Home | History | Annotate | Line # | Download | only in kern
kern_proc.c revision 1.94.4.5
      1 /*	$NetBSD: kern_proc.c,v 1.94.4.5 2006/11/17 16:34:36 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.5 2006/11/17 16:34:36 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_maxuprc.h"
     76 #include "opt_multiprocessor.h"
     77 #include "opt_lockdebug.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/acct.h>
     86 #include <sys/wait.h>
     87 #include <sys/file.h>
     88 #include <ufs/ufs/quota.h>
     89 #include <sys/uio.h>
     90 #include <sys/malloc.h>
     91 #include <sys/pool.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/tty.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/ras.h>
     97 #include <sys/sa.h>
     98 #include <sys/savar.h>
     99 #include <sys/filedesc.h>
    100 #include <sys/kauth.h>
    101 #include <sys/sleepq.h>
    102 
    103 #include <uvm/uvm.h>
    104 #include <uvm/uvm_extern.h>
    105 
    106 /*
    107  * Other process lists
    108  */
    109 
    110 struct proclist allproc;
    111 struct proclist zombproc;	/* resources have been freed */
    112 
    113 /*
    114  * There are three locks on global process state.
    115  *
    116  * 1. proclist_lock is a reader/writer lock and is used when modifying or
    117  * examining process state from a process context.  It protects our internal
    118  * tables, all of the process lists, and a number of members of struct lwp
    119  * and struct proc.
    120 
    121  * 2. proclist_mutex is used when allproc must be traversed from an
    122  * interrupt context, or when we must signal processes from an interrupt
    123  * context.  The proclist_lock should always be used in preference.
    124  *
    125  * 3. alllwp_mutex protects the "alllwp" list.
    126  *
    127  *	proclist_lock	proclist_mutex	alllwp_mutex	structure
    128  *	--------------- --------------- --------------- -----------------
    129  *	x						zombproc
    130  *	x		x				pid_table
    131  *	x						proc::p_pptr
    132  *	x						proc::p_sibling
    133  *	x						proc::p_children
    134  *	x		x				allproc
    135  *	x		x				proc::p_pgrp
    136  *	x		x				proc::p_pglist
    137  *	x		x				proc::p_session
    138  *	x		x				proc::p_list
    139  *					x		alllwp
    140  *					x		lwp::l_list
    141  *
    142  * The lock order for processes and LWPs is apporoximately as following:
    143  *
    144  * kernel_mutex
    145  * -> proclist_lock
    146  *    -> proclist_mutex
    147  *	-> proc::p_mutex
    148  *         -> proc::p_smutex
    149  *	      -> alllwp_mutex
    150  * 	         -> lwp::l_mutex
    151  *	            -> sched_mutex
    152  */
    153 krwlock_t	proclist_lock;
    154 kmutex_t	proclist_mutex;
    155 kmutex_t	proc_stop_mutex;
    156 
    157 /*
    158  * pid to proc lookup is done by indexing the pid_table array.
    159  * Since pid numbers are only allocated when an empty slot
    160  * has been found, there is no need to search any lists ever.
    161  * (an orphaned pgrp will lock the slot, a session will lock
    162  * the pgrp with the same number.)
    163  * If the table is too small it is reallocated with twice the
    164  * previous size and the entries 'unzipped' into the two halves.
    165  * A linked list of free entries is passed through the pt_proc
    166  * field of 'free' items - set odd to be an invalid ptr.
    167  */
    168 
    169 struct pid_table {
    170 	struct proc	*pt_proc;
    171 	struct pgrp	*pt_pgrp;
    172 };
    173 #if 1	/* strongly typed cast - should be a noop */
    174 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
    175 #else
    176 #define p2u(p) ((uint)p)
    177 #endif
    178 #define P_VALID(p) (!(p2u(p) & 1))
    179 #define P_NEXT(p) (p2u(p) >> 1)
    180 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
    181 
    182 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
    183 static struct pid_table *pid_table;
    184 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
    185 static uint pid_alloc_lim;	/* max we allocate before growing table */
    186 static uint pid_alloc_cnt;	/* number of allocated pids */
    187 
    188 /* links through free slots - never empty! */
    189 static uint next_free_pt, last_free_pt;
    190 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
    191 
    192 /* Components of the first process -- never freed. */
    193 struct session session0;
    194 struct pgrp pgrp0;
    195 struct proc proc0;
    196 struct lwp lwp0 __aligned(16);
    197 kauth_cred_t cred0;
    198 struct filedesc0 filedesc0;
    199 struct cwdinfo cwdi0;
    200 struct plimit limit0;
    201 struct pstats pstat0;
    202 struct vmspace vmspace0;
    203 struct sigacts sigacts0;
    204 struct turnstile turnstile0;
    205 
    206 extern struct user *proc0paddr;
    207 
    208 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
    209 
    210 int nofile = NOFILE;
    211 int maxuprc = MAXUPRC;
    212 int cmask = CMASK;
    213 
    214 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
    215     &pool_allocator_nointr);
    216 POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
    217     &pool_allocator_nointr);
    218 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    219     &pool_allocator_nointr);
    220 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
    221     &pool_allocator_nointr);
    222 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
    223     &pool_allocator_nointr);
    224 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
    225     &pool_allocator_nointr);
    226 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
    227     &pool_allocator_nointr);
    228 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
    229     &pool_allocator_nointr);
    230 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
    231     &pool_allocator_nointr);
    232 
    233 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
    234 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
    235 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
    236 
    237 /*
    238  * The process list descriptors, used during pid allocation and
    239  * by sysctl.  No locking on this data structure is needed since
    240  * it is completely static.
    241  */
    242 const struct proclist_desc proclists[] = {
    243 	{ &allproc	},
    244 	{ &zombproc	},
    245 	{ NULL		},
    246 };
    247 
    248 static void orphanpg(struct pgrp *);
    249 static void pg_delete(pid_t);
    250 
    251 /*
    252  * Initialize global process hashing structures.
    253  */
    254 void
    255 procinit(void)
    256 {
    257 	const struct proclist_desc *pd;
    258 	int i;
    259 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
    260 
    261 	for (pd = proclists; pd->pd_list != NULL; pd++)
    262 		LIST_INIT(pd->pd_list);
    263 
    264 	rw_init(&proclist_lock);
    265 	mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
    266 	mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
    267 	mutex_init(&lwp_mutex, MUTEX_SPIN, IPL_SCHED);
    268 	mutex_init(&proc_stop_mutex, MUTEX_SPIN, IPL_NONE);
    269 
    270 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
    271 			    M_PROC, M_WAITOK);
    272 	/* Set free list running through table...
    273 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
    274 	for (i = 0; i <= pid_tbl_mask; i++) {
    275 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
    276 		pid_table[i].pt_pgrp = 0;
    277 	}
    278 	/* slot 0 is just grabbed */
    279 	next_free_pt = 1;
    280 	/* Need to fix last entry. */
    281 	last_free_pt = pid_tbl_mask;
    282 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
    283 	/* point at which we grow table - to avoid reusing pids too often */
    284 	pid_alloc_lim = pid_tbl_mask - 1;
    285 #undef LINK_EMPTY
    286 
    287 	LIST_INIT(&alllwp);
    288 
    289 	uihashtbl =
    290 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
    291 }
    292 
    293 /*
    294  * Initialize process 0.
    295  */
    296 void
    297 proc0_init(void)
    298 {
    299 	struct proc *p;
    300 	struct pgrp *pg;
    301 	struct session *sess;
    302 	struct lwp *l;
    303 	u_int i;
    304 	rlim_t lim;
    305 
    306 	p = &proc0;
    307 	pg = &pgrp0;
    308 	sess = &session0;
    309 	l = &lwp0;
    310 
    311 	mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
    312 	mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
    313 	mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
    314 	cv_init(&p->p_refcv, "drainref");
    315 	cv_init(&p->p_waitcv, "wait");
    316 
    317 	LIST_INIT(&p->p_lwps);
    318 	LIST_INIT(&p->p_sigwaiters);
    319 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
    320 
    321 	p->p_nlwps = 1;
    322 	p->p_nrlwps = 1;
    323 	p->p_refcnt = 1;
    324 
    325 	pid_table[0].pt_proc = p;
    326 	LIST_INSERT_HEAD(&allproc, p, p_list);
    327 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    328 
    329 	p->p_pgrp = pg;
    330 	pid_table[0].pt_pgrp = pg;
    331 	LIST_INIT(&pg->pg_members);
    332 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
    333 
    334 	pg->pg_session = sess;
    335 	sess->s_count = 1;
    336 	sess->s_sid = 0;
    337 	sess->s_leader = p;
    338 
    339 	/*
    340 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
    341 	 * init(8) when they exit.  init(8) can easily wait them out
    342 	 * for us.
    343 	 */
    344 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
    345 	p->p_stat = SACTIVE;
    346 	p->p_nice = NZERO;
    347 	p->p_emul = &emul_netbsd;
    348 #ifdef __HAVE_SYSCALL_INTERN
    349 	(*p->p_emul->e_syscall_intern)(p);
    350 #endif
    351 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
    352 
    353 #ifdef MULTIPROCESSOR
    354 	l->l_mutex = &lwp_mutex;
    355 #else
    356 	l->l_mutex = &sched_mutex;
    357 #endif
    358 	l->l_flag = L_INMEM | L_SYSTEM;
    359 	l->l_stat = LSONPROC;
    360 	l->l_ts = &turnstile0;
    361 	l->l_syncobj = &sched_syncobj;
    362 	l->l_refcnt = 1;
    363 
    364 	callout_init(&l->l_tsleep_ch);
    365 
    366 	/* Create credentials. */
    367 	cred0 = kauth_cred_alloc();
    368 	p->p_cred = cred0;
    369 	kauth_cred_hold(cred0);
    370 	l->l_cred = cred0;
    371 
    372 	/* Create the CWD info. */
    373 	p->p_cwdi = &cwdi0;
    374 	cwdi0.cwdi_cmask = cmask;
    375 	cwdi0.cwdi_refcnt = 1;
    376 	simple_lock_init(&cwdi0.cwdi_slock);
    377 
    378 	/* Create the limits structures. */
    379 	p->p_limit = &limit0;
    380 	simple_lock_init(&limit0.p_slock);
    381 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
    382 		limit0.pl_rlimit[i].rlim_cur =
    383 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
    384 
    385 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
    386 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
    387 	    maxfiles < nofile ? maxfiles : nofile;
    388 
    389 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
    390 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
    391 	    maxproc < maxuprc ? maxproc : maxuprc;
    392 
    393 	lim = ptoa(uvmexp.free);
    394 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
    395 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
    396 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
    397 	limit0.pl_corename = defcorename;
    398 	limit0.p_refcnt = 1;
    399 
    400 	/* Configure virtual memory system, set vm rlimits. */
    401 	uvm_init_limits(p);
    402 
    403 	/* Initialize file descriptor table for proc0. */
    404 	p->p_fd = &filedesc0.fd_fd;
    405 	fdinit1(&filedesc0);
    406 
    407 	/*
    408 	 * Initialize proc0's vmspace, which uses the kernel pmap.
    409 	 * All kernel processes (which never have user space mappings)
    410 	 * share proc0's vmspace, and thus, the kernel pmap.
    411 	 */
    412 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
    413 	    trunc_page(VM_MAX_ADDRESS));
    414 	p->p_vmspace = &vmspace0;
    415 
    416 	l->l_addr = proc0paddr;				/* XXX */
    417 
    418 	p->p_stats = &pstat0;
    419 
    420 	/* Initialize signal state for proc0. */
    421 	p->p_sigacts = &sigacts0;
    422 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
    423 	siginit(p);
    424 }
    425 
    426 /*
    427  * Check that the specified process group is in the session of the
    428  * specified process.
    429  * Treats -ve ids as process ids.
    430  * Used to validate TIOCSPGRP requests.
    431  */
    432 int
    433 pgid_in_session(struct proc *p, pid_t pg_id)
    434 {
    435 	struct pgrp *pgrp;
    436 
    437 	if (pg_id < 0) {
    438 		struct proc *p1 = pfind(-pg_id);
    439 		if (p1 == NULL)
    440 			return EINVAL;
    441 		pgrp = p1->p_pgrp;
    442 	} else {
    443 		pgrp = pgfind(pg_id);
    444 		if (pgrp == NULL)
    445 			return EINVAL;
    446 	}
    447 	if (pgrp->pg_session != p->p_pgrp->pg_session)
    448 		return EPERM;
    449 	return 0;
    450 }
    451 
    452 /*
    453  * Is p an inferior of q?
    454  *
    455  * Call with the proclist_lock held.
    456  */
    457 int
    458 inferior(struct proc *p, struct proc *q)
    459 {
    460 
    461 	for (; p != q; p = p->p_pptr)
    462 		if (p->p_pid == 0)
    463 			return 0;
    464 	return 1;
    465 }
    466 
    467 /*
    468  * Locate a process by number
    469  */
    470 struct proc *
    471 p_find(pid_t pid, uint flags)
    472 {
    473 	struct proc *p;
    474 	char stat;
    475 
    476 	if (!(flags & PFIND_LOCKED))
    477 		rw_enter(&proclist_lock, RW_READER);
    478 
    479 	p = pid_table[pid & pid_tbl_mask].pt_proc;
    480 	/* Only allow live processes to be found by pid. */
    481 	if (P_VALID(p) && p->p_pid == pid &&
    482 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
    483 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
    484 		if (flags & PFIND_UNLOCK_OK)
    485 			 rw_exit(&proclist_lock);
    486 		return p;
    487 	}
    488 	if (flags & PFIND_UNLOCK_FAIL)
    489 		 rw_exit(&proclist_lock);
    490 	return NULL;
    491 }
    492 
    493 
    494 /*
    495  * Locate a process group by number
    496  */
    497 struct pgrp *
    498 pg_find(pid_t pgid, uint flags)
    499 {
    500 	struct pgrp *pg;
    501 
    502 	if (!(flags & PFIND_LOCKED))
    503 		rw_enter(&proclist_lock, RW_READER);
    504 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    505 	/*
    506 	 * Can't look up a pgrp that only exists because the session
    507 	 * hasn't died yet (traditional)
    508 	 */
    509 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
    510 		if (flags & PFIND_UNLOCK_FAIL)
    511 			 rw_exit(&proclist_lock);
    512 		return NULL;
    513 	}
    514 
    515 	if (flags & PFIND_UNLOCK_OK)
    516 		rw_exit(&proclist_lock);
    517 	return pg;
    518 }
    519 
    520 static void
    521 expand_pid_table(void)
    522 {
    523 	uint pt_size = pid_tbl_mask + 1;
    524 	struct pid_table *n_pt, *new_pt;
    525 	struct proc *proc;
    526 	struct pgrp *pgrp;
    527 	int i;
    528 	pid_t pid;
    529 
    530 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
    531 
    532 	rw_enter(&proclist_lock, RW_WRITER);
    533 	if (pt_size != pid_tbl_mask + 1) {
    534 		/* Another process beat us to it... */
    535 		rw_exit(&proclist_lock);
    536 		FREE(new_pt, M_PROC);
    537 		return;
    538 	}
    539 
    540 	/*
    541 	 * Copy entries from old table into new one.
    542 	 * If 'pid' is 'odd' we need to place in the upper half,
    543 	 * even pid's to the lower half.
    544 	 * Free items stay in the low half so we don't have to
    545 	 * fixup the reference to them.
    546 	 * We stuff free items on the front of the freelist
    547 	 * because we can't write to unmodified entries.
    548 	 * Processing the table backwards maintains a semblance
    549 	 * of issueing pid numbers that increase with time.
    550 	 */
    551 	i = pt_size - 1;
    552 	n_pt = new_pt + i;
    553 	for (; ; i--, n_pt--) {
    554 		proc = pid_table[i].pt_proc;
    555 		pgrp = pid_table[i].pt_pgrp;
    556 		if (!P_VALID(proc)) {
    557 			/* Up 'use count' so that link is valid */
    558 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
    559 			proc = P_FREE(pid);
    560 			if (pgrp)
    561 				pid = pgrp->pg_id;
    562 		} else
    563 			pid = proc->p_pid;
    564 
    565 		/* Save entry in appropriate half of table */
    566 		n_pt[pid & pt_size].pt_proc = proc;
    567 		n_pt[pid & pt_size].pt_pgrp = pgrp;
    568 
    569 		/* Put other piece on start of free list */
    570 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
    571 		n_pt[pid & pt_size].pt_proc =
    572 				    P_FREE((pid & ~pt_size) | next_free_pt);
    573 		n_pt[pid & pt_size].pt_pgrp = 0;
    574 		next_free_pt = i | (pid & pt_size);
    575 		if (i == 0)
    576 			break;
    577 	}
    578 
    579 	/* Switch tables */
    580 	mutex_enter(&proclist_mutex);
    581 	n_pt = pid_table;
    582 	pid_table = new_pt;
    583 	mutex_exit(&proclist_mutex);
    584 	pid_tbl_mask = pt_size * 2 - 1;
    585 
    586 	/*
    587 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
    588 	 * allocated pids we need it to be larger!
    589 	 */
    590 	if (pid_tbl_mask > PID_MAX) {
    591 		pid_max = pid_tbl_mask * 2 + 1;
    592 		pid_alloc_lim |= pid_alloc_lim << 1;
    593 	} else
    594 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
    595 
    596 	rw_exit(&proclist_lock);
    597 	FREE(n_pt, M_PROC);
    598 }
    599 
    600 struct proc *
    601 proc_alloc(void)
    602 {
    603 	struct proc *p;
    604 	int nxt;
    605 	pid_t pid;
    606 	struct pid_table *pt;
    607 
    608 	p = pool_get(&proc_pool, PR_WAITOK);
    609 	p->p_stat = SIDL;			/* protect against others */
    610 
    611 	/* allocate next free pid */
    612 
    613 	for (;;expand_pid_table()) {
    614 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
    615 			/* ensure pids cycle through 2000+ values */
    616 			continue;
    617 		rw_enter(&proclist_lock, RW_WRITER);
    618 		pt = &pid_table[next_free_pt];
    619 #ifdef DIAGNOSTIC
    620 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
    621 			panic("proc_alloc: slot busy");
    622 #endif
    623 		nxt = P_NEXT(pt->pt_proc);
    624 		if (nxt & pid_tbl_mask)
    625 			break;
    626 		/* Table full - expand (NB last entry not used....) */
    627 		rw_exit(&proclist_lock);
    628 	}
    629 
    630 	/* pid is 'saved use count' + 'size' + entry */
    631 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
    632 	if ((uint)pid > (uint)pid_max)
    633 		pid &= pid_tbl_mask;
    634 	p->p_pid = pid;
    635 	next_free_pt = nxt & pid_tbl_mask;
    636 
    637 	/* Grab table slot */
    638 	mutex_enter(&proclist_mutex);
    639 	pt->pt_proc = p;
    640 	mutex_exit(&proclist_mutex);
    641 	pid_alloc_cnt++;
    642 
    643 	rw_exit(&proclist_lock);
    644 
    645 	return p;
    646 }
    647 
    648 /*
    649  * Free last resources of a process - called from proc_free (in kern_exit.c)
    650  *
    651  * Called with the proclist_lock write held, and releases upon exit.
    652  */
    653 void
    654 proc_free_mem(struct proc *p)
    655 {
    656 	pid_t pid = p->p_pid;
    657 	struct pid_table *pt;
    658 
    659 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    660 
    661 	pt = &pid_table[pid & pid_tbl_mask];
    662 #ifdef DIAGNOSTIC
    663 	if (__predict_false(pt->pt_proc != p))
    664 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
    665 			pid, p);
    666 #endif
    667 	mutex_enter(&proclist_mutex);
    668 	/* save pid use count in slot */
    669 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
    670 
    671 	if (pt->pt_pgrp == NULL) {
    672 		/* link last freed entry onto ours */
    673 		pid &= pid_tbl_mask;
    674 		pt = &pid_table[last_free_pt];
    675 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
    676 		last_free_pt = pid;
    677 		pid_alloc_cnt--;
    678 	}
    679 	mutex_exit(&proclist_mutex);
    680 
    681 	nprocs--;
    682 	rw_exit(&proclist_lock);
    683 
    684 	pool_put(&proc_pool, p);
    685 }
    686 
    687 /*
    688  * Move p to a new or existing process group (and session)
    689  *
    690  * If we are creating a new pgrp, the pgid should equal
    691  * the calling process' pid.
    692  * If is only valid to enter a process group that is in the session
    693  * of the process.
    694  * Also mksess should only be set if we are creating a process group
    695  *
    696  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
    697  * SYSV setpgrp support for hpux.
    698  */
    699 int
    700 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
    701 {
    702 	struct pgrp *new_pgrp, *pgrp;
    703 	struct session *sess;
    704 	struct proc *p;
    705 	int rval;
    706 	pid_t pg_id = NO_PGID;
    707 
    708 	/* Allocate data areas we might need before doing any validity checks */
    709 	rw_enter(&proclist_lock, RW_READER);		/* Because pid_table might change */
    710 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
    711 		rw_exit(&proclist_lock);
    712 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
    713 	} else {
    714 		rw_exit(&proclist_lock);
    715 		new_pgrp = NULL;
    716 	}
    717 	if (mksess)
    718 		sess = pool_get(&session_pool, M_WAITOK);
    719 	else
    720 		sess = NULL;
    721 
    722 	rw_enter(&proclist_lock, RW_WRITER);
    723 	rval = EPERM;	/* most common error (to save typing) */
    724 
    725 	/* Check pgrp exists or can be created */
    726 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
    727 	if (pgrp != NULL && pgrp->pg_id != pgid)
    728 		goto done;
    729 
    730 	/* Can only set another process under restricted circumstances. */
    731 	if (pid != curp->p_pid) {
    732 		/* must exist and be one of our children... */
    733 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
    734 		    !inferior(p, curp)) {
    735 			rval = ESRCH;
    736 			goto done;
    737 		}
    738 		/* ... in the same session... */
    739 		if (sess != NULL || p->p_session != curp->p_session)
    740 			goto done;
    741 		/* ... existing pgid must be in same session ... */
    742 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
    743 			goto done;
    744 		/* ... and not done an exec. */
    745 		if (p->p_flag & P_EXEC) {
    746 			rval = EACCES;
    747 			goto done;
    748 		}
    749 	} else {
    750 		/* ... setsid() cannot re-enter a pgrp */
    751 		if (mksess && (curp->p_pgid == curp->p_pid ||
    752 		    pg_find(curp->p_pid, PFIND_LOCKED)))
    753 			goto done;
    754 		p = curp;
    755 	}
    756 
    757 	/* Changing the process group/session of a session
    758 	   leader is definitely off limits. */
    759 	if (SESS_LEADER(p)) {
    760 		if (sess == NULL && p->p_pgrp == pgrp)
    761 			/* unless it's a definite noop */
    762 			rval = 0;
    763 		goto done;
    764 	}
    765 
    766 	/* Can only create a process group with id of process */
    767 	if (pgrp == NULL && pgid != pid)
    768 		goto done;
    769 
    770 	/* Can only create a session if creating pgrp */
    771 	if (sess != NULL && pgrp != NULL)
    772 		goto done;
    773 
    774 	/* Check we allocated memory for a pgrp... */
    775 	if (pgrp == NULL && new_pgrp == NULL)
    776 		goto done;
    777 
    778 	/* Don't attach to 'zombie' pgrp */
    779 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
    780 		goto done;
    781 
    782 	/* Expect to succeed now */
    783 	rval = 0;
    784 
    785 	if (pgrp == p->p_pgrp)
    786 		/* nothing to do */
    787 		goto done;
    788 
    789 	/* Ok all setup, link up required structures */
    790 
    791 	if (pgrp == NULL) {
    792 		pgrp = new_pgrp;
    793 		new_pgrp = 0;
    794 		if (sess != NULL) {
    795 			sess->s_sid = p->p_pid;
    796 			sess->s_leader = p;
    797 			sess->s_count = 1;
    798 			sess->s_ttyvp = NULL;
    799 			sess->s_ttyp = NULL;
    800 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
    801 			memcpy(sess->s_login, p->p_session->s_login,
    802 			    sizeof(sess->s_login));
    803 			p->p_lflag &= ~PL_CONTROLT;
    804 		} else {
    805 			sess = p->p_pgrp->pg_session;
    806 			SESSHOLD(sess);
    807 		}
    808 		pgrp->pg_session = sess;
    809 		sess = 0;
    810 
    811 		pgrp->pg_id = pgid;
    812 		LIST_INIT(&pgrp->pg_members);
    813 #ifdef DIAGNOSTIC
    814 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
    815 			panic("enterpgrp: pgrp table slot in use");
    816 		if (__predict_false(mksess && p != curp))
    817 			panic("enterpgrp: mksession and p != curproc");
    818 #endif
    819 		mutex_enter(&proclist_mutex);
    820 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
    821 		pgrp->pg_jobc = 0;
    822 	} else
    823 		mutex_enter(&proclist_mutex);
    824 
    825 #ifdef notyet
    826 	/*
    827 	 * If there's a controlling terminal for the current session, we
    828 	 * have to interlock with it.  See ttread().
    829 	 */
    830 	if (p->p_session->s_ttyvp != NULL) {
    831 		tp = p->p_session->s_ttyp;
    832 		mutex_enter(&tp->t_mutex);
    833 	} else
    834 		tp = NULL;
    835 #endif
    836 
    837 	/*
    838 	 * Adjust eligibility of affected pgrps to participate in job control.
    839 	 * Increment eligibility counts before decrementing, otherwise we
    840 	 * could reach 0 spuriously during the first call.
    841 	 */
    842 	fixjobc(p, pgrp, 1);
    843 	fixjobc(p, p->p_pgrp, 0);
    844 
    845 	/* Move process to requested group. */
    846 	LIST_REMOVE(p, p_pglist);
    847 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
    848 		/* defer delete until we've dumped the lock */
    849 		pg_id = p->p_pgrp->pg_id;
    850 	p->p_pgrp = pgrp;
    851 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
    852 	mutex_exit(&proclist_mutex);
    853 
    854 #ifdef notyet
    855 	/* Done with the swap; we can release the tty mutex. */
    856 	if (tp != NULL)
    857 		mutex_exit(&tp->t_mutex);
    858 #endif
    859 
    860     done:
    861 	if (pg_id != NO_PGID)
    862 		pg_delete(pg_id);
    863 	rw_exit(&proclist_lock);
    864 	if (sess != NULL)
    865 		pool_put(&session_pool, sess);
    866 	if (new_pgrp != NULL)
    867 		pool_put(&pgrp_pool, new_pgrp);
    868 #ifdef DEBUG_PGRP
    869 	if (__predict_false(rval))
    870 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
    871 			pid, pgid, mksess, curp->p_pid, rval);
    872 #endif
    873 	return rval;
    874 }
    875 
    876 /*
    877  * Remove a process from its process group.  Must be called with the
    878  * proclist_lock write held.
    879  */
    880 void
    881 leavepgrp(struct proc *p)
    882 {
    883 	struct pgrp *pgrp;
    884 
    885 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    886 
    887 	/*
    888 	 * If there's a controlling terminal for the session, we have to
    889 	 * interlock with it.  See ttread().
    890 	 */
    891 	mutex_enter(&proclist_mutex);
    892 #ifdef notyet
    893 	if (p_>p_session->s_ttyvp != NULL) {
    894 		tp = p->p_session->s_ttyp;
    895 		mutex_enter(&tp->t_mutex);
    896 	} else
    897 		tp = NULL;
    898 #endif
    899 
    900 	pgrp = p->p_pgrp;
    901 	LIST_REMOVE(p, p_pglist);
    902 	p->p_pgrp = NULL;
    903 
    904 #ifdef notyet
    905 	if (tp != NULL)
    906 		mutex_exit(&tp->t_mutex);
    907 #endif
    908 	mutex_exit(&proclist_mutex);
    909 
    910 	if (LIST_EMPTY(&pgrp->pg_members))
    911 		pg_delete(pgrp->pg_id);
    912 }
    913 
    914 /*
    915  * Free a process group.  Must be called with the proclist_lock write held.
    916  */
    917 static void
    918 pg_free(pid_t pg_id)
    919 {
    920 	struct pgrp *pgrp;
    921 	struct pid_table *pt;
    922 
    923 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    924 
    925 	pt = &pid_table[pg_id & pid_tbl_mask];
    926 	pgrp = pt->pt_pgrp;
    927 #ifdef DIAGNOSTIC
    928 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
    929 	    || !LIST_EMPTY(&pgrp->pg_members)))
    930 		panic("pg_free: process group absent or has members");
    931 #endif
    932 	pt->pt_pgrp = 0;
    933 
    934 	if (!P_VALID(pt->pt_proc)) {
    935 		/* orphaned pgrp, put slot onto free list */
    936 #ifdef DIAGNOSTIC
    937 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
    938 			panic("pg_free: process slot on free list");
    939 #endif
    940 		mutex_enter(&proclist_mutex);
    941 		pg_id &= pid_tbl_mask;
    942 		pt = &pid_table[last_free_pt];
    943 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
    944 		mutex_exit(&proclist_mutex);
    945 		last_free_pt = pg_id;
    946 		pid_alloc_cnt--;
    947 	}
    948 	pool_put(&pgrp_pool, pgrp);
    949 }
    950 
    951 /*
    952  * Delete a process group.  Must be called with the proclist_lock write
    953  * held.
    954  */
    955 static void
    956 pg_delete(pid_t pg_id)
    957 {
    958 	struct pgrp *pgrp;
    959 	struct tty *ttyp;
    960 	struct session *ss;
    961 	int is_pgrp_leader;
    962 
    963 	LOCK_ASSERT(rw_write_held(&proclist_lock));
    964 
    965 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
    966 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
    967 	    !LIST_EMPTY(&pgrp->pg_members))
    968 		return;
    969 
    970 	ss = pgrp->pg_session;
    971 
    972 	/* Remove reference (if any) from tty to this process group */
    973 	ttyp = ss->s_ttyp;
    974 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
    975 		ttyp->t_pgrp = NULL;
    976 #ifdef DIAGNOSTIC
    977 		if (ttyp->t_session != ss)
    978 			panic("pg_delete: wrong session on terminal");
    979 #endif
    980 	}
    981 
    982 	/*
    983 	 * The leading process group in a session is freed
    984 	 * by sessdelete() if last reference.
    985 	 */
    986 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
    987 	SESSRELE(ss);
    988 
    989 	if (is_pgrp_leader)
    990 		return;
    991 
    992 	pg_free(pg_id);
    993 }
    994 
    995 /*
    996  * Delete session - called from SESSRELE when s_count becomes zero.
    997  * Must be called with the proclist_lock write held.
    998  */
    999 void
   1000 sessdelete(struct session *ss)
   1001 {
   1002 
   1003 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1004 
   1005 	/*
   1006 	 * We keep the pgrp with the same id as the session in
   1007 	 * order to stop a process being given the same pid.
   1008 	 * Since the pgrp holds a reference to the session, it
   1009 	 * must be a 'zombie' pgrp by now.
   1010 	 */
   1011 	pg_free(ss->s_sid);
   1012 	pool_put(&session_pool, ss);
   1013 }
   1014 
   1015 /*
   1016  * Adjust pgrp jobc counters when specified process changes process group.
   1017  * We count the number of processes in each process group that "qualify"
   1018  * the group for terminal job control (those with a parent in a different
   1019  * process group of the same session).  If that count reaches zero, the
   1020  * process group becomes orphaned.  Check both the specified process'
   1021  * process group and that of its children.
   1022  * entering == 0 => p is leaving specified group.
   1023  * entering == 1 => p is entering specified group.
   1024  *
   1025  * Call with proclist_lock write held.
   1026  */
   1027 void
   1028 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
   1029 {
   1030 	struct pgrp *hispgrp;
   1031 	struct session *mysession = pgrp->pg_session;
   1032 	struct proc *child;
   1033 
   1034 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1035 
   1036 	/*
   1037 	 * Check p's parent to see whether p qualifies its own process
   1038 	 * group; if so, adjust count for p's process group.
   1039 	 */
   1040 	hispgrp = p->p_pptr->p_pgrp;
   1041 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
   1042 		if (entering) {
   1043 			mutex_enter(&p->p_smutex);
   1044 			p->p_sflag &= ~PS_ORPHANPG;
   1045 			mutex_exit(&p->p_smutex);
   1046 			pgrp->pg_jobc++;
   1047 		} else if (--pgrp->pg_jobc == 0)
   1048 			orphanpg(pgrp);
   1049 	}
   1050 
   1051 	/*
   1052 	 * Check this process' children to see whether they qualify
   1053 	 * their process groups; if so, adjust counts for children's
   1054 	 * process groups.
   1055 	 */
   1056 	LIST_FOREACH(child, &p->p_children, p_sibling) {
   1057 		hispgrp = child->p_pgrp;
   1058 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
   1059 		    !P_ZOMBIE(child)) {
   1060 			if (entering) {
   1061 				mutex_enter(&child->p_smutex);
   1062 				child->p_sflag &= ~PS_ORPHANPG;
   1063 				mutex_exit(&child->p_smutex);
   1064 				hispgrp->pg_jobc++;
   1065 			} else if (--hispgrp->pg_jobc == 0)
   1066 				orphanpg(hispgrp);
   1067 		}
   1068 	}
   1069 }
   1070 
   1071 /*
   1072  * A process group has become orphaned;
   1073  * if there are any stopped processes in the group,
   1074  * hang-up all process in that group.
   1075  *
   1076  * Call with proclist_lock write held.
   1077  */
   1078 static void
   1079 orphanpg(struct pgrp *pg)
   1080 {
   1081 	struct proc *p;
   1082 	int doit;
   1083 
   1084 	LOCK_ASSERT(rw_write_held(&proclist_lock));
   1085 
   1086 	doit = 0;
   1087 
   1088 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1089 		mutex_enter(&p->p_smutex);
   1090 		if (p->p_stat == SSTOP) {
   1091 			doit = 1;
   1092 			p->p_sflag |= PS_ORPHANPG;
   1093 		}
   1094 		mutex_exit(&p->p_smutex);
   1095 	}
   1096 
   1097 	if (doit) {
   1098 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
   1099 			psignal(p, SIGHUP);
   1100 			psignal(p, SIGCONT);
   1101 		}
   1102 	}
   1103 }
   1104 
   1105 /* mark process as suid/sgid, reset some values to defaults */
   1106 void
   1107 p_sugid(struct proc *p)
   1108 {
   1109 	struct plimit *lim;
   1110 	char *cn;
   1111 
   1112 	p->p_flag |= P_SUGID;
   1113 	/* reset what needs to be reset in plimit */
   1114 	lim = p->p_limit;
   1115 	if (lim->pl_corename != defcorename) {
   1116 		if (lim->p_refcnt > 1 &&
   1117 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
   1118 			p->p_limit = limcopy(lim);
   1119 			limfree(lim);
   1120 			lim = p->p_limit;
   1121 		}
   1122 		simple_lock(&lim->p_slock);
   1123 		cn = lim->pl_corename;
   1124 		lim->pl_corename = defcorename;
   1125 		simple_unlock(&lim->p_slock);
   1126 		if (cn != defcorename)
   1127 			free(cn, M_TEMP);
   1128 	}
   1129 }
   1130 
   1131 #ifdef DDB
   1132 #include <ddb/db_output.h>
   1133 void pidtbl_dump(void);
   1134 void
   1135 pidtbl_dump(void)
   1136 {
   1137 	struct pid_table *pt;
   1138 	struct proc *p;
   1139 	struct pgrp *pgrp;
   1140 	int id;
   1141 
   1142 	db_printf("pid table %p size %x, next %x, last %x\n",
   1143 		pid_table, pid_tbl_mask+1,
   1144 		next_free_pt, last_free_pt);
   1145 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
   1146 		p = pt->pt_proc;
   1147 		if (!P_VALID(p) && !pt->pt_pgrp)
   1148 			continue;
   1149 		db_printf("  id %x: ", id);
   1150 		if (P_VALID(p))
   1151 			db_printf("proc %p id %d (0x%x) %s\n",
   1152 				p, p->p_pid, p->p_pid, p->p_comm);
   1153 		else
   1154 			db_printf("next %x use %x\n",
   1155 				P_NEXT(p) & pid_tbl_mask,
   1156 				P_NEXT(p) & ~pid_tbl_mask);
   1157 		if ((pgrp = pt->pt_pgrp)) {
   1158 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
   1159 			    pgrp->pg_session, pgrp->pg_session->s_sid,
   1160 			    pgrp->pg_session->s_count,
   1161 			    pgrp->pg_session->s_login);
   1162 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
   1163 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
   1164 			    pgrp->pg_members.lh_first);
   1165 			for (p = pgrp->pg_members.lh_first; p != 0;
   1166 			    p = p->p_pglist.le_next) {
   1167 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
   1168 				    p->p_pid, p, p->p_pgrp, p->p_comm);
   1169 			}
   1170 		}
   1171 	}
   1172 }
   1173 #endif /* DDB */
   1174 
   1175 #ifdef KSTACK_CHECK_MAGIC
   1176 #include <sys/user.h>
   1177 
   1178 #define	KSTACK_MAGIC	0xdeadbeaf
   1179 
   1180 /* XXX should be per process basis? */
   1181 int kstackleftmin = KSTACK_SIZE;
   1182 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
   1183 					  less than this */
   1184 
   1185 void
   1186 kstack_setup_magic(const struct lwp *l)
   1187 {
   1188 	uint32_t *ip;
   1189 	uint32_t const *end;
   1190 
   1191 	KASSERT(l != NULL);
   1192 	KASSERT(l != &lwp0);
   1193 
   1194 	/*
   1195 	 * fill all the stack with magic number
   1196 	 * so that later modification on it can be detected.
   1197 	 */
   1198 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1199 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1200 	for (; ip < end; ip++) {
   1201 		*ip = KSTACK_MAGIC;
   1202 	}
   1203 }
   1204 
   1205 void
   1206 kstack_check_magic(const struct lwp *l)
   1207 {
   1208 	uint32_t const *ip, *end;
   1209 	int stackleft;
   1210 
   1211 	KASSERT(l != NULL);
   1212 
   1213 	/* don't check proc0 */ /*XXX*/
   1214 	if (l == &lwp0)
   1215 		return;
   1216 
   1217 #ifdef __MACHINE_STACK_GROWS_UP
   1218 	/* stack grows upwards (eg. hppa) */
   1219 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1220 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1221 	for (ip--; ip >= end; ip--)
   1222 		if (*ip != KSTACK_MAGIC)
   1223 			break;
   1224 
   1225 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
   1226 #else /* __MACHINE_STACK_GROWS_UP */
   1227 	/* stack grows downwards (eg. i386) */
   1228 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
   1229 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
   1230 	for (; ip < end; ip++)
   1231 		if (*ip != KSTACK_MAGIC)
   1232 			break;
   1233 
   1234 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
   1235 #endif /* __MACHINE_STACK_GROWS_UP */
   1236 
   1237 	if (kstackleftmin > stackleft) {
   1238 		kstackleftmin = stackleft;
   1239 		if (stackleft < kstackleftthres)
   1240 			printf("warning: kernel stack left %d bytes"
   1241 			    "(pid %u:lid %u)\n", stackleft,
   1242 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1243 	}
   1244 
   1245 	if (stackleft <= 0) {
   1246 		panic("magic on the top of kernel stack changed for "
   1247 		    "pid %u, lid %u: maybe kernel stack overflow",
   1248 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
   1249 	}
   1250 }
   1251 #endif /* KSTACK_CHECK_MAGIC */
   1252 
   1253 /*
   1254  * XXXSMP this is bust, it grabs a read lock and then messes about
   1255  * with allproc.
   1256  */
   1257 int
   1258 proclist_foreach_call(struct proclist *list,
   1259     int (*callback)(struct proc *, void *arg), void *arg)
   1260 {
   1261 	struct proc marker;
   1262 	struct proc *p;
   1263 	struct lwp * const l = curlwp;
   1264 	int ret = 0;
   1265 
   1266 	marker.p_flag = P_MARKER;
   1267 	PHOLD(l);
   1268 	rw_enter(&proclist_lock, RW_READER);
   1269 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
   1270 		if (p->p_flag & P_MARKER) {
   1271 			p = LIST_NEXT(p, p_list);
   1272 			continue;
   1273 		}
   1274 		LIST_INSERT_AFTER(p, &marker, p_list);
   1275 		ret = (*callback)(p, arg);
   1276 		KASSERT(rw_read_held(&proclist_lock));
   1277 		p = LIST_NEXT(&marker, p_list);
   1278 		LIST_REMOVE(&marker, p_list);
   1279 	}
   1280 	rw_exit(&proclist_lock);
   1281 	PRELE(l);
   1282 
   1283 	return ret;
   1284 }
   1285 
   1286 int
   1287 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
   1288 {
   1289 
   1290 	/* XXXCDC: how should locking work here? */
   1291 
   1292 	/* curproc exception is for coredump. */
   1293 
   1294 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
   1295 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
   1296 		return EFAULT;
   1297 	}
   1298 
   1299 	uvmspace_addref(p->p_vmspace);
   1300 	*vm = p->p_vmspace;
   1301 
   1302 	return 0;
   1303 }
   1304 
   1305 /*
   1306  * Acquire a write lock on the process credential.
   1307  */
   1308 void
   1309 proc_crmod_enter(void)
   1310 {
   1311 	struct lwp *l = curlwp;
   1312 	struct proc *p = l->l_proc;
   1313 	kauth_cred_t oc;
   1314 
   1315 	mutex_enter(&p->p_mutex);
   1316 
   1317 	/* Ensure the LWP cached credentials are up to date. */
   1318 	if ((oc = l->l_cred) != p->p_cred) {
   1319 		kauth_cred_hold(p->p_cred);
   1320 		l->l_cred = p->p_cred;
   1321 		kauth_cred_free(oc);
   1322 	}
   1323 }
   1324 
   1325 /*
   1326  * Set in a new process credential, and drop the write lock.  The credential
   1327  * must have a reference already.  Optionally, free a no-longer required
   1328  * credential.  The scheduler also needs to inspect p_cred, so we also
   1329  * briefly acquire the sched state mutex.
   1330  */
   1331 void
   1332 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
   1333 {
   1334 	struct lwp *l = curlwp;
   1335 	struct proc *p = l->l_proc;
   1336 	kauth_cred_t oc;
   1337 
   1338 	mutex_enter(&p->p_smutex);
   1339 	p->p_cred = scred;
   1340 	mutex_exit(&p->p_smutex);
   1341 
   1342 	/* Ensure the LWP cached credentials are up to date. */
   1343 	if ((oc = l->l_cred) != scred) {
   1344 		kauth_cred_hold(scred);
   1345 		l->l_cred = scred;
   1346 	}
   1347 
   1348 	mutex_exit(&p->p_mutex);
   1349 	kauth_cred_free(fcred);
   1350 	if (oc != scred)
   1351 		kauth_cred_free(oc);
   1352 }
   1353 
   1354 /*
   1355  * Acquire a reference on a process, to prevent it from exiting or execing.
   1356  */
   1357 int
   1358 proc_addref(struct proc *p)
   1359 {
   1360 
   1361 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1362 
   1363 	if (p->p_refcnt <= 0)
   1364 		return EAGAIN;
   1365 	p->p_refcnt++;
   1366 
   1367 	return 0;
   1368 }
   1369 
   1370 /*
   1371  * Release a reference on a process.
   1372  */
   1373 void
   1374 proc_delref(struct proc *p)
   1375 {
   1376 
   1377 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1378 
   1379 	if (p->p_refcnt < 0) {
   1380 		if (++p->p_refcnt == 0)
   1381 			cv_signal(&p->p_refcv);
   1382 	} else {
   1383 		p->p_refcnt--;
   1384 		KASSERT(p->p_refcnt != 0);
   1385 	}
   1386 }
   1387 
   1388 /*
   1389  * Wait for all references on the process to drain, and prevent new
   1390  * references from being acquired.
   1391  */
   1392 void
   1393 proc_drainrefs(struct proc *p)
   1394 {
   1395 
   1396 	LOCK_ASSERT(mutex_owned(&p->p_mutex));
   1397 	KASSERT(p->p_refcnt > 0);
   1398 
   1399 	/*
   1400 	 * The process itself holds the last reference.  Once it's released,
   1401 	 * no new references will be granted.  If we have already locked out
   1402 	 * new references (refcnt <= 0), potentially due to a failed exec,
   1403 	 * there is nothing more to do.
   1404 	 */
   1405 	p->p_refcnt = 1 - p->p_refcnt;
   1406 	while (p->p_refcnt != 0)
   1407 		cv_wait(&p->p_refcv, &p->p_mutex);
   1408 }
   1409