutex_enter(&proclist_mutex);
660 /* save pid use count in slot */
661 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
662
663 if (pt->pt_pgrp == NULL) {
664 /* link last freed entry onto ours */
665 pid &= pid_tbl_mask;
666 pt = &pid_table[last_free_pt];
667 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
668 last_free_pt = pid;
669 pid_alloc_cnt--;
670 }
671 mutex_exit(&proclist_mutex);
672
673 nprocs--;
674 rw_exit(&proclist_lock);
675
676 pool_put(&proc_pool, p);
677 }
678
679 /*
680 * Move p to a new or existing process group (and session)
681 *
682 * If we are creating a new pgrp, the pgid should equal
683 * the calling process' pid.
684 * If is only valid to enter a process group that is in the session
685 * of the process.
686 * Also mksess should only be set if we are creating a process group
687 *
688 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
689 * SYSV setpgrp support for hpux.
690 */
691 int
692 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
693 {
694 struct pgrp *new_pgrp, *pgrp;
695 struct session *sess;
696 struct proc *p;
697 int rval;
698 pid_t pg_id = NO_PGID;
699
700 /* Allocate data areas we might need before doing any validity checks */
701 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
702 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
703 rw_exit(&proclist_lock);
704 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
705 } else {
706 rw_exit(&proclist_lock);
707 new_pgrp = NULL;
708 }
709 if (mksess)
710 sess = pool_get(&session_pool, M_WAITOK);
711 else
712 sess = NULL;
713
714 rw_enter(&proclist_lock, RW_WRITER);
715 rval = EPERM; /* most common error (to save typing) */
716
717 /* Check pgrp exists or can be created */
718 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
719 if (pgrp != NULL && pgrp->pg_id != pgid)
720 goto done;
721
722 /* Can only set another process under restricted circumstances. */
723 if (pid != curp->p_pid) {
724 /* must exist and be one of our children... */
725 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
726 !inferior(p, curp)) {
727 rval = ESRCH;
728 goto done;
729 }
730 /* ... in the same session... */
731 if (sess != NULL || p->p_session != curp->p_session)
732 goto done;
733 /* ... existing pgid must be in same session ... */
734 if (pgrp != NULL && pgrp->pg_session != p->p_session)
735 goto done;
736 /* ... and not done an exec. */
737 if (p->p_flag & P_EXEC) {
738 rval = EACCES;
739 goto done;
740 }
741 } else {
742 /* ... setsid() cannot re-enter a pgrp */
743 if (mksess && (curp->p_pgid == curp->p_pid ||
744 pg_find(curp->p_pid, PFIND_LOCKED)))
745 goto done;
746 p = curp;
747 }
748
749 /* Changing the process group/session of a session
750 leader is definitely off limits. */
751 if (SESS_LEADER(p)) {
752 if (sess == NULL && p->p_pgrp == pgrp)
753 /* unless it's a definite noop */
754 rval = 0;
755 goto done;
756 }
757
758 /* Can only create a process group with id of process */
759 if (pgrp == NULL && pgid != pid)
760 goto done;
761
762 /* Can only create a session if creating pgrp */
763 if (sess != NULL && pgrp != NULL)
764 goto done;
765
766 /* Check we allocated memory for a pgrp... */
767 if (pgrp == NULL && new_pgrp == NULL)
768 goto done;
769
770 /* Don't attach to 'zombie' pgrp */
771 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
772 goto done;
773
774 /* Expect to succeed now */
775 rval = 0;
776
777 if (pgrp == p->p_pgrp)
778 /* nothing to do */
779 goto done;
780
781 /* Ok all setup, link up required structures */
782
783 if (pgrp == NULL) {
784 pgrp = new_pgrp;
785 new_pgrp = 0;
786 if (sess != NULL) {
787 sess->s_sid = p->p_pid;
788 sess->s_leader = p;
789 sess->s_count = 1;
790 sess->s_ttyvp = NULL;
791 sess->s_ttyp = NULL;
792 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
793 memcpy(sess->s_login, p->p_session->s_login,
794 sizeof(sess->s_login));
795 p->p_flag &= ~P_CONTROLT;
796 } else {
797 sess = p->p_pgrp->pg_session;
798 SESSHOLD(sess);
799 }
800 pgrp->pg_session = sess;
801 sess = 0;
802
803 pgrp->pg_id = pgid;
804 LIST_INIT(&pgrp->pg_members);
805 #ifdef DIAGNOSTIC
806 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
807 panic("enterpgrp: pgrp table slot in use");
808 if (__predict_false(mksess && p != curp))
809 panic("enterpgrp: mksession and p != curproc");
810 #endif
811 mutex_enter(&proclist_mutex);
812 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
813 pgrp->pg_jobc = 0;
814 } else
815 mutex_enter(&proclist_mutex);
816
817 #ifdef notyet
818 /*
819 * If there's a controlling terminal for the current session, we
820 * have to interlock with it. See ttread().
821 */
822 if (p->p_session->s_ttyvp != NULL) {
823 tp = p->p_session->s_ttyp;
824 mutex_enter(&tp->t_mutex);
825 } else
826 tp = NULL;
827 #endif
828
829 /*
830 * Adjust eligibility of affected pgrps to participate in job control.
831 * Increment eligibility counts before decrementing, otherwise we
832 * could reach 0 spuriously during the first call.
833 */
834 fixjobc(p, pgrp, 1);
835 fixjobc(p, p->p_pgrp, 0);
836
837 /* Move process to requested group. */
838 LIST_REMOVE(p, p_pglist);
839 if (LIST_EMPTY(&p->p_pgrp->pg_members))
840 /* defer delete until we've dumped the lock */
841 pg_id = p->p_pgrp->pg_id;
842 p->p_pgrp = pgrp;
843 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
844 mutex_exit(&proclist_mutex);
845
846 #ifdef notyet
847 /* Done with the swap; we can release the tty mutex. */
848 if (tp != NULL)
849 mutex_exit(&tp->t_mutex);
850 #endif
851
852 done:
853 rw_exit(&proclist_lock);
854 if (sess != NULL)
855 pool_put(&session_pool, sess);
856 if (new_pgrp != NULL)
857 pool_put(&pgrp_pool, new_pgrp);
858 if (pg_id != NO_PGID)
859 pg_delete(pg_id);
860 #ifdef DEBUG_PGRP
861 if (__predict_false(rval))
862 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
863 pid, pgid, mksess, curp->p_pid, rval);
864 #endif
865 return rval;
866 }
867
868 /*
869 * Remove a process from its process group.
870 */
871 void
872 leavepgrp(struct proc *p)
873 {
874 struct pgrp *pgrp;
875
876 /*
877 * If there's a controlling terminal for the session, we have to
878 * interlock with it. See ttread().
879 */
880 rw_enter(&proclist_lock, RW_WRITER);
881 mutex_enter(&proclist_mutex);
882
883 #ifdef notyet
884 if (p_>p_session->s_ttyvp != NULL) {
885 tp = p->p_session->s_ttyp;
886 mutex_enter(&tp->t_mutex);
887 } else
888 tp = NULL;
889 #endif
890
891 pgrp = p->p_pgrp;
892 LIST_REMOVE(p, p_pglist);
893 p->p_pgrp = NULL;
894
895 #ifdef notyet
896 if (tp != NULL)
897 mutex_exit(&tp->t_mutex);
898 #endif
899 mutex_exit(&proclist_mutex);
900 rw_exit(&proclist_lock);
901
902 if (LIST_EMPTY(&pgrp->pg_members))
903 pg_delete(pgrp->pg_id);
904 }
905
906 static void
907 pg_free(pid_t pg_id)
908 {
909 struct pgrp *pgrp;
910 struct pid_table *pt;
911
912 rw_enter(&proclist_lock, RW_WRITER);
913 pt = &pid_table[pg_id & pid_tbl_mask];
914 pgrp = pt->pt_pgrp;
915 #ifdef DIAGNOSTIC
916 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
917 || !LIST_EMPTY(&pgrp->pg_members)))
918 panic("pg_free: process group absent or has members");
919 #endif
920 pt->pt_pgrp = 0;
921
922 if (!P_VALID(pt->pt_proc)) {
923 /* orphaned pgrp, put slot onto free list */
924 #ifdef DIAGNOSTIC
925 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
926 panic("pg_free: process slot on free list");
927 #endif
928 mutex_enter(&proclist_mutex);
929 pg_id &= pid_tbl_mask;
930 pt = &pid_table[last_free_pt];
931 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
932 mutex_exit(&proclist_mutex);
933 last_free_pt = pg_id;
934 pid_alloc_cnt--;
935 }
936 rw_exit(&proclist_lock);
937
938 pool_put(&pgrp_pool, pgrp);
939 }
940
941 /*
942 * delete a process group
943 */
944 static void
945 pg_delete(pid_t pg_id)
946 {
947 struct pgrp *pgrp;
948 struct tty *ttyp;
949 struct session *ss;
950 int is_pgrp_leader;
951
952 rw_enter(&proclist_lock, RW_WRITER);
953 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
954 if (pgrp == NULL || pgrp->pg_id != pg_id ||
955 !LIST_EMPTY(&pgrp->pg_members)) {
956 rw_exit(&proclist_lock);
957 return;
958 }
959
960 ss = pgrp->pg_session;
961
962 /* Remove reference (if any) from tty to this process group */
963 ttyp = ss->s_ttyp;
964 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
965 ttyp->t_pgrp = NULL;
966 #ifdef DIAGNOSTIC
967 if (ttyp->t_session != ss)
968 panic("pg_delete: wrong session on terminal");
969 #endif
970 }
971
972 /*
973 * The leading process group in a session is freed
974 * by sessdelete() if last reference.
975 */
976 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
977 rw_exit(&proclist_lock);
978 SESSRELE(ss);
979
980 if (is_pgrp_leader)
981 return;
982
983 pg_free(pg_id);
984 }
985
986 /*
987 * Delete session - called from SESSRELE when s_count becomes zero.
988 */
989 void
990 sessdelete(struct session *ss)
991 {
992 /*
993 * We keep the pgrp with the same id as the session in
994 * order to stop a process being given the same pid.
995 * Since the pgrp holds a reference to the session, it
996 * must be a 'zombie' pgrp by now.
997 */
998
999 pg_free(ss->s_sid);
1000
1001 pool_put(&session_pool, ss);
1002 }
1003
1004 /*
1005 * Adjust pgrp jobc counters when specified process changes process group.
1006 * We count the number of processes in each process group that "qualify"
1007 * the group for terminal job control (those with a parent in a different
1008 * process group of the same session). If that count reaches zero, the
1009 * process group becomes orphaned. Check both the specified process'
1010 * process group and that of its children.
1011 * entering == 0 => p is leaving specified group.
1012 * entering == 1 => p is entering specified group.
1013 *
1014 * Call with proclist_lock held.
1015 */
1016 void
1017 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1018 {
1019 struct pgrp *hispgrp;
1020 struct session *mysession = pgrp->pg_session;
1021 struct proc *child;
1022
1023 /*
1024 * Check p's parent to see whether p qualifies its own process
1025 * group; if so, adjust count for p's process group.
1026 */
1027 hispgrp = p->p_pptr->p_pgrp;
1028 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1029 if (entering) {
1030 p->p_flag &= ~P_ORPHANPG;
1031 pgrp->pg_jobc++;
1032 } else if (--pgrp->pg_jobc == 0)
1033 orphanpg(pgrp);
1034 }
1035
1036 /*
1037 * Check this process' children to see whether they qualify
1038 * their process groups; if so, adjust counts for children's
1039 * process groups.
1040 */
1041 LIST_FOREACH(child, &p->p_children, p_sibling) {
1042 hispgrp = child->p_pgrp;
1043 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1044 !P_ZOMBIE(child)) {
1045 if (entering) {
1046 p->p_flag &= ~P_ORPHANPG;
1047 hispgrp->pg_jobc++;
1048 } else if (--hispgrp->pg_jobc == 0)
1049 orphanpg(hispgrp);
1050 }
1051 }
1052 }
1053
1054 /*
1055 * A process group has become orphaned;
1056 * if there are any stopped processes in the group,
1057 * hang-up all process in that group.
1058 *
1059 * Call with proclist_lock held.
1060 */
1061 static void
1062 orphanpg(struct pgrp *pg)
1063 {
1064 struct proc *p;
1065 int doit;
1066
1067 doit = 0;
1068
1069 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1070 mutex_enter(&p->p_smutex);
1071 if (p->p_stat == SSTOP) {
1072 doit = 1;
1073 p->p_flag |= P_ORPHANPG;
1074 }
1075 mutex_exit(&p->p_smutex);
1076 }
1077
1078 if (doit) {
1079 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1080 psignal(p, SIGHUP);
1081 psignal(p, SIGCONT);
1082 }
1083 }
1084 }
1085
1086 /* mark process as suid/sgid, reset some values to defaults */
1087 void
1088 p_sugid(struct proc *p)
1089 {
1090 struct plimit *lim;
1091 char *cn;
1092
1093 p->p_flag |= P_SUGID;
1094 /* reset what needs to be reset in plimit */
1095 lim = p->p_limit;
1096 if (lim->pl_corename != defcorename) {
1097 if (lim->p_refcnt > 1 &&
1098 (lim->p_lflags & PL_SHAREMOD) == 0) {
1099 p->p_limit = limcopy(lim);
1100 limfree(lim);
1101 lim = p->p_limit;
1102 }
1103 simple_lock(&lim->p_slock);
1104 cn = lim->pl_corename;
1105 lim->pl_corename = defcorename;
1106 simple_unlock(&lim->p_slock);
1107 if (cn != defcorename)
1108 free(cn, M_TEMP);
1109 }
1110 }
1111
1112 #ifdef DDB
1113 #include <ddb/db_output.h>
1114 void pidtbl_dump(void);
1115 void
1116 pidtbl_dump(void)
1117 {
1118 struct pid_table *pt;
1119 struct proc *p;
1120 struct pgrp *pgrp;
1121 int id;
1122
1123 db_printf("pid table %p size %x, next %x, last %x\n",
1124 pid_table, pid_tbl_mask+1,
1125 next_free_pt, last_free_pt);
1126 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1127 p = pt->pt_proc;
1128 if (!P_VALID(p) && !pt->pt_pgrp)
1129 continue;
1130 db_printf(" id %x: ", id);
1131 if (P_VALID(p))
1132 db_printf("proc %p id %d (0x%x) %s\n",
1133 p, p->p_pid, p->p_pid, p->p_comm);
1134 else
1135 db_printf("next %x use %x\n",
1136 P_NEXT(p) & pid_tbl_mask,
1137 P_NEXT(p) & ~pid_tbl_mask);
1138 if ((pgrp = pt->pt_pgrp)) {
1139 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1140 pgrp->pg_session, pgrp->pg_session->s_sid,
1141 pgrp->pg_session->s_count,
1142 pgrp->pg_session->s_login);
1143 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1144 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1145 pgrp->pg_members.lh_first);
1146 for (p = pgrp->pg_members.lh_first; p != 0;
1147 p = p->p_pglist.le_next) {
1148 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1149 p->p_pid, p, p->p_pgrp, p->p_comm);
1150 }
1151 }
1152 }
1153 }
1154 #endif /* DDB */
1155
1156 #ifdef KSTACK_CHECK_MAGIC
1157 #include <sys/user.h>
1158
1159 #define KSTACK_MAGIC 0xdeadbeaf
1160
1161 /* XXX should be per process basis? */
1162 int kstackleftmin = KSTACK_SIZE;
1163 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1164 less than this */
1165
1166 void
1167 kstack_setup_magic(const struct lwp *l)
1168 {
1169 uint32_t *ip;
1170 uint32_t const *end;
1171
1172 KASSERT(l != NULL);
1173 KASSERT(l != &lwp0);
1174
1175 /*
1176 * fill all the stack with magic number
1177 * so that later modification on it can be detected.
1178 */
1179 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1180 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1181 for (; ip < end; ip++) {
1182 *ip = KSTACK_MAGIC;
1183 }
1184 }
1185
1186 void
1187 kstack_check_magic(const struct lwp *l)
1188 {
1189 uint32_t const *ip, *end;
1190 int stackleft;
1191
1192 KASSERT(l != NULL);
1193
1194 /* don't check proc0 */ /*XXX*/
1195 if (l == &lwp0)
1196 return;
1197
1198 #ifdef __MACHINE_STACK_GROWS_UP
1199 /* stack grows upwards (eg. hppa) */
1200 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1201 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1202 for (ip--; ip >= end; ip--)
1203 if (*ip != KSTACK_MAGIC)
1204 break;
1205
1206 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1207 #else /* __MACHINE_STACK_GROWS_UP */
1208 /* stack grows downwards (eg. i386) */
1209 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1210 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1211 for (; ip < end; ip++)
1212 if (*ip != KSTACK_MAGIC)
1213 break;
1214
1215 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1216 #endif /* __MACHINE_STACK_GROWS_UP */
1217
1218 if (kstackleftmin > stackleft) {
1219 kstackleftmin = stackleft;
1220 if (stackleft < kstackleftthres)
1221 printf("warning: kernel stack left %d bytes"
1222 "(pid %u:lid %u)\n", stackleft,
1223 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1224 }
1225
1226 if (stackleft <= 0) {
1227 panic("magic on the top of kernel stack changed for "
1228 "pid %u, lid %u: maybe kernel stack overflow",
1229 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1230 }
1231 }
1232 #endif /* KSTACK_CHECK_MAGIC */
1233
1234 /*
1235 * XXXSMP this is bust, it grabs a read lock and then messes about
1236 * with allproc.
1237 */
1238 int
1239 proclist_foreach_call(struct proclist *list,
1240 int (*callback)(struct proc *, void *arg), void *arg)
1241 {
1242 struct proc marker;
1243 struct proc *p;
1244 struct lwp * const l = curlwp;
1245 int ret = 0;
1246
1247 marker.p_flag = P_MARKER;
1248 PHOLD(l);
1249 rw_enter(&proclist_lock, RW_READER);
1250 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1251 if (p->p_flag & P_MARKER) {
1252 p = LIST_NEXT(p, p_list);
1253 continue;
1254 }
1255 LIST_INSERT_AFTER(p, &marker, p_list);
1256 ret = (*callback)(p, arg);
1257 KASSERT(rw_read_held(&proclist_lock));
1258 p = LIST_NEXT(&marker, p_list);
1259 LIST_REMOVE(&marker, p_list);
1260 }
1261 rw_exit(&proclist_lock);
1262 PRELE(l);
1263
1264 return ret;
1265 }
1266
1267 int
1268 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1269 {
1270
1271 /* XXXCDC: how should locking work here? */
1272
1273 /* curproc exception is for coredump. */
1274
1275 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1276 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1277 return EFAULT;
1278 }
1279
1280 uvmspace_addref(p->p_vmspace);
1281 *vm = p->p_vmspace;
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * Acquire a write lock on the process credential.
1288 */
1289 void
1290 proc_crmod_enter(struct proc *p)
1291 {
1292
1293 mutex_enter(&p->p_crmutex);
1294 }
1295
1296 /*
1297 * Set in a new process credential, and drop the write lock. The credential
1298 * must have a reference already. Optionally, free a no-longer required
1299 * credential. The scheduler also needs to inspect p_cred, so we also
1300 * briefly acquire the sched state mutex.
1301 */
1302 void
1303 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
1304 {
1305
1306 mutex_enter(&p->p_smutex);
1307 p->p_cred = scred;
1308 mutex_exit(&p->p_smutex);
1309 mutex_exit(&p->p_crmutex);
1310 if (fcred != NULL)
1311 kauth_cred_free(fcred);
1312 }
1313