kern_proc.c revision 1.94.4.6 1 /* $NetBSD: kern_proc.c,v 1.94.4.6 2006/11/18 21:39:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.6 2006/11/18 21:39:22 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are three locks on global process state.
115 *
116 * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 * examining process state from a process context. It protects our internal
118 * tables, all of the process lists, and a number of members of struct lwp
119 * and struct proc.
120
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when we must signal processes from an interrupt
123 * context. The proclist_lock should always be used in preference.
124 *
125 * 3. alllwp_mutex protects the "alllwp" list.
126 *
127 * proclist_lock proclist_mutex alllwp_mutex structure
128 * --------------- --------------- --------------- -----------------
129 * x zombproc
130 * x x pid_table
131 * x proc::p_pptr
132 * x proc::p_sibling
133 * x proc::p_children
134 * x x allproc
135 * x x proc::p_pgrp
136 * x x proc::p_pglist
137 * x x proc::p_session
138 * x x proc::p_list
139 * x alllwp
140 * x lwp::l_list
141 *
142 * The lock order for processes and LWPs is apporoximately as following:
143 *
144 * kernel_mutex
145 * -> proclist_lock
146 * -> proclist_mutex
147 * -> proc::p_mutex
148 * -> proc::p_smutex
149 * -> alllwp_mutex
150 * -> lwp::l_mutex
151 * -> sched_mutex
152 */
153 krwlock_t proclist_lock;
154 kmutex_t proclist_mutex;
155 kmutex_t proc_stop_mutex;
156
157 /*
158 * pid to proc lookup is done by indexing the pid_table array.
159 * Since pid numbers are only allocated when an empty slot
160 * has been found, there is no need to search any lists ever.
161 * (an orphaned pgrp will lock the slot, a session will lock
162 * the pgrp with the same number.)
163 * If the table is too small it is reallocated with twice the
164 * previous size and the entries 'unzipped' into the two halves.
165 * A linked list of free entries is passed through the pt_proc
166 * field of 'free' items - set odd to be an invalid ptr.
167 */
168
169 struct pid_table {
170 struct proc *pt_proc;
171 struct pgrp *pt_pgrp;
172 };
173 #if 1 /* strongly typed cast - should be a noop */
174 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
175 #else
176 #define p2u(p) ((uint)p)
177 #endif
178 #define P_VALID(p) (!(p2u(p) & 1))
179 #define P_NEXT(p) (p2u(p) >> 1)
180 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
181
182 #define INITIAL_PID_TABLE_SIZE (1 << 5)
183 static struct pid_table *pid_table;
184 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
185 static uint pid_alloc_lim; /* max we allocate before growing table */
186 static uint pid_alloc_cnt; /* number of allocated pids */
187
188 /* links through free slots - never empty! */
189 static uint next_free_pt, last_free_pt;
190 static pid_t pid_max = PID_MAX; /* largest value we allocate */
191
192 /* Components of the first process -- never freed. */
193 struct session session0;
194 struct pgrp pgrp0;
195 struct proc proc0;
196 struct lwp lwp0 __aligned(16);
197 kauth_cred_t cred0;
198 struct filedesc0 filedesc0;
199 struct cwdinfo cwdi0;
200 struct plimit limit0;
201 struct pstats pstat0;
202 struct vmspace vmspace0;
203 struct sigacts sigacts0;
204 struct turnstile turnstile0;
205
206 extern struct user *proc0paddr;
207
208 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
209
210 int nofile = NOFILE;
211 int maxuprc = MAXUPRC;
212 int cmask = CMASK;
213
214 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
215 &pool_allocator_nointr);
216 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
217 &pool_allocator_nointr);
218 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
219 &pool_allocator_nointr);
220 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
221 &pool_allocator_nointr);
222 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
223 &pool_allocator_nointr);
224 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
225 &pool_allocator_nointr);
226
227 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
228 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
229 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
230
231 /*
232 * The process list descriptors, used during pid allocation and
233 * by sysctl. No locking on this data structure is needed since
234 * it is completely static.
235 */
236 const struct proclist_desc proclists[] = {
237 { &allproc },
238 { &zombproc },
239 { NULL },
240 };
241
242 static void orphanpg(struct pgrp *);
243 static void pg_delete(pid_t);
244
245 static specificdata_domain_t proc_specificdata_domain;
246
247 /*
248 * Initialize global process hashing structures.
249 */
250 void
251 procinit(void)
252 {
253 const struct proclist_desc *pd;
254 int i;
255 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
256
257 for (pd = proclists; pd->pd_list != NULL; pd++)
258 LIST_INIT(pd->pd_list);
259
260 rw_init(&proclist_lock);
261 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
262 mutex_init(&alllwp_mutex, MUTEX_SPIN, IPL_SCHED);
263 mutex_init(&lwp_mutex, MUTEX_SPIN, IPL_SCHED);
264 mutex_init(&proc_stop_mutex, MUTEX_SPIN, IPL_NONE);
265
266 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
267 M_PROC, M_WAITOK);
268 /* Set free list running through table...
269 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
270 for (i = 0; i <= pid_tbl_mask; i++) {
271 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
272 pid_table[i].pt_pgrp = 0;
273 }
274 /* slot 0 is just grabbed */
275 next_free_pt = 1;
276 /* Need to fix last entry. */
277 last_free_pt = pid_tbl_mask;
278 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
279 /* point at which we grow table - to avoid reusing pids too often */
280 pid_alloc_lim = pid_tbl_mask - 1;
281 #undef LINK_EMPTY
282
283 LIST_INIT(&alllwp);
284
285 uihashtbl =
286 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
287
288 proc_specificdata_domain = specificdata_domain_create();
289 KASSERT(proc_specificdata_domain != NULL);
290 }
291
292 /*
293 * Initialize process 0.
294 */
295 void
296 proc0_init(void)
297 {
298 struct proc *p;
299 struct pgrp *pg;
300 struct session *sess;
301 struct lwp *l;
302 u_int i;
303 rlim_t lim;
304
305 p = &proc0;
306 pg = &pgrp0;
307 sess = &session0;
308 l = &lwp0;
309
310 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
311 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
312 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
313 cv_init(&p->p_refcv, "drainref");
314 cv_init(&p->p_waitcv, "wait");
315
316 LIST_INIT(&p->p_lwps);
317 LIST_INIT(&p->p_sigwaiters);
318 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
319
320 p->p_nlwps = 1;
321 p->p_nrlwps = 1;
322 p->p_refcnt = 1;
323
324 pid_table[0].pt_proc = p;
325 LIST_INSERT_HEAD(&allproc, p, p_list);
326 LIST_INSERT_HEAD(&alllwp, l, l_list);
327
328 p->p_pgrp = pg;
329 pid_table[0].pt_pgrp = pg;
330 LIST_INIT(&pg->pg_members);
331 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
332
333 pg->pg_session = sess;
334 sess->s_count = 1;
335 sess->s_sid = 0;
336 sess->s_leader = p;
337
338 /*
339 * Set P_NOCLDWAIT so that kernel threads are reparented to
340 * init(8) when they exit. init(8) can easily wait them out
341 * for us.
342 */
343 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
344 p->p_stat = SACTIVE;
345 p->p_nice = NZERO;
346 p->p_emul = &emul_netbsd;
347 #ifdef __HAVE_SYSCALL_INTERN
348 (*p->p_emul->e_syscall_intern)(p);
349 #endif
350 strncpy(p->p_comm, "swapper", MAXCOMLEN);
351
352 #ifdef MULTIPROCESSOR
353 l->l_mutex = &lwp_mutex;
354 #else
355 l->l_mutex = &sched_mutex;
356 #endif
357 l->l_flag = L_INMEM | L_SYSTEM;
358 l->l_stat = LSONPROC;
359 l->l_ts = &turnstile0;
360 l->l_syncobj = &sched_syncobj;
361 l->l_refcnt = 1;
362
363 callout_init(&l->l_tsleep_ch);
364
365 /* Create credentials. */
366 cred0 = kauth_cred_alloc();
367 p->p_cred = cred0;
368 kauth_cred_hold(cred0);
369 l->l_cred = cred0;
370
371 /* Create the CWD info. */
372 p->p_cwdi = &cwdi0;
373 cwdi0.cwdi_cmask = cmask;
374 cwdi0.cwdi_refcnt = 1;
375 simple_lock_init(&cwdi0.cwdi_slock);
376
377 /* Create the limits structures. */
378 p->p_limit = &limit0;
379 simple_lock_init(&limit0.p_slock);
380 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
381 limit0.pl_rlimit[i].rlim_cur =
382 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
383
384 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
385 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
386 maxfiles < nofile ? maxfiles : nofile;
387
388 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
389 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
390 maxproc < maxuprc ? maxproc : maxuprc;
391
392 lim = ptoa(uvmexp.free);
393 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
394 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
395 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
396 limit0.pl_corename = defcorename;
397 limit0.p_refcnt = 1;
398
399 /* Configure virtual memory system, set vm rlimits. */
400 uvm_init_limits(p);
401
402 /* Initialize file descriptor table for proc0. */
403 p->p_fd = &filedesc0.fd_fd;
404 fdinit1(&filedesc0);
405
406 /*
407 * Initialize proc0's vmspace, which uses the kernel pmap.
408 * All kernel processes (which never have user space mappings)
409 * share proc0's vmspace, and thus, the kernel pmap.
410 */
411 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
412 trunc_page(VM_MAX_ADDRESS));
413 p->p_vmspace = &vmspace0;
414
415 l->l_addr = proc0paddr; /* XXX */
416
417 p->p_stats = &pstat0;
418
419 /* Initialize signal state for proc0. */
420 p->p_sigacts = &sigacts0;
421 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
422 siginit(p);
423
424 proc_initspecific(p);
425 lwp_initspecific(l);
426 }
427
428 /*
429 * Check that the specified process group is in the session of the
430 * specified process.
431 * Treats -ve ids as process ids.
432 * Used to validate TIOCSPGRP requests.
433 */
434 int
435 pgid_in_session(struct proc *p, pid_t pg_id)
436 {
437 struct pgrp *pgrp;
438
439 if (pg_id < 0) {
440 struct proc *p1 = pfind(-pg_id);
441 if (p1 == NULL)
442 return EINVAL;
443 pgrp = p1->p_pgrp;
444 } else {
445 pgrp = pgfind(pg_id);
446 if (pgrp == NULL)
447 return EINVAL;
448 }
449 if (pgrp->pg_session != p->p_pgrp->pg_session)
450 return EPERM;
451 return 0;
452 }
453
454 /*
455 * Is p an inferior of q?
456 *
457 * Call with the proclist_lock held.
458 */
459 int
460 inferior(struct proc *p, struct proc *q)
461 {
462
463 for (; p != q; p = p->p_pptr)
464 if (p->p_pid == 0)
465 return 0;
466 return 1;
467 }
468
469 /*
470 * Locate a process by number
471 */
472 struct proc *
473 p_find(pid_t pid, uint flags)
474 {
475 struct proc *p;
476 char stat;
477
478 if (!(flags & PFIND_LOCKED))
479 rw_enter(&proclist_lock, RW_READER);
480
481 p = pid_table[pid & pid_tbl_mask].pt_proc;
482 /* Only allow live processes to be found by pid. */
483 if (P_VALID(p) && p->p_pid == pid &&
484 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
485 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
486 if (flags & PFIND_UNLOCK_OK)
487 rw_exit(&proclist_lock);
488 return p;
489 }
490 if (flags & PFIND_UNLOCK_FAIL)
491 rw_exit(&proclist_lock);
492 return NULL;
493 }
494
495
496 /*
497 * Locate a process group by number
498 */
499 struct pgrp *
500 pg_find(pid_t pgid, uint flags)
501 {
502 struct pgrp *pg;
503
504 if (!(flags & PFIND_LOCKED))
505 rw_enter(&proclist_lock, RW_READER);
506 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
507 /*
508 * Can't look up a pgrp that only exists because the session
509 * hasn't died yet (traditional)
510 */
511 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
512 if (flags & PFIND_UNLOCK_FAIL)
513 rw_exit(&proclist_lock);
514 return NULL;
515 }
516
517 if (flags & PFIND_UNLOCK_OK)
518 rw_exit(&proclist_lock);
519 return pg;
520 }
521
522 static void
523 expand_pid_table(void)
524 {
525 uint pt_size = pid_tbl_mask + 1;
526 struct pid_table *n_pt, *new_pt;
527 struct proc *proc;
528 struct pgrp *pgrp;
529 int i;
530 pid_t pid;
531
532 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
533
534 rw_enter(&proclist_lock, RW_WRITER);
535 if (pt_size != pid_tbl_mask + 1) {
536 /* Another process beat us to it... */
537 rw_exit(&proclist_lock);
538 FREE(new_pt, M_PROC);
539 return;
540 }
541
542 /*
543 * Copy entries from old table into new one.
544 * If 'pid' is 'odd' we need to place in the upper half,
545 * even pid's to the lower half.
546 * Free items stay in the low half so we don't have to
547 * fixup the reference to them.
548 * We stuff free items on the front of the freelist
549 * because we can't write to unmodified entries.
550 * Processing the table backwards maintains a semblance
551 * of issueing pid numbers that increase with time.
552 */
553 i = pt_size - 1;
554 n_pt = new_pt + i;
555 for (; ; i--, n_pt--) {
556 proc = pid_table[i].pt_proc;
557 pgrp = pid_table[i].pt_pgrp;
558 if (!P_VALID(proc)) {
559 /* Up 'use count' so that link is valid */
560 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
561 proc = P_FREE(pid);
562 if (pgrp)
563 pid = pgrp->pg_id;
564 } else
565 pid = proc->p_pid;
566
567 /* Save entry in appropriate half of table */
568 n_pt[pid & pt_size].pt_proc = proc;
569 n_pt[pid & pt_size].pt_pgrp = pgrp;
570
571 /* Put other piece on start of free list */
572 pid = (pid ^ pt_size) & ~pid_tbl_mask;
573 n_pt[pid & pt_size].pt_proc =
574 P_FREE((pid & ~pt_size) | next_free_pt);
575 n_pt[pid & pt_size].pt_pgrp = 0;
576 next_free_pt = i | (pid & pt_size);
577 if (i == 0)
578 break;
579 }
580
581 /* Switch tables */
582 mutex_enter(&proclist_mutex);
583 n_pt = pid_table;
584 pid_table = new_pt;
585 mutex_exit(&proclist_mutex);
586 pid_tbl_mask = pt_size * 2 - 1;
587
588 /*
589 * pid_max starts as PID_MAX (= 30000), once we have 16384
590 * allocated pids we need it to be larger!
591 */
592 if (pid_tbl_mask > PID_MAX) {
593 pid_max = pid_tbl_mask * 2 + 1;
594 pid_alloc_lim |= pid_alloc_lim << 1;
595 } else
596 pid_alloc_lim <<= 1; /* doubles number of free slots... */
597
598 rw_exit(&proclist_lock);
599 FREE(n_pt, M_PROC);
600 }
601
602 struct proc *
603 proc_alloc(void)
604 {
605 struct proc *p;
606 int nxt;
607 pid_t pid;
608 struct pid_table *pt;
609
610 p = pool_get(&proc_pool, PR_WAITOK);
611 p->p_stat = SIDL; /* protect against others */
612
613 proc_initspecific(p);
614 /* allocate next free pid */
615
616 for (;;expand_pid_table()) {
617 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
618 /* ensure pids cycle through 2000+ values */
619 continue;
620 rw_enter(&proclist_lock, RW_WRITER);
621 pt = &pid_table[next_free_pt];
622 #ifdef DIAGNOSTIC
623 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
624 panic("proc_alloc: slot busy");
625 #endif
626 nxt = P_NEXT(pt->pt_proc);
627 if (nxt & pid_tbl_mask)
628 break;
629 /* Table full - expand (NB last entry not used....) */
630 rw_exit(&proclist_lock);
631 }
632
633 /* pid is 'saved use count' + 'size' + entry */
634 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
635 if ((uint)pid > (uint)pid_max)
636 pid &= pid_tbl_mask;
637 p->p_pid = pid;
638 next_free_pt = nxt & pid_tbl_mask;
639
640 /* Grab table slot */
641 mutex_enter(&proclist_mutex);
642 pt->pt_proc = p;
643 mutex_exit(&proclist_mutex);
644 pid_alloc_cnt++;
645
646 rw_exit(&proclist_lock);
647
648 return p;
649 }
650
651 /*
652 * Free last resources of a process - called from proc_free (in kern_exit.c)
653 *
654 * Called with the proclist_lock write held, and releases upon exit.
655 */
656 void
657 proc_free_mem(struct proc *p)
658 {
659 pid_t pid = p->p_pid;
660 struct pid_table *pt;
661
662 LOCK_ASSERT(rw_write_held(&proclist_lock));
663
664 pt = &pid_table[pid & pid_tbl_mask];
665 #ifdef DIAGNOSTIC
666 if (__predict_false(pt->pt_proc != p))
667 panic("proc_free: pid_table mismatch, pid %x, proc %p",
668 pid, p);
669 #endif
670 mutex_enter(&proclist_mutex);
671 /* save pid use count in slot */
672 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
673
674 if (pt->pt_pgrp == NULL) {
675 /* link last freed entry onto ours */
676 pid &= pid_tbl_mask;
677 pt = &pid_table[last_free_pt];
678 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
679 last_free_pt = pid;
680 pid_alloc_cnt--;
681 }
682 mutex_exit(&proclist_mutex);
683
684 nprocs--;
685 rw_exit(&proclist_lock);
686
687 pool_put(&proc_pool, p);
688 }
689
690 /*
691 * Move p to a new or existing process group (and session)
692 *
693 * If we are creating a new pgrp, the pgid should equal
694 * the calling process' pid.
695 * If is only valid to enter a process group that is in the session
696 * of the process.
697 * Also mksess should only be set if we are creating a process group
698 *
699 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
700 * SYSV setpgrp support for hpux.
701 */
702 int
703 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
704 {
705 struct pgrp *new_pgrp, *pgrp;
706 struct session *sess;
707 struct proc *p;
708 int rval;
709 pid_t pg_id = NO_PGID;
710
711 /* Allocate data areas we might need before doing any validity checks */
712 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
713 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
714 rw_exit(&proclist_lock);
715 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
716 } else {
717 rw_exit(&proclist_lock);
718 new_pgrp = NULL;
719 }
720 if (mksess)
721 sess = pool_get(&session_pool, PR_WAITOK);
722 else
723 sess = NULL;
724
725 rw_enter(&proclist_lock, RW_WRITER);
726 rval = EPERM; /* most common error (to save typing) */
727
728 /* Check pgrp exists or can be created */
729 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
730 if (pgrp != NULL && pgrp->pg_id != pgid)
731 goto done;
732
733 /* Can only set another process under restricted circumstances. */
734 if (pid != curp->p_pid) {
735 /* must exist and be one of our children... */
736 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
737 !inferior(p, curp)) {
738 rval = ESRCH;
739 goto done;
740 }
741 /* ... in the same session... */
742 if (sess != NULL || p->p_session != curp->p_session)
743 goto done;
744 /* ... existing pgid must be in same session ... */
745 if (pgrp != NULL && pgrp->pg_session != p->p_session)
746 goto done;
747 /* ... and not done an exec. */
748 if (p->p_flag & P_EXEC) {
749 rval = EACCES;
750 goto done;
751 }
752 } else {
753 /* ... setsid() cannot re-enter a pgrp */
754 if (mksess && (curp->p_pgid == curp->p_pid ||
755 pg_find(curp->p_pid, PFIND_LOCKED)))
756 goto done;
757 p = curp;
758 }
759
760 /* Changing the process group/session of a session
761 leader is definitely off limits. */
762 if (SESS_LEADER(p)) {
763 if (sess == NULL && p->p_pgrp == pgrp)
764 /* unless it's a definite noop */
765 rval = 0;
766 goto done;
767 }
768
769 /* Can only create a process group with id of process */
770 if (pgrp == NULL && pgid != pid)
771 goto done;
772
773 /* Can only create a session if creating pgrp */
774 if (sess != NULL && pgrp != NULL)
775 goto done;
776
777 /* Check we allocated memory for a pgrp... */
778 if (pgrp == NULL && new_pgrp == NULL)
779 goto done;
780
781 /* Don't attach to 'zombie' pgrp */
782 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
783 goto done;
784
785 /* Expect to succeed now */
786 rval = 0;
787
788 if (pgrp == p->p_pgrp)
789 /* nothing to do */
790 goto done;
791
792 /* Ok all setup, link up required structures */
793
794 if (pgrp == NULL) {
795 pgrp = new_pgrp;
796 new_pgrp = 0;
797 if (sess != NULL) {
798 sess->s_sid = p->p_pid;
799 sess->s_leader = p;
800 sess->s_count = 1;
801 sess->s_ttyvp = NULL;
802 sess->s_ttyp = NULL;
803 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
804 memcpy(sess->s_login, p->p_session->s_login,
805 sizeof(sess->s_login));
806 p->p_lflag &= ~PL_CONTROLT;
807 } else {
808 sess = p->p_pgrp->pg_session;
809 SESSHOLD(sess);
810 }
811 pgrp->pg_session = sess;
812 sess = 0;
813
814 pgrp->pg_id = pgid;
815 LIST_INIT(&pgrp->pg_members);
816 #ifdef DIAGNOSTIC
817 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
818 panic("enterpgrp: pgrp table slot in use");
819 if (__predict_false(mksess && p != curp))
820 panic("enterpgrp: mksession and p != curproc");
821 #endif
822 mutex_enter(&proclist_mutex);
823 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
824 pgrp->pg_jobc = 0;
825 } else
826 mutex_enter(&proclist_mutex);
827
828 #ifdef notyet
829 /*
830 * If there's a controlling terminal for the current session, we
831 * have to interlock with it. See ttread().
832 */
833 if (p->p_session->s_ttyvp != NULL) {
834 tp = p->p_session->s_ttyp;
835 mutex_enter(&tp->t_mutex);
836 } else
837 tp = NULL;
838 #endif
839
840 /*
841 * Adjust eligibility of affected pgrps to participate in job control.
842 * Increment eligibility counts before decrementing, otherwise we
843 * could reach 0 spuriously during the first call.
844 */
845 fixjobc(p, pgrp, 1);
846 fixjobc(p, p->p_pgrp, 0);
847
848 /* Move process to requested group. */
849 LIST_REMOVE(p, p_pglist);
850 if (LIST_EMPTY(&p->p_pgrp->pg_members))
851 /* defer delete until we've dumped the lock */
852 pg_id = p->p_pgrp->pg_id;
853 p->p_pgrp = pgrp;
854 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
855 mutex_exit(&proclist_mutex);
856
857 #ifdef notyet
858 /* Done with the swap; we can release the tty mutex. */
859 if (tp != NULL)
860 mutex_exit(&tp->t_mutex);
861 #endif
862
863 done:
864 if (pg_id != NO_PGID)
865 pg_delete(pg_id);
866 rw_exit(&proclist_lock);
867 if (sess != NULL)
868 pool_put(&session_pool, sess);
869 if (new_pgrp != NULL)
870 pool_put(&pgrp_pool, new_pgrp);
871 #ifdef DEBUG_PGRP
872 if (__predict_false(rval))
873 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
874 pid, pgid, mksess, curp->p_pid, rval);
875 #endif
876 return rval;
877 }
878
879 /*
880 * Remove a process from its process group. Must be called with the
881 * proclist_lock write held.
882 */
883 void
884 leavepgrp(struct proc *p)
885 {
886 struct pgrp *pgrp;
887
888 LOCK_ASSERT(rw_write_held(&proclist_lock));
889
890 /*
891 * If there's a controlling terminal for the session, we have to
892 * interlock with it. See ttread().
893 */
894 mutex_enter(&proclist_mutex);
895 #ifdef notyet
896 if (p_>p_session->s_ttyvp != NULL) {
897 tp = p->p_session->s_ttyp;
898 mutex_enter(&tp->t_mutex);
899 } else
900 tp = NULL;
901 #endif
902
903 pgrp = p->p_pgrp;
904 LIST_REMOVE(p, p_pglist);
905 p->p_pgrp = NULL;
906
907 #ifdef notyet
908 if (tp != NULL)
909 mutex_exit(&tp->t_mutex);
910 #endif
911 mutex_exit(&proclist_mutex);
912
913 if (LIST_EMPTY(&pgrp->pg_members))
914 pg_delete(pgrp->pg_id);
915 }
916
917 /*
918 * Free a process group. Must be called with the proclist_lock write held.
919 */
920 static void
921 pg_free(pid_t pg_id)
922 {
923 struct pgrp *pgrp;
924 struct pid_table *pt;
925
926 LOCK_ASSERT(rw_write_held(&proclist_lock));
927
928 pt = &pid_table[pg_id & pid_tbl_mask];
929 pgrp = pt->pt_pgrp;
930 #ifdef DIAGNOSTIC
931 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
932 || !LIST_EMPTY(&pgrp->pg_members)))
933 panic("pg_free: process group absent or has members");
934 #endif
935 pt->pt_pgrp = 0;
936
937 if (!P_VALID(pt->pt_proc)) {
938 /* orphaned pgrp, put slot onto free list */
939 #ifdef DIAGNOSTIC
940 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
941 panic("pg_free: process slot on free list");
942 #endif
943 mutex_enter(&proclist_mutex);
944 pg_id &= pid_tbl_mask;
945 pt = &pid_table[last_free_pt];
946 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
947 mutex_exit(&proclist_mutex);
948 last_free_pt = pg_id;
949 pid_alloc_cnt--;
950 }
951 pool_put(&pgrp_pool, pgrp);
952 }
953
954 /*
955 * Delete a process group. Must be called with the proclist_lock write
956 * held.
957 */
958 static void
959 pg_delete(pid_t pg_id)
960 {
961 struct pgrp *pgrp;
962 struct tty *ttyp;
963 struct session *ss;
964 int is_pgrp_leader;
965
966 LOCK_ASSERT(rw_write_held(&proclist_lock));
967
968 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
969 if (pgrp == NULL || pgrp->pg_id != pg_id ||
970 !LIST_EMPTY(&pgrp->pg_members))
971 return;
972
973 ss = pgrp->pg_session;
974
975 /* Remove reference (if any) from tty to this process group */
976 ttyp = ss->s_ttyp;
977 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
978 ttyp->t_pgrp = NULL;
979 #ifdef DIAGNOSTIC
980 if (ttyp->t_session != ss)
981 panic("pg_delete: wrong session on terminal");
982 #endif
983 }
984
985 /*
986 * The leading process group in a session is freed
987 * by sessdelete() if last reference.
988 */
989 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
990 SESSRELE(ss);
991
992 if (is_pgrp_leader)
993 return;
994
995 pg_free(pg_id);
996 }
997
998 /*
999 * Delete session - called from SESSRELE when s_count becomes zero.
1000 * Must be called with the proclist_lock write held.
1001 */
1002 void
1003 sessdelete(struct session *ss)
1004 {
1005
1006 LOCK_ASSERT(rw_write_held(&proclist_lock));
1007
1008 /*
1009 * We keep the pgrp with the same id as the session in
1010 * order to stop a process being given the same pid.
1011 * Since the pgrp holds a reference to the session, it
1012 * must be a 'zombie' pgrp by now.
1013 */
1014 pg_free(ss->s_sid);
1015 pool_put(&session_pool, ss);
1016 }
1017
1018 /*
1019 * Adjust pgrp jobc counters when specified process changes process group.
1020 * We count the number of processes in each process group that "qualify"
1021 * the group for terminal job control (those with a parent in a different
1022 * process group of the same session). If that count reaches zero, the
1023 * process group becomes orphaned. Check both the specified process'
1024 * process group and that of its children.
1025 * entering == 0 => p is leaving specified group.
1026 * entering == 1 => p is entering specified group.
1027 *
1028 * Call with proclist_lock write held.
1029 */
1030 void
1031 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1032 {
1033 struct pgrp *hispgrp;
1034 struct session *mysession = pgrp->pg_session;
1035 struct proc *child;
1036
1037 LOCK_ASSERT(rw_write_held(&proclist_lock));
1038
1039 /*
1040 * Check p's parent to see whether p qualifies its own process
1041 * group; if so, adjust count for p's process group.
1042 */
1043 hispgrp = p->p_pptr->p_pgrp;
1044 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1045 if (entering) {
1046 mutex_enter(&p->p_smutex);
1047 p->p_sflag &= ~PS_ORPHANPG;
1048 mutex_exit(&p->p_smutex);
1049 pgrp->pg_jobc++;
1050 } else if (--pgrp->pg_jobc == 0)
1051 orphanpg(pgrp);
1052 }
1053
1054 /*
1055 * Check this process' children to see whether they qualify
1056 * their process groups; if so, adjust counts for children's
1057 * process groups.
1058 */
1059 LIST_FOREACH(child, &p->p_children, p_sibling) {
1060 hispgrp = child->p_pgrp;
1061 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1062 !P_ZOMBIE(child)) {
1063 if (entering) {
1064 mutex_enter(&child->p_smutex);
1065 child->p_sflag &= ~PS_ORPHANPG;
1066 mutex_exit(&child->p_smutex);
1067 hispgrp->pg_jobc++;
1068 } else if (--hispgrp->pg_jobc == 0)
1069 orphanpg(hispgrp);
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A process group has become orphaned;
1076 * if there are any stopped processes in the group,
1077 * hang-up all process in that group.
1078 *
1079 * Call with proclist_lock write held.
1080 */
1081 static void
1082 orphanpg(struct pgrp *pg)
1083 {
1084 struct proc *p;
1085 int doit;
1086
1087 LOCK_ASSERT(rw_write_held(&proclist_lock));
1088
1089 doit = 0;
1090
1091 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1092 mutex_enter(&p->p_smutex);
1093 if (p->p_stat == SSTOP) {
1094 doit = 1;
1095 p->p_sflag |= PS_ORPHANPG;
1096 }
1097 mutex_exit(&p->p_smutex);
1098 }
1099
1100 if (doit) {
1101 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1102 psignal(p, SIGHUP);
1103 psignal(p, SIGCONT);
1104 }
1105 }
1106 }
1107
1108 /* mark process as suid/sgid, reset some values to defaults */
1109 void
1110 p_sugid(struct proc *p)
1111 {
1112 struct plimit *lim;
1113 char *cn;
1114
1115 p->p_flag |= P_SUGID;
1116 /* reset what needs to be reset in plimit */
1117 lim = p->p_limit;
1118 if (lim->pl_corename != defcorename) {
1119 if (lim->p_refcnt > 1 &&
1120 (lim->p_lflags & PL_SHAREMOD) == 0) {
1121 p->p_limit = limcopy(lim);
1122 limfree(lim);
1123 lim = p->p_limit;
1124 }
1125 simple_lock(&lim->p_slock);
1126 cn = lim->pl_corename;
1127 lim->pl_corename = defcorename;
1128 simple_unlock(&lim->p_slock);
1129 if (cn != defcorename)
1130 free(cn, M_TEMP);
1131 }
1132 }
1133
1134 #ifdef DDB
1135 #include <ddb/db_output.h>
1136 void pidtbl_dump(void);
1137 void
1138 pidtbl_dump(void)
1139 {
1140 struct pid_table *pt;
1141 struct proc *p;
1142 struct pgrp *pgrp;
1143 int id;
1144
1145 db_printf("pid table %p size %x, next %x, last %x\n",
1146 pid_table, pid_tbl_mask+1,
1147 next_free_pt, last_free_pt);
1148 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1149 p = pt->pt_proc;
1150 if (!P_VALID(p) && !pt->pt_pgrp)
1151 continue;
1152 db_printf(" id %x: ", id);
1153 if (P_VALID(p))
1154 db_printf("proc %p id %d (0x%x) %s\n",
1155 p, p->p_pid, p->p_pid, p->p_comm);
1156 else
1157 db_printf("next %x use %x\n",
1158 P_NEXT(p) & pid_tbl_mask,
1159 P_NEXT(p) & ~pid_tbl_mask);
1160 if ((pgrp = pt->pt_pgrp)) {
1161 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1162 pgrp->pg_session, pgrp->pg_session->s_sid,
1163 pgrp->pg_session->s_count,
1164 pgrp->pg_session->s_login);
1165 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1166 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1167 pgrp->pg_members.lh_first);
1168 for (p = pgrp->pg_members.lh_first; p != 0;
1169 p = p->p_pglist.le_next) {
1170 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1171 p->p_pid, p, p->p_pgrp, p->p_comm);
1172 }
1173 }
1174 }
1175 }
1176 #endif /* DDB */
1177
1178 #ifdef KSTACK_CHECK_MAGIC
1179 #include <sys/user.h>
1180
1181 #define KSTACK_MAGIC 0xdeadbeaf
1182
1183 /* XXX should be per process basis? */
1184 int kstackleftmin = KSTACK_SIZE;
1185 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1186 less than this */
1187
1188 void
1189 kstack_setup_magic(const struct lwp *l)
1190 {
1191 uint32_t *ip;
1192 uint32_t const *end;
1193
1194 KASSERT(l != NULL);
1195 KASSERT(l != &lwp0);
1196
1197 /*
1198 * fill all the stack with magic number
1199 * so that later modification on it can be detected.
1200 */
1201 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1202 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1203 for (; ip < end; ip++) {
1204 *ip = KSTACK_MAGIC;
1205 }
1206 }
1207
1208 void
1209 kstack_check_magic(const struct lwp *l)
1210 {
1211 uint32_t const *ip, *end;
1212 int stackleft;
1213
1214 KASSERT(l != NULL);
1215
1216 /* don't check proc0 */ /*XXX*/
1217 if (l == &lwp0)
1218 return;
1219
1220 #ifdef __MACHINE_STACK_GROWS_UP
1221 /* stack grows upwards (eg. hppa) */
1222 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1223 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1224 for (ip--; ip >= end; ip--)
1225 if (*ip != KSTACK_MAGIC)
1226 break;
1227
1228 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1229 #else /* __MACHINE_STACK_GROWS_UP */
1230 /* stack grows downwards (eg. i386) */
1231 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1232 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1233 for (; ip < end; ip++)
1234 if (*ip != KSTACK_MAGIC)
1235 break;
1236
1237 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1238 #endif /* __MACHINE_STACK_GROWS_UP */
1239
1240 if (kstackleftmin > stackleft) {
1241 kstackleftmin = stackleft;
1242 if (stackleft < kstackleftthres)
1243 printf("warning: kernel stack left %d bytes"
1244 "(pid %u:lid %u)\n", stackleft,
1245 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1246 }
1247
1248 if (stackleft <= 0) {
1249 panic("magic on the top of kernel stack changed for "
1250 "pid %u, lid %u: maybe kernel stack overflow",
1251 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1252 }
1253 }
1254 #endif /* KSTACK_CHECK_MAGIC */
1255
1256 /*
1257 * XXXSMP this is bust, it grabs a read lock and then messes about
1258 * with allproc.
1259 */
1260 int
1261 proclist_foreach_call(struct proclist *list,
1262 int (*callback)(struct proc *, void *arg), void *arg)
1263 {
1264 struct proc marker;
1265 struct proc *p;
1266 struct lwp * const l = curlwp;
1267 int ret = 0;
1268
1269 marker.p_flag = P_MARKER;
1270 PHOLD(l);
1271 rw_enter(&proclist_lock, RW_READER);
1272 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1273 if (p->p_flag & P_MARKER) {
1274 p = LIST_NEXT(p, p_list);
1275 continue;
1276 }
1277 LIST_INSERT_AFTER(p, &marker, p_list);
1278 ret = (*callback)(p, arg);
1279 KASSERT(rw_read_held(&proclist_lock));
1280 p = LIST_NEXT(&marker, p_list);
1281 LIST_REMOVE(&marker, p_list);
1282 }
1283 rw_exit(&proclist_lock);
1284 PRELE(l);
1285
1286 return ret;
1287 }
1288
1289 int
1290 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1291 {
1292
1293 /* XXXCDC: how should locking work here? */
1294
1295 /* curproc exception is for coredump. */
1296
1297 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1298 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1299 return EFAULT;
1300 }
1301
1302 uvmspace_addref(p->p_vmspace);
1303 *vm = p->p_vmspace;
1304
1305 return 0;
1306 }
1307
1308 /*
1309 * Acquire a write lock on the process credential.
1310 */
1311 void
1312 proc_crmod_enter(void)
1313 {
1314 struct lwp *l = curlwp;
1315 struct proc *p = l->l_proc;
1316 kauth_cred_t oc;
1317
1318 mutex_enter(&p->p_mutex);
1319
1320 /* Ensure the LWP cached credentials are up to date. */
1321 if ((oc = l->l_cred) != p->p_cred) {
1322 kauth_cred_hold(p->p_cred);
1323 l->l_cred = p->p_cred;
1324 kauth_cred_free(oc);
1325 }
1326 }
1327
1328 /*
1329 * Set in a new process credential, and drop the write lock. The credential
1330 * must have a reference already. Optionally, free a no-longer required
1331 * credential. The scheduler also needs to inspect p_cred, so we also
1332 * briefly acquire the sched state mutex.
1333 */
1334 void
1335 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
1336 {
1337 struct lwp *l = curlwp;
1338 struct proc *p = l->l_proc;
1339 kauth_cred_t oc;
1340
1341 mutex_enter(&p->p_smutex);
1342 p->p_cred = scred;
1343 mutex_exit(&p->p_smutex);
1344
1345 /* Ensure the LWP cached credentials are up to date. */
1346 if ((oc = l->l_cred) != scred) {
1347 kauth_cred_hold(scred);
1348 l->l_cred = scred;
1349 }
1350
1351 mutex_exit(&p->p_mutex);
1352 kauth_cred_free(fcred);
1353 if (oc != scred)
1354 kauth_cred_free(oc);
1355 }
1356
1357 /*
1358 * Acquire a reference on a process, to prevent it from exiting or execing.
1359 */
1360 int
1361 proc_addref(struct proc *p)
1362 {
1363
1364 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1365
1366 if (p->p_refcnt <= 0)
1367 return EAGAIN;
1368 p->p_refcnt++;
1369
1370 return 0;
1371 }
1372
1373 /*
1374 * Release a reference on a process.
1375 */
1376 void
1377 proc_delref(struct proc *p)
1378 {
1379
1380 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1381
1382 if (p->p_refcnt < 0) {
1383 if (++p->p_refcnt == 0)
1384 cv_signal(&p->p_refcv);
1385 } else {
1386 p->p_refcnt--;
1387 KASSERT(p->p_refcnt != 0);
1388 }
1389 }
1390
1391 /*
1392 * Wait for all references on the process to drain, and prevent new
1393 * references from being acquired.
1394 */
1395 void
1396 proc_drainrefs(struct proc *p)
1397 {
1398
1399 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1400 KASSERT(p->p_refcnt > 0);
1401
1402 /*
1403 * The process itself holds the last reference. Once it's released,
1404 * no new references will be granted. If we have already locked out
1405 * new references (refcnt <= 0), potentially due to a failed exec,
1406 * there is nothing more to do.
1407 */
1408 p->p_refcnt = 1 - p->p_refcnt;
1409 while (p->p_refcnt != 0)
1410 cv_wait(&p->p_refcv, &p->p_mutex);
1411 }
1412
1413 /*
1414 * proc_specific_key_create --
1415 * Create a key for subsystem proc-specific data.
1416 */
1417 int
1418 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1419 {
1420
1421 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1422 }
1423
1424 /*
1425 * proc_specific_key_delete --
1426 * Delete a key for subsystem proc-specific data.
1427 */
1428 void
1429 proc_specific_key_delete(specificdata_key_t key)
1430 {
1431
1432 specificdata_key_delete(proc_specificdata_domain, key);
1433 }
1434
1435 /*
1436 * proc_initspecific --
1437 * Initialize a proc's specificdata container.
1438 */
1439 void
1440 proc_initspecific(struct proc *p)
1441 {
1442 int error;
1443
1444 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1445 KASSERT(error == 0);
1446 }
1447
1448 /*
1449 * proc_finispecific --
1450 * Finalize a proc's specificdata container.
1451 */
1452 void
1453 proc_finispecific(struct proc *p)
1454 {
1455
1456 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1457 }
1458
1459 /*
1460 * proc_getspecific --
1461 * Return proc-specific data corresponding to the specified key.
1462 */
1463 void *
1464 proc_getspecific(struct proc *p, specificdata_key_t key)
1465 {
1466
1467 return (specificdata_getspecific(proc_specificdata_domain,
1468 &p->p_specdataref, key));
1469 }
1470
1471 /*
1472 * proc_setspecific --
1473 * Set proc-specific data corresponding to the specified key.
1474 */
1475 void
1476 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1477 {
1478
1479 specificdata_setspecific(proc_specificdata_domain,
1480 &p->p_specdataref, key, data);
1481 }
1482