kern_proc.c revision 1.94.4.7 1 /* $NetBSD: kern_proc.c,v 1.94.4.7 2006/12/29 20:27:44 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.7 2006/12/29 20:27:44 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are two locks on global process state.
115 *
116 * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 * examining process state from a process context. It protects our internal
118 * tables, all of the process lists, and a number of members of struct lwp
119 * and struct proc.
120
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when we must signal processes from an interrupt
123 * context. The proclist_lock should always be used in preference.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is apporoximately as following:
141 *
142 * kernel_mutex
143 * -> proclist_lock
144 * -> proclist_mutex
145 * -> proc::p_mutex
146 * -> proc::p_smutex
147 */
148 krwlock_t proclist_lock;
149 kmutex_t proclist_mutex;
150
151 /*
152 * pid to proc lookup is done by indexing the pid_table array.
153 * Since pid numbers are only allocated when an empty slot
154 * has been found, there is no need to search any lists ever.
155 * (an orphaned pgrp will lock the slot, a session will lock
156 * the pgrp with the same number.)
157 * If the table is too small it is reallocated with twice the
158 * previous size and the entries 'unzipped' into the two halves.
159 * A linked list of free entries is passed through the pt_proc
160 * field of 'free' items - set odd to be an invalid ptr.
161 */
162
163 struct pid_table {
164 struct proc *pt_proc;
165 struct pgrp *pt_pgrp;
166 };
167 #if 1 /* strongly typed cast - should be a noop */
168 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
169 #else
170 #define p2u(p) ((uint)p)
171 #endif
172 #define P_VALID(p) (!(p2u(p) & 1))
173 #define P_NEXT(p) (p2u(p) >> 1)
174 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
175
176 #define INITIAL_PID_TABLE_SIZE (1 << 5)
177 static struct pid_table *pid_table;
178 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
179 static uint pid_alloc_lim; /* max we allocate before growing table */
180 static uint pid_alloc_cnt; /* number of allocated pids */
181
182 /* links through free slots - never empty! */
183 static uint next_free_pt, last_free_pt;
184 static pid_t pid_max = PID_MAX; /* largest value we allocate */
185
186 /* Components of the first process -- never freed. */
187 struct session session0;
188 struct pgrp pgrp0;
189 struct proc proc0;
190 struct lwp lwp0 __aligned(16);
191 kauth_cred_t cred0;
192 struct filedesc0 filedesc0;
193 struct cwdinfo cwdi0;
194 struct plimit limit0;
195 struct pstats pstat0;
196 struct vmspace vmspace0;
197 struct sigacts sigacts0;
198 struct turnstile turnstile0;
199
200 extern struct user *proc0paddr;
201
202 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
203
204 int nofile = NOFILE;
205 int maxuprc = MAXUPRC;
206 int cmask = CMASK;
207
208 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
209 &pool_allocator_nointr);
210 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
211 &pool_allocator_nointr);
212 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
213 &pool_allocator_nointr);
214 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
215 &pool_allocator_nointr);
216 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
217 &pool_allocator_nointr);
218 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
219 &pool_allocator_nointr);
220
221 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
222 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
223 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
224
225 /*
226 * The process list descriptors, used during pid allocation and
227 * by sysctl. No locking on this data structure is needed since
228 * it is completely static.
229 */
230 const struct proclist_desc proclists[] = {
231 { &allproc },
232 { &zombproc },
233 { NULL },
234 };
235
236 static void orphanpg(struct pgrp *);
237 static void pg_delete(pid_t);
238
239 static specificdata_domain_t proc_specificdata_domain;
240
241 /*
242 * Initialize global process hashing structures.
243 */
244 void
245 procinit(void)
246 {
247 const struct proclist_desc *pd;
248 int i;
249 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
250
251 for (pd = proclists; pd->pd_list != NULL; pd++)
252 LIST_INIT(pd->pd_list);
253
254 rw_init(&proclist_lock);
255 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
256
257 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
258 M_PROC, M_WAITOK);
259 /* Set free list running through table...
260 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
261 for (i = 0; i <= pid_tbl_mask; i++) {
262 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
263 pid_table[i].pt_pgrp = 0;
264 }
265 /* slot 0 is just grabbed */
266 next_free_pt = 1;
267 /* Need to fix last entry. */
268 last_free_pt = pid_tbl_mask;
269 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
270 /* point at which we grow table - to avoid reusing pids too often */
271 pid_alloc_lim = pid_tbl_mask - 1;
272 #undef LINK_EMPTY
273
274 LIST_INIT(&alllwp);
275
276 uihashtbl =
277 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
278
279 proc_specificdata_domain = specificdata_domain_create();
280 KASSERT(proc_specificdata_domain != NULL);
281 }
282
283 /*
284 * Initialize process 0.
285 */
286 void
287 proc0_init(void)
288 {
289 struct proc *p;
290 struct pgrp *pg;
291 struct session *sess;
292 struct lwp *l;
293 u_int i;
294 rlim_t lim;
295
296 p = &proc0;
297 pg = &pgrp0;
298 sess = &session0;
299 l = &lwp0;
300
301 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
302 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
303 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
304 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
305 cv_init(&p->p_refcv, "drainref");
306 cv_init(&p->p_waitcv, "wait");
307 cv_init(&p->p_lwpcv, "lwpwait");
308
309 LIST_INIT(&p->p_lwps);
310 LIST_INIT(&p->p_sigwaiters);
311 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
312
313 p->p_nlwps = 1;
314 p->p_nrlwps = 1;
315 p->p_refcnt = 1;
316
317 pid_table[0].pt_proc = p;
318 LIST_INSERT_HEAD(&allproc, p, p_list);
319 LIST_INSERT_HEAD(&alllwp, l, l_list);
320
321 p->p_pgrp = pg;
322 pid_table[0].pt_pgrp = pg;
323 LIST_INIT(&pg->pg_members);
324 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
325
326 pg->pg_session = sess;
327 sess->s_count = 1;
328 sess->s_sid = 0;
329 sess->s_leader = p;
330
331 /*
332 * Set P_NOCLDWAIT so that kernel threads are reparented to
333 * init(8) when they exit. init(8) can easily wait them out
334 * for us.
335 */
336 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
337 p->p_stat = SACTIVE;
338 p->p_nice = NZERO;
339 p->p_emul = &emul_netbsd;
340 #ifdef __HAVE_SYSCALL_INTERN
341 (*p->p_emul->e_syscall_intern)(p);
342 #endif
343 strncpy(p->p_comm, "swapper", MAXCOMLEN);
344
345 l->l_mutex = &sched_mutex;
346 l->l_flag = L_INMEM | L_SYSTEM;
347 l->l_stat = LSONPROC;
348 l->l_ts = &turnstile0;
349 l->l_syncobj = &sched_syncobj;
350 l->l_refcnt = 1;
351 l->l_cpu = curcpu();
352
353 callout_init(&l->l_tsleep_ch);
354
355 /* Create credentials. */
356 cred0 = kauth_cred_alloc();
357 p->p_cred = cred0;
358 kauth_cred_hold(cred0);
359 l->l_cred = cred0;
360
361 /* Create the CWD info. */
362 p->p_cwdi = &cwdi0;
363 cwdi0.cwdi_cmask = cmask;
364 cwdi0.cwdi_refcnt = 1;
365 simple_lock_init(&cwdi0.cwdi_slock);
366
367 /* Create the limits structures. */
368 p->p_limit = &limit0;
369 simple_lock_init(&limit0.p_slock);
370 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
371 limit0.pl_rlimit[i].rlim_cur =
372 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
373
374 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
375 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
376 maxfiles < nofile ? maxfiles : nofile;
377
378 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
379 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
380 maxproc < maxuprc ? maxproc : maxuprc;
381
382 lim = ptoa(uvmexp.free);
383 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
384 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
385 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
386 limit0.pl_corename = defcorename;
387 limit0.p_refcnt = 1;
388
389 /* Configure virtual memory system, set vm rlimits. */
390 uvm_init_limits(p);
391
392 /* Initialize file descriptor table for proc0. */
393 p->p_fd = &filedesc0.fd_fd;
394 fdinit1(&filedesc0);
395
396 /*
397 * Initialize proc0's vmspace, which uses the kernel pmap.
398 * All kernel processes (which never have user space mappings)
399 * share proc0's vmspace, and thus, the kernel pmap.
400 */
401 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
402 trunc_page(VM_MAX_ADDRESS));
403 p->p_vmspace = &vmspace0;
404
405 l->l_addr = proc0paddr; /* XXX */
406
407 p->p_stats = &pstat0;
408
409 /* Initialize signal state for proc0. */
410 p->p_sigacts = &sigacts0;
411 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
412 siginit(p);
413
414 proc_initspecific(p);
415 lwp_initspecific(l);
416 }
417
418 /*
419 * Check that the specified process group is in the session of the
420 * specified process.
421 * Treats -ve ids as process ids.
422 * Used to validate TIOCSPGRP requests.
423 */
424 int
425 pgid_in_session(struct proc *p, pid_t pg_id)
426 {
427 struct pgrp *pgrp;
428
429 if (pg_id < 0) {
430 struct proc *p1 = pfind(-pg_id);
431 if (p1 == NULL)
432 return EINVAL;
433 pgrp = p1->p_pgrp;
434 } else {
435 pgrp = pgfind(pg_id);
436 if (pgrp == NULL)
437 return EINVAL;
438 }
439 if (pgrp->pg_session != p->p_pgrp->pg_session)
440 return EPERM;
441 return 0;
442 }
443
444 /*
445 * Is p an inferior of q?
446 *
447 * Call with the proclist_lock held.
448 */
449 int
450 inferior(struct proc *p, struct proc *q)
451 {
452
453 for (; p != q; p = p->p_pptr)
454 if (p->p_pid == 0)
455 return 0;
456 return 1;
457 }
458
459 /*
460 * Locate a process by number
461 */
462 struct proc *
463 p_find(pid_t pid, uint flags)
464 {
465 struct proc *p;
466 char stat;
467
468 if (!(flags & PFIND_LOCKED))
469 rw_enter(&proclist_lock, RW_READER);
470
471 p = pid_table[pid & pid_tbl_mask].pt_proc;
472
473 /* Only allow live processes to be found by pid. */
474 /* XXXSMP p_stat */
475 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
476 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
477 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
478 if (flags & PFIND_UNLOCK_OK)
479 rw_exit(&proclist_lock);
480 return p;
481 }
482 if (flags & PFIND_UNLOCK_FAIL)
483 rw_exit(&proclist_lock);
484 return NULL;
485 }
486
487
488 /*
489 * Locate a process group by number
490 */
491 struct pgrp *
492 pg_find(pid_t pgid, uint flags)
493 {
494 struct pgrp *pg;
495
496 if (!(flags & PFIND_LOCKED))
497 rw_enter(&proclist_lock, RW_READER);
498 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
499 /*
500 * Can't look up a pgrp that only exists because the session
501 * hasn't died yet (traditional)
502 */
503 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
504 if (flags & PFIND_UNLOCK_FAIL)
505 rw_exit(&proclist_lock);
506 return NULL;
507 }
508
509 if (flags & PFIND_UNLOCK_OK)
510 rw_exit(&proclist_lock);
511 return pg;
512 }
513
514 static void
515 expand_pid_table(void)
516 {
517 uint pt_size = pid_tbl_mask + 1;
518 struct pid_table *n_pt, *new_pt;
519 struct proc *proc;
520 struct pgrp *pgrp;
521 int i;
522 pid_t pid;
523
524 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
525
526 rw_enter(&proclist_lock, RW_WRITER);
527 if (pt_size != pid_tbl_mask + 1) {
528 /* Another process beat us to it... */
529 rw_exit(&proclist_lock);
530 FREE(new_pt, M_PROC);
531 return;
532 }
533
534 /*
535 * Copy entries from old table into new one.
536 * If 'pid' is 'odd' we need to place in the upper half,
537 * even pid's to the lower half.
538 * Free items stay in the low half so we don't have to
539 * fixup the reference to them.
540 * We stuff free items on the front of the freelist
541 * because we can't write to unmodified entries.
542 * Processing the table backwards maintains a semblance
543 * of issueing pid numbers that increase with time.
544 */
545 i = pt_size - 1;
546 n_pt = new_pt + i;
547 for (; ; i--, n_pt--) {
548 proc = pid_table[i].pt_proc;
549 pgrp = pid_table[i].pt_pgrp;
550 if (!P_VALID(proc)) {
551 /* Up 'use count' so that link is valid */
552 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
553 proc = P_FREE(pid);
554 if (pgrp)
555 pid = pgrp->pg_id;
556 } else
557 pid = proc->p_pid;
558
559 /* Save entry in appropriate half of table */
560 n_pt[pid & pt_size].pt_proc = proc;
561 n_pt[pid & pt_size].pt_pgrp = pgrp;
562
563 /* Put other piece on start of free list */
564 pid = (pid ^ pt_size) & ~pid_tbl_mask;
565 n_pt[pid & pt_size].pt_proc =
566 P_FREE((pid & ~pt_size) | next_free_pt);
567 n_pt[pid & pt_size].pt_pgrp = 0;
568 next_free_pt = i | (pid & pt_size);
569 if (i == 0)
570 break;
571 }
572
573 /* Switch tables */
574 mutex_enter(&proclist_mutex);
575 n_pt = pid_table;
576 pid_table = new_pt;
577 mutex_exit(&proclist_mutex);
578 pid_tbl_mask = pt_size * 2 - 1;
579
580 /*
581 * pid_max starts as PID_MAX (= 30000), once we have 16384
582 * allocated pids we need it to be larger!
583 */
584 if (pid_tbl_mask > PID_MAX) {
585 pid_max = pid_tbl_mask * 2 + 1;
586 pid_alloc_lim |= pid_alloc_lim << 1;
587 } else
588 pid_alloc_lim <<= 1; /* doubles number of free slots... */
589
590 rw_exit(&proclist_lock);
591 FREE(n_pt, M_PROC);
592 }
593
594 struct proc *
595 proc_alloc(void)
596 {
597 struct proc *p;
598 int nxt;
599 pid_t pid;
600 struct pid_table *pt;
601
602 p = pool_get(&proc_pool, PR_WAITOK);
603 p->p_stat = SIDL; /* protect against others */
604
605 proc_initspecific(p);
606 /* allocate next free pid */
607
608 for (;;expand_pid_table()) {
609 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
610 /* ensure pids cycle through 2000+ values */
611 continue;
612 rw_enter(&proclist_lock, RW_WRITER);
613 pt = &pid_table[next_free_pt];
614 #ifdef DIAGNOSTIC
615 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
616 panic("proc_alloc: slot busy");
617 #endif
618 nxt = P_NEXT(pt->pt_proc);
619 if (nxt & pid_tbl_mask)
620 break;
621 /* Table full - expand (NB last entry not used....) */
622 rw_exit(&proclist_lock);
623 }
624
625 /* pid is 'saved use count' + 'size' + entry */
626 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
627 if ((uint)pid > (uint)pid_max)
628 pid &= pid_tbl_mask;
629 p->p_pid = pid;
630 next_free_pt = nxt & pid_tbl_mask;
631
632 /* Grab table slot */
633 mutex_enter(&proclist_mutex);
634 pt->pt_proc = p;
635 mutex_exit(&proclist_mutex);
636 pid_alloc_cnt++;
637
638 rw_exit(&proclist_lock);
639
640 return p;
641 }
642
643 /*
644 * Free last resources of a process - called from proc_free (in kern_exit.c)
645 *
646 * Called with the proclist_lock write held, and releases upon exit.
647 */
648 void
649 proc_free_mem(struct proc *p)
650 {
651 pid_t pid = p->p_pid;
652 struct pid_table *pt;
653
654 LOCK_ASSERT(rw_write_held(&proclist_lock));
655
656 pt = &pid_table[pid & pid_tbl_mask];
657 #ifdef DIAGNOSTIC
658 if (__predict_false(pt->pt_proc != p))
659 panic("proc_free: pid_table mismatch, pid %x, proc %p",
660 pid, p);
661 #endif
662 mutex_enter(&proclist_mutex);
663 /* save pid use count in slot */
664 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
665
666 if (pt->pt_pgrp == NULL) {
667 /* link last freed entry onto ours */
668 pid &= pid_tbl_mask;
669 pt = &pid_table[last_free_pt];
670 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
671 last_free_pt = pid;
672 pid_alloc_cnt--;
673 }
674 mutex_exit(&proclist_mutex);
675
676 nprocs--;
677 rw_exit(&proclist_lock);
678
679 pool_put(&proc_pool, p);
680 }
681
682 /*
683 * Move p to a new or existing process group (and session)
684 *
685 * If we are creating a new pgrp, the pgid should equal
686 * the calling process' pid.
687 * If is only valid to enter a process group that is in the session
688 * of the process.
689 * Also mksess should only be set if we are creating a process group
690 *
691 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
692 * SYSV setpgrp support for hpux.
693 */
694 int
695 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
696 {
697 struct pgrp *new_pgrp, *pgrp;
698 struct session *sess;
699 struct proc *p;
700 int rval;
701 pid_t pg_id = NO_PGID;
702
703 /* Allocate data areas we might need before doing any validity checks */
704 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
705 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
706 rw_exit(&proclist_lock);
707 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
708 } else {
709 rw_exit(&proclist_lock);
710 new_pgrp = NULL;
711 }
712 if (mksess)
713 sess = pool_get(&session_pool, PR_WAITOK);
714 else
715 sess = NULL;
716
717 rw_enter(&proclist_lock, RW_WRITER);
718 rval = EPERM; /* most common error (to save typing) */
719
720 /* Check pgrp exists or can be created */
721 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
722 if (pgrp != NULL && pgrp->pg_id != pgid)
723 goto done;
724
725 /* Can only set another process under restricted circumstances. */
726 if (pid != curp->p_pid) {
727 /* must exist and be one of our children... */
728 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
729 !inferior(p, curp)) {
730 rval = ESRCH;
731 goto done;
732 }
733 /* ... in the same session... */
734 if (sess != NULL || p->p_session != curp->p_session)
735 goto done;
736 /* ... existing pgid must be in same session ... */
737 if (pgrp != NULL && pgrp->pg_session != p->p_session)
738 goto done;
739 /* ... and not done an exec. */
740 if (p->p_flag & P_EXEC) {
741 rval = EACCES;
742 goto done;
743 }
744 } else {
745 /* ... setsid() cannot re-enter a pgrp */
746 if (mksess && (curp->p_pgid == curp->p_pid ||
747 pg_find(curp->p_pid, PFIND_LOCKED)))
748 goto done;
749 p = curp;
750 }
751
752 /* Changing the process group/session of a session
753 leader is definitely off limits. */
754 if (SESS_LEADER(p)) {
755 if (sess == NULL && p->p_pgrp == pgrp)
756 /* unless it's a definite noop */
757 rval = 0;
758 goto done;
759 }
760
761 /* Can only create a process group with id of process */
762 if (pgrp == NULL && pgid != pid)
763 goto done;
764
765 /* Can only create a session if creating pgrp */
766 if (sess != NULL && pgrp != NULL)
767 goto done;
768
769 /* Check we allocated memory for a pgrp... */
770 if (pgrp == NULL && new_pgrp == NULL)
771 goto done;
772
773 /* Don't attach to 'zombie' pgrp */
774 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
775 goto done;
776
777 /* Expect to succeed now */
778 rval = 0;
779
780 if (pgrp == p->p_pgrp)
781 /* nothing to do */
782 goto done;
783
784 /* Ok all setup, link up required structures */
785
786 if (pgrp == NULL) {
787 pgrp = new_pgrp;
788 new_pgrp = 0;
789 if (sess != NULL) {
790 sess->s_sid = p->p_pid;
791 sess->s_leader = p;
792 sess->s_count = 1;
793 sess->s_ttyvp = NULL;
794 sess->s_ttyp = NULL;
795 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
796 memcpy(sess->s_login, p->p_session->s_login,
797 sizeof(sess->s_login));
798 p->p_lflag &= ~PL_CONTROLT;
799 } else {
800 sess = p->p_pgrp->pg_session;
801 SESSHOLD(sess);
802 }
803 pgrp->pg_session = sess;
804 sess = 0;
805
806 pgrp->pg_id = pgid;
807 LIST_INIT(&pgrp->pg_members);
808 #ifdef DIAGNOSTIC
809 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
810 panic("enterpgrp: pgrp table slot in use");
811 if (__predict_false(mksess && p != curp))
812 panic("enterpgrp: mksession and p != curproc");
813 #endif
814 mutex_enter(&proclist_mutex);
815 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
816 pgrp->pg_jobc = 0;
817 } else
818 mutex_enter(&proclist_mutex);
819
820 #ifdef notyet
821 /*
822 * If there's a controlling terminal for the current session, we
823 * have to interlock with it. See ttread().
824 */
825 if (p->p_session->s_ttyvp != NULL) {
826 tp = p->p_session->s_ttyp;
827 mutex_enter(&tp->t_mutex);
828 } else
829 tp = NULL;
830 #endif
831
832 /*
833 * Adjust eligibility of affected pgrps to participate in job control.
834 * Increment eligibility counts before decrementing, otherwise we
835 * could reach 0 spuriously during the first call.
836 */
837 fixjobc(p, pgrp, 1);
838 fixjobc(p, p->p_pgrp, 0);
839
840 /* Move process to requested group. */
841 LIST_REMOVE(p, p_pglist);
842 if (LIST_EMPTY(&p->p_pgrp->pg_members))
843 /* defer delete until we've dumped the lock */
844 pg_id = p->p_pgrp->pg_id;
845 p->p_pgrp = pgrp;
846 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
847 mutex_exit(&proclist_mutex);
848
849 #ifdef notyet
850 /* Done with the swap; we can release the tty mutex. */
851 if (tp != NULL)
852 mutex_exit(&tp->t_mutex);
853 #endif
854
855 done:
856 if (pg_id != NO_PGID)
857 pg_delete(pg_id);
858 rw_exit(&proclist_lock);
859 if (sess != NULL)
860 pool_put(&session_pool, sess);
861 if (new_pgrp != NULL)
862 pool_put(&pgrp_pool, new_pgrp);
863 #ifdef DEBUG_PGRP
864 if (__predict_false(rval))
865 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
866 pid, pgid, mksess, curp->p_pid, rval);
867 #endif
868 return rval;
869 }
870
871 /*
872 * Remove a process from its process group. Must be called with the
873 * proclist_lock write held.
874 */
875 void
876 leavepgrp(struct proc *p)
877 {
878 struct pgrp *pgrp;
879
880 LOCK_ASSERT(rw_write_held(&proclist_lock));
881
882 /*
883 * If there's a controlling terminal for the session, we have to
884 * interlock with it. See ttread().
885 */
886 mutex_enter(&proclist_mutex);
887 #ifdef notyet
888 if (p_>p_session->s_ttyvp != NULL) {
889 tp = p->p_session->s_ttyp;
890 mutex_enter(&tp->t_mutex);
891 } else
892 tp = NULL;
893 #endif
894
895 pgrp = p->p_pgrp;
896 LIST_REMOVE(p, p_pglist);
897 p->p_pgrp = NULL;
898
899 #ifdef notyet
900 if (tp != NULL)
901 mutex_exit(&tp->t_mutex);
902 #endif
903 mutex_exit(&proclist_mutex);
904
905 if (LIST_EMPTY(&pgrp->pg_members))
906 pg_delete(pgrp->pg_id);
907 }
908
909 /*
910 * Free a process group. Must be called with the proclist_lock write held.
911 */
912 static void
913 pg_free(pid_t pg_id)
914 {
915 struct pgrp *pgrp;
916 struct pid_table *pt;
917
918 LOCK_ASSERT(rw_write_held(&proclist_lock));
919
920 pt = &pid_table[pg_id & pid_tbl_mask];
921 pgrp = pt->pt_pgrp;
922 #ifdef DIAGNOSTIC
923 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
924 || !LIST_EMPTY(&pgrp->pg_members)))
925 panic("pg_free: process group absent or has members");
926 #endif
927 pt->pt_pgrp = 0;
928
929 if (!P_VALID(pt->pt_proc)) {
930 /* orphaned pgrp, put slot onto free list */
931 #ifdef DIAGNOSTIC
932 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
933 panic("pg_free: process slot on free list");
934 #endif
935 mutex_enter(&proclist_mutex);
936 pg_id &= pid_tbl_mask;
937 pt = &pid_table[last_free_pt];
938 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
939 mutex_exit(&proclist_mutex);
940 last_free_pt = pg_id;
941 pid_alloc_cnt--;
942 }
943 pool_put(&pgrp_pool, pgrp);
944 }
945
946 /*
947 * Delete a process group. Must be called with the proclist_lock write
948 * held.
949 */
950 static void
951 pg_delete(pid_t pg_id)
952 {
953 struct pgrp *pgrp;
954 struct tty *ttyp;
955 struct session *ss;
956 int is_pgrp_leader;
957
958 LOCK_ASSERT(rw_write_held(&proclist_lock));
959
960 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
961 if (pgrp == NULL || pgrp->pg_id != pg_id ||
962 !LIST_EMPTY(&pgrp->pg_members))
963 return;
964
965 ss = pgrp->pg_session;
966
967 /* Remove reference (if any) from tty to this process group */
968 ttyp = ss->s_ttyp;
969 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
970 ttyp->t_pgrp = NULL;
971 #ifdef DIAGNOSTIC
972 if (ttyp->t_session != ss)
973 panic("pg_delete: wrong session on terminal");
974 #endif
975 }
976
977 /*
978 * The leading process group in a session is freed
979 * by sessdelete() if last reference.
980 */
981 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
982 SESSRELE(ss);
983
984 if (is_pgrp_leader)
985 return;
986
987 pg_free(pg_id);
988 }
989
990 /*
991 * Delete session - called from SESSRELE when s_count becomes zero.
992 * Must be called with the proclist_lock write held.
993 */
994 void
995 sessdelete(struct session *ss)
996 {
997
998 LOCK_ASSERT(rw_write_held(&proclist_lock));
999
1000 /*
1001 * We keep the pgrp with the same id as the session in
1002 * order to stop a process being given the same pid.
1003 * Since the pgrp holds a reference to the session, it
1004 * must be a 'zombie' pgrp by now.
1005 */
1006 pg_free(ss->s_sid);
1007 pool_put(&session_pool, ss);
1008 }
1009
1010 /*
1011 * Adjust pgrp jobc counters when specified process changes process group.
1012 * We count the number of processes in each process group that "qualify"
1013 * the group for terminal job control (those with a parent in a different
1014 * process group of the same session). If that count reaches zero, the
1015 * process group becomes orphaned. Check both the specified process'
1016 * process group and that of its children.
1017 * entering == 0 => p is leaving specified group.
1018 * entering == 1 => p is entering specified group.
1019 *
1020 * Call with proclist_lock write held.
1021 */
1022 void
1023 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1024 {
1025 struct pgrp *hispgrp;
1026 struct session *mysession = pgrp->pg_session;
1027 struct proc *child;
1028
1029 LOCK_ASSERT(rw_write_held(&proclist_lock));
1030
1031 /*
1032 * Check p's parent to see whether p qualifies its own process
1033 * group; if so, adjust count for p's process group.
1034 */
1035 hispgrp = p->p_pptr->p_pgrp;
1036 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1037 if (entering) {
1038 mutex_enter(&p->p_smutex);
1039 p->p_sflag &= ~PS_ORPHANPG;
1040 mutex_exit(&p->p_smutex);
1041 pgrp->pg_jobc++;
1042 } else if (--pgrp->pg_jobc == 0)
1043 orphanpg(pgrp);
1044 }
1045
1046 /*
1047 * Check this process' children to see whether they qualify
1048 * their process groups; if so, adjust counts for children's
1049 * process groups.
1050 */
1051 LIST_FOREACH(child, &p->p_children, p_sibling) {
1052 hispgrp = child->p_pgrp;
1053 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1054 !P_ZOMBIE(child)) {
1055 if (entering) {
1056 mutex_enter(&child->p_smutex);
1057 child->p_sflag &= ~PS_ORPHANPG;
1058 mutex_exit(&child->p_smutex);
1059 hispgrp->pg_jobc++;
1060 } else if (--hispgrp->pg_jobc == 0)
1061 orphanpg(hispgrp);
1062 }
1063 }
1064 }
1065
1066 /*
1067 * A process group has become orphaned;
1068 * if there are any stopped processes in the group,
1069 * hang-up all process in that group.
1070 *
1071 * Call with proclist_lock write held.
1072 */
1073 static void
1074 orphanpg(struct pgrp *pg)
1075 {
1076 struct proc *p;
1077 int doit;
1078
1079 LOCK_ASSERT(rw_write_held(&proclist_lock));
1080
1081 doit = 0;
1082
1083 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1084 mutex_enter(&p->p_smutex);
1085 if (p->p_stat == SSTOP) {
1086 doit = 1;
1087 p->p_sflag |= PS_ORPHANPG;
1088 }
1089 mutex_exit(&p->p_smutex);
1090 }
1091
1092 if (doit) {
1093 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1094 psignal(p, SIGHUP);
1095 psignal(p, SIGCONT);
1096 }
1097 }
1098 }
1099
1100 /* mark process as suid/sgid, reset some values to defaults */
1101 void
1102 p_sugid(struct proc *p)
1103 {
1104 struct plimit *lim;
1105 char *cn;
1106
1107 p->p_flag |= P_SUGID;
1108 /* reset what needs to be reset in plimit */
1109 lim = p->p_limit;
1110 if (lim->pl_corename != defcorename) {
1111 if (lim->p_refcnt > 1 &&
1112 (lim->p_lflags & PL_SHAREMOD) == 0) {
1113 p->p_limit = limcopy(lim);
1114 limfree(lim);
1115 lim = p->p_limit;
1116 }
1117 simple_lock(&lim->p_slock);
1118 cn = lim->pl_corename;
1119 lim->pl_corename = defcorename;
1120 simple_unlock(&lim->p_slock);
1121 if (cn != defcorename)
1122 free(cn, M_TEMP);
1123 }
1124 }
1125
1126 #ifdef DDB
1127 #include <ddb/db_output.h>
1128 void pidtbl_dump(void);
1129 void
1130 pidtbl_dump(void)
1131 {
1132 struct pid_table *pt;
1133 struct proc *p;
1134 struct pgrp *pgrp;
1135 int id;
1136
1137 db_printf("pid table %p size %x, next %x, last %x\n",
1138 pid_table, pid_tbl_mask+1,
1139 next_free_pt, last_free_pt);
1140 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1141 p = pt->pt_proc;
1142 if (!P_VALID(p) && !pt->pt_pgrp)
1143 continue;
1144 db_printf(" id %x: ", id);
1145 if (P_VALID(p))
1146 db_printf("proc %p id %d (0x%x) %s\n",
1147 p, p->p_pid, p->p_pid, p->p_comm);
1148 else
1149 db_printf("next %x use %x\n",
1150 P_NEXT(p) & pid_tbl_mask,
1151 P_NEXT(p) & ~pid_tbl_mask);
1152 if ((pgrp = pt->pt_pgrp)) {
1153 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1154 pgrp->pg_session, pgrp->pg_session->s_sid,
1155 pgrp->pg_session->s_count,
1156 pgrp->pg_session->s_login);
1157 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1158 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1159 pgrp->pg_members.lh_first);
1160 for (p = pgrp->pg_members.lh_first; p != 0;
1161 p = p->p_pglist.le_next) {
1162 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1163 p->p_pid, p, p->p_pgrp, p->p_comm);
1164 }
1165 }
1166 }
1167 }
1168 #endif /* DDB */
1169
1170 #ifdef KSTACK_CHECK_MAGIC
1171 #include <sys/user.h>
1172
1173 #define KSTACK_MAGIC 0xdeadbeaf
1174
1175 /* XXX should be per process basis? */
1176 int kstackleftmin = KSTACK_SIZE;
1177 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1178 less than this */
1179
1180 void
1181 kstack_setup_magic(const struct lwp *l)
1182 {
1183 uint32_t *ip;
1184 uint32_t const *end;
1185
1186 KASSERT(l != NULL);
1187 KASSERT(l != &lwp0);
1188
1189 /*
1190 * fill all the stack with magic number
1191 * so that later modification on it can be detected.
1192 */
1193 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1194 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1195 for (; ip < end; ip++) {
1196 *ip = KSTACK_MAGIC;
1197 }
1198 }
1199
1200 void
1201 kstack_check_magic(const struct lwp *l)
1202 {
1203 uint32_t const *ip, *end;
1204 int stackleft;
1205
1206 KASSERT(l != NULL);
1207
1208 /* don't check proc0 */ /*XXX*/
1209 if (l == &lwp0)
1210 return;
1211
1212 #ifdef __MACHINE_STACK_GROWS_UP
1213 /* stack grows upwards (eg. hppa) */
1214 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1215 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1216 for (ip--; ip >= end; ip--)
1217 if (*ip != KSTACK_MAGIC)
1218 break;
1219
1220 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1221 #else /* __MACHINE_STACK_GROWS_UP */
1222 /* stack grows downwards (eg. i386) */
1223 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1224 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1225 for (; ip < end; ip++)
1226 if (*ip != KSTACK_MAGIC)
1227 break;
1228
1229 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1230 #endif /* __MACHINE_STACK_GROWS_UP */
1231
1232 if (kstackleftmin > stackleft) {
1233 kstackleftmin = stackleft;
1234 if (stackleft < kstackleftthres)
1235 printf("warning: kernel stack left %d bytes"
1236 "(pid %u:lid %u)\n", stackleft,
1237 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1238 }
1239
1240 if (stackleft <= 0) {
1241 panic("magic on the top of kernel stack changed for "
1242 "pid %u, lid %u: maybe kernel stack overflow",
1243 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1244 }
1245 }
1246 #endif /* KSTACK_CHECK_MAGIC */
1247
1248 /*
1249 * XXXSMP this is bust, it grabs a read lock and then messes about
1250 * with allproc.
1251 */
1252 int
1253 proclist_foreach_call(struct proclist *list,
1254 int (*callback)(struct proc *, void *arg), void *arg)
1255 {
1256 struct proc marker;
1257 struct proc *p;
1258 struct lwp * const l = curlwp;
1259 int ret = 0;
1260
1261 marker.p_flag = P_MARKER;
1262 PHOLD(l);
1263 rw_enter(&proclist_lock, RW_READER);
1264 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1265 if (p->p_flag & P_MARKER) {
1266 p = LIST_NEXT(p, p_list);
1267 continue;
1268 }
1269 LIST_INSERT_AFTER(p, &marker, p_list);
1270 ret = (*callback)(p, arg);
1271 KASSERT(rw_read_held(&proclist_lock));
1272 p = LIST_NEXT(&marker, p_list);
1273 LIST_REMOVE(&marker, p_list);
1274 }
1275 rw_exit(&proclist_lock);
1276 PRELE(l);
1277
1278 return ret;
1279 }
1280
1281 int
1282 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1283 {
1284
1285 /* XXXCDC: how should locking work here? */
1286
1287 /* curproc exception is for coredump. */
1288
1289 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1290 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1291 return EFAULT;
1292 }
1293
1294 uvmspace_addref(p->p_vmspace);
1295 *vm = p->p_vmspace;
1296
1297 return 0;
1298 }
1299
1300 /*
1301 * Acquire a write lock on the process credential.
1302 */
1303 void
1304 proc_crmod_enter(void)
1305 {
1306 struct lwp *l = curlwp;
1307 struct proc *p = l->l_proc;
1308 kauth_cred_t oc;
1309
1310 mutex_enter(&p->p_mutex);
1311
1312 /* Ensure the LWP cached credentials are up to date. */
1313 if ((oc = l->l_cred) != p->p_cred) {
1314 kauth_cred_hold(p->p_cred);
1315 l->l_cred = p->p_cred;
1316 kauth_cred_free(oc);
1317 }
1318 }
1319
1320 /*
1321 * Set in a new process credential, and drop the write lock. The credential
1322 * must have a reference already. Optionally, free a no-longer required
1323 * credential. The scheduler also needs to inspect p_cred, so we also
1324 * briefly acquire the sched state mutex.
1325 */
1326 void
1327 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
1328 {
1329 struct lwp *l = curlwp;
1330 struct proc *p = l->l_proc;
1331 kauth_cred_t oc;
1332
1333 mutex_enter(&p->p_smutex);
1334 p->p_cred = scred;
1335 mutex_exit(&p->p_smutex);
1336
1337 /* Ensure the LWP cached credentials are up to date. */
1338 if ((oc = l->l_cred) != scred) {
1339 kauth_cred_hold(scred);
1340 l->l_cred = scred;
1341 }
1342
1343 mutex_exit(&p->p_mutex);
1344 kauth_cred_free(fcred);
1345 if (oc != scred)
1346 kauth_cred_free(oc);
1347 }
1348
1349 /*
1350 * Acquire a reference on a process, to prevent it from exiting or execing.
1351 */
1352 int
1353 proc_addref(struct proc *p)
1354 {
1355
1356 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1357
1358 if (p->p_refcnt <= 0)
1359 return EAGAIN;
1360 p->p_refcnt++;
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Release a reference on a process.
1367 */
1368 void
1369 proc_delref(struct proc *p)
1370 {
1371
1372 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1373
1374 if (p->p_refcnt < 0) {
1375 if (++p->p_refcnt == 0)
1376 cv_broadcast(&p->p_refcv);
1377 } else {
1378 p->p_refcnt--;
1379 KASSERT(p->p_refcnt != 0);
1380 }
1381 }
1382
1383 /*
1384 * Wait for all references on the process to drain, and prevent new
1385 * references from being acquired.
1386 */
1387 void
1388 proc_drainrefs(struct proc *p)
1389 {
1390
1391 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1392 KASSERT(p->p_refcnt > 0);
1393
1394 /*
1395 * The process itself holds the last reference. Once it's released,
1396 * no new references will be granted. If we have already locked out
1397 * new references (refcnt <= 0), potentially due to a failed exec,
1398 * there is nothing more to do.
1399 */
1400 p->p_refcnt = 1 - p->p_refcnt;
1401 while (p->p_refcnt != 0)
1402 cv_wait(&p->p_refcv, &p->p_mutex);
1403 }
1404
1405 /*
1406 * proc_specific_key_create --
1407 * Create a key for subsystem proc-specific data.
1408 */
1409 int
1410 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1411 {
1412
1413 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1414 }
1415
1416 /*
1417 * proc_specific_key_delete --
1418 * Delete a key for subsystem proc-specific data.
1419 */
1420 void
1421 proc_specific_key_delete(specificdata_key_t key)
1422 {
1423
1424 specificdata_key_delete(proc_specificdata_domain, key);
1425 }
1426
1427 /*
1428 * proc_initspecific --
1429 * Initialize a proc's specificdata container.
1430 */
1431 void
1432 proc_initspecific(struct proc *p)
1433 {
1434 int error;
1435
1436 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1437 KASSERT(error == 0);
1438 }
1439
1440 /*
1441 * proc_finispecific --
1442 * Finalize a proc's specificdata container.
1443 */
1444 void
1445 proc_finispecific(struct proc *p)
1446 {
1447
1448 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1449 }
1450
1451 /*
1452 * proc_getspecific --
1453 * Return proc-specific data corresponding to the specified key.
1454 */
1455 void *
1456 proc_getspecific(struct proc *p, specificdata_key_t key)
1457 {
1458
1459 return (specificdata_getspecific(proc_specificdata_domain,
1460 &p->p_specdataref, key));
1461 }
1462
1463 /*
1464 * proc_setspecific --
1465 * Set proc-specific data corresponding to the specified key.
1466 */
1467 void
1468 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1469 {
1470
1471 specificdata_setspecific(proc_specificdata_domain,
1472 &p->p_specdataref, key, data);
1473 }
1474