kern_proc.c revision 1.94.4.8 1 /* $NetBSD: kern_proc.c,v 1.94.4.8 2007/01/25 20:18:37 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94.4.8 2007/01/25 20:18:37 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_extern.h>
105
106 /*
107 * Other process lists
108 */
109
110 struct proclist allproc;
111 struct proclist zombproc; /* resources have been freed */
112
113 /*
114 * There are two locks on global process state.
115 *
116 * 1. proclist_lock is a reader/writer lock and is used when modifying or
117 * examining process state from a process context. It protects our internal
118 * tables, all of the process lists, and a number of members of struct lwp
119 * and struct proc.
120
121 * 2. proclist_mutex is used when allproc must be traversed from an
122 * interrupt context, or when we must signal processes from an interrupt
123 * context. The proclist_lock should always be used in preference.
124 *
125 * proclist_lock proclist_mutex structure
126 * --------------- --------------- -----------------
127 * x zombproc
128 * x x pid_table
129 * x proc::p_pptr
130 * x proc::p_sibling
131 * x proc::p_children
132 * x x allproc
133 * x x proc::p_pgrp
134 * x x proc::p_pglist
135 * x x proc::p_session
136 * x x proc::p_list
137 * x alllwp
138 * x lwp::l_list
139 *
140 * The lock order for processes and LWPs is apporoximately as following:
141 *
142 * kernel_mutex
143 * -> proclist_lock
144 * -> proclist_mutex
145 * -> proc::p_mutex
146 * -> proc::p_smutex
147 */
148 krwlock_t proclist_lock;
149 kmutex_t proclist_mutex;
150
151 /*
152 * pid to proc lookup is done by indexing the pid_table array.
153 * Since pid numbers are only allocated when an empty slot
154 * has been found, there is no need to search any lists ever.
155 * (an orphaned pgrp will lock the slot, a session will lock
156 * the pgrp with the same number.)
157 * If the table is too small it is reallocated with twice the
158 * previous size and the entries 'unzipped' into the two halves.
159 * A linked list of free entries is passed through the pt_proc
160 * field of 'free' items - set odd to be an invalid ptr.
161 */
162
163 struct pid_table {
164 struct proc *pt_proc;
165 struct pgrp *pt_pgrp;
166 };
167 #if 1 /* strongly typed cast - should be a noop */
168 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
169 #else
170 #define p2u(p) ((uint)p)
171 #endif
172 #define P_VALID(p) (!(p2u(p) & 1))
173 #define P_NEXT(p) (p2u(p) >> 1)
174 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
175
176 #define INITIAL_PID_TABLE_SIZE (1 << 5)
177 static struct pid_table *pid_table;
178 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
179 static uint pid_alloc_lim; /* max we allocate before growing table */
180 static uint pid_alloc_cnt; /* number of allocated pids */
181
182 /* links through free slots - never empty! */
183 static uint next_free_pt, last_free_pt;
184 static pid_t pid_max = PID_MAX; /* largest value we allocate */
185
186 /* Components of the first process -- never freed. */
187 struct session session0;
188 struct pgrp pgrp0;
189 struct proc proc0;
190 struct lwp lwp0 __aligned(16);
191 kauth_cred_t cred0;
192 struct filedesc0 filedesc0;
193 struct cwdinfo cwdi0;
194 struct plimit limit0;
195 struct pstats pstat0;
196 struct vmspace vmspace0;
197 struct sigacts sigacts0;
198 struct turnstile turnstile0;
199
200 extern struct user *proc0paddr;
201
202 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
203
204 int nofile = NOFILE;
205 int maxuprc = MAXUPRC;
206 int cmask = CMASK;
207
208 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
209 &pool_allocator_nointr);
210 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
211 &pool_allocator_nointr);
212 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
213 &pool_allocator_nointr);
214 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
215 &pool_allocator_nointr);
216 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
217 &pool_allocator_nointr);
218 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
219 &pool_allocator_nointr);
220
221 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
222 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
223 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
224
225 /*
226 * The process list descriptors, used during pid allocation and
227 * by sysctl. No locking on this data structure is needed since
228 * it is completely static.
229 */
230 const struct proclist_desc proclists[] = {
231 { &allproc },
232 { &zombproc },
233 { NULL },
234 };
235
236 static void orphanpg(struct pgrp *);
237 static void pg_delete(pid_t);
238
239 static specificdata_domain_t proc_specificdata_domain;
240
241 /*
242 * Initialize global process hashing structures.
243 */
244 void
245 procinit(void)
246 {
247 const struct proclist_desc *pd;
248 int i;
249 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
250
251 for (pd = proclists; pd->pd_list != NULL; pd++)
252 LIST_INIT(pd->pd_list);
253
254 rw_init(&proclist_lock);
255 mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
256
257 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
258 M_PROC, M_WAITOK);
259 /* Set free list running through table...
260 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
261 for (i = 0; i <= pid_tbl_mask; i++) {
262 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
263 pid_table[i].pt_pgrp = 0;
264 }
265 /* slot 0 is just grabbed */
266 next_free_pt = 1;
267 /* Need to fix last entry. */
268 last_free_pt = pid_tbl_mask;
269 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
270 /* point at which we grow table - to avoid reusing pids too often */
271 pid_alloc_lim = pid_tbl_mask - 1;
272 #undef LINK_EMPTY
273
274 LIST_INIT(&alllwp);
275
276 uihashtbl =
277 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
278
279 proc_specificdata_domain = specificdata_domain_create();
280 KASSERT(proc_specificdata_domain != NULL);
281 }
282
283 /*
284 * Initialize process 0.
285 */
286 void
287 proc0_init(void)
288 {
289 struct proc *p;
290 struct pgrp *pg;
291 struct session *sess;
292 struct lwp *l;
293 u_int i;
294 rlim_t lim;
295
296 p = &proc0;
297 pg = &pgrp0;
298 sess = &session0;
299 l = &lwp0;
300
301 mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
302 mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_STATCLOCK);
303 mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_NONE);
304 mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
305 cv_init(&p->p_refcv, "drainref");
306 cv_init(&p->p_waitcv, "wait");
307 cv_init(&p->p_lwpcv, "lwpwait");
308
309 LIST_INIT(&p->p_lwps);
310 LIST_INIT(&p->p_sigwaiters);
311 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
312
313 p->p_nlwps = 1;
314 p->p_nrlwps = 1;
315 p->p_refcnt = 1;
316
317 pid_table[0].pt_proc = p;
318 LIST_INSERT_HEAD(&allproc, p, p_list);
319 LIST_INSERT_HEAD(&alllwp, l, l_list);
320
321 p->p_pgrp = pg;
322 pid_table[0].pt_pgrp = pg;
323 LIST_INIT(&pg->pg_members);
324 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
325
326 pg->pg_session = sess;
327 sess->s_count = 1;
328 sess->s_sid = 0;
329 sess->s_leader = p;
330
331 /*
332 * Set P_NOCLDWAIT so that kernel threads are reparented to
333 * init(8) when they exit. init(8) can easily wait them out
334 * for us.
335 */
336 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
337 p->p_stat = SACTIVE;
338 p->p_nice = NZERO;
339 p->p_emul = &emul_netbsd;
340 #ifdef __HAVE_SYSCALL_INTERN
341 (*p->p_emul->e_syscall_intern)(p);
342 #endif
343 strncpy(p->p_comm, "swapper", MAXCOMLEN);
344
345 l->l_mutex = &sched_mutex;
346 l->l_flag = L_INMEM | L_SYSTEM;
347 l->l_stat = LSONPROC;
348 l->l_ts = &turnstile0;
349 l->l_syncobj = &sched_syncobj;
350 l->l_refcnt = 1;
351 l->l_cpu = curcpu();
352 l->l_priority = PRIBIO;
353 l->l_usrpri = PRIBIO;
354
355 callout_init(&l->l_tsleep_ch);
356 cv_init(&l->l_sigcv, "sigwait");
357
358 /* Create credentials. */
359 cred0 = kauth_cred_alloc();
360 p->p_cred = cred0;
361 kauth_cred_hold(cred0);
362 l->l_cred = cred0;
363
364 /* Create the CWD info. */
365 p->p_cwdi = &cwdi0;
366 cwdi0.cwdi_cmask = cmask;
367 cwdi0.cwdi_refcnt = 1;
368 simple_lock_init(&cwdi0.cwdi_slock);
369
370 /* Create the limits structures. */
371 p->p_limit = &limit0;
372 simple_lock_init(&limit0.p_slock);
373 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
374 limit0.pl_rlimit[i].rlim_cur =
375 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
376
377 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
378 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
379 maxfiles < nofile ? maxfiles : nofile;
380
381 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
382 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
383 maxproc < maxuprc ? maxproc : maxuprc;
384
385 lim = ptoa(uvmexp.free);
386 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
387 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
388 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
389 limit0.pl_corename = defcorename;
390 limit0.p_refcnt = 1;
391
392 /* Configure virtual memory system, set vm rlimits. */
393 uvm_init_limits(p);
394
395 /* Initialize file descriptor table for proc0. */
396 p->p_fd = &filedesc0.fd_fd;
397 fdinit1(&filedesc0);
398
399 /*
400 * Initialize proc0's vmspace, which uses the kernel pmap.
401 * All kernel processes (which never have user space mappings)
402 * share proc0's vmspace, and thus, the kernel pmap.
403 */
404 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
405 trunc_page(VM_MAX_ADDRESS));
406 p->p_vmspace = &vmspace0;
407
408 l->l_addr = proc0paddr; /* XXX */
409
410 p->p_stats = &pstat0;
411
412 /* Initialize signal state for proc0. */
413 p->p_sigacts = &sigacts0;
414 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
415 siginit(p);
416
417 proc_initspecific(p);
418 lwp_initspecific(l);
419 }
420
421 /*
422 * Check that the specified process group is in the session of the
423 * specified process.
424 * Treats -ve ids as process ids.
425 * Used to validate TIOCSPGRP requests.
426 */
427 int
428 pgid_in_session(struct proc *p, pid_t pg_id)
429 {
430 struct pgrp *pgrp;
431
432 if (pg_id < 0) {
433 struct proc *p1 = pfind(-pg_id);
434 if (p1 == NULL)
435 return EINVAL;
436 pgrp = p1->p_pgrp;
437 } else {
438 pgrp = pgfind(pg_id);
439 if (pgrp == NULL)
440 return EINVAL;
441 }
442 if (pgrp->pg_session != p->p_pgrp->pg_session)
443 return EPERM;
444 return 0;
445 }
446
447 /*
448 * Is p an inferior of q?
449 *
450 * Call with the proclist_lock held.
451 */
452 int
453 inferior(struct proc *p, struct proc *q)
454 {
455
456 for (; p != q; p = p->p_pptr)
457 if (p->p_pid == 0)
458 return 0;
459 return 1;
460 }
461
462 /*
463 * Locate a process by number
464 */
465 struct proc *
466 p_find(pid_t pid, uint flags)
467 {
468 struct proc *p;
469 char stat;
470
471 if (!(flags & PFIND_LOCKED))
472 rw_enter(&proclist_lock, RW_READER);
473
474 p = pid_table[pid & pid_tbl_mask].pt_proc;
475
476 /* Only allow live processes to be found by pid. */
477 /* XXXSMP p_stat */
478 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
479 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
480 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
481 if (flags & PFIND_UNLOCK_OK)
482 rw_exit(&proclist_lock);
483 return p;
484 }
485 if (flags & PFIND_UNLOCK_FAIL)
486 rw_exit(&proclist_lock);
487 return NULL;
488 }
489
490
491 /*
492 * Locate a process group by number
493 */
494 struct pgrp *
495 pg_find(pid_t pgid, uint flags)
496 {
497 struct pgrp *pg;
498
499 if (!(flags & PFIND_LOCKED))
500 rw_enter(&proclist_lock, RW_READER);
501 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
502 /*
503 * Can't look up a pgrp that only exists because the session
504 * hasn't died yet (traditional)
505 */
506 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
507 if (flags & PFIND_UNLOCK_FAIL)
508 rw_exit(&proclist_lock);
509 return NULL;
510 }
511
512 if (flags & PFIND_UNLOCK_OK)
513 rw_exit(&proclist_lock);
514 return pg;
515 }
516
517 static void
518 expand_pid_table(void)
519 {
520 uint pt_size = pid_tbl_mask + 1;
521 struct pid_table *n_pt, *new_pt;
522 struct proc *proc;
523 struct pgrp *pgrp;
524 int i;
525 pid_t pid;
526
527 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
528
529 rw_enter(&proclist_lock, RW_WRITER);
530 if (pt_size != pid_tbl_mask + 1) {
531 /* Another process beat us to it... */
532 rw_exit(&proclist_lock);
533 FREE(new_pt, M_PROC);
534 return;
535 }
536
537 /*
538 * Copy entries from old table into new one.
539 * If 'pid' is 'odd' we need to place in the upper half,
540 * even pid's to the lower half.
541 * Free items stay in the low half so we don't have to
542 * fixup the reference to them.
543 * We stuff free items on the front of the freelist
544 * because we can't write to unmodified entries.
545 * Processing the table backwards maintains a semblance
546 * of issueing pid numbers that increase with time.
547 */
548 i = pt_size - 1;
549 n_pt = new_pt + i;
550 for (; ; i--, n_pt--) {
551 proc = pid_table[i].pt_proc;
552 pgrp = pid_table[i].pt_pgrp;
553 if (!P_VALID(proc)) {
554 /* Up 'use count' so that link is valid */
555 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
556 proc = P_FREE(pid);
557 if (pgrp)
558 pid = pgrp->pg_id;
559 } else
560 pid = proc->p_pid;
561
562 /* Save entry in appropriate half of table */
563 n_pt[pid & pt_size].pt_proc = proc;
564 n_pt[pid & pt_size].pt_pgrp = pgrp;
565
566 /* Put other piece on start of free list */
567 pid = (pid ^ pt_size) & ~pid_tbl_mask;
568 n_pt[pid & pt_size].pt_proc =
569 P_FREE((pid & ~pt_size) | next_free_pt);
570 n_pt[pid & pt_size].pt_pgrp = 0;
571 next_free_pt = i | (pid & pt_size);
572 if (i == 0)
573 break;
574 }
575
576 /* Switch tables */
577 mutex_enter(&proclist_mutex);
578 n_pt = pid_table;
579 pid_table = new_pt;
580 mutex_exit(&proclist_mutex);
581 pid_tbl_mask = pt_size * 2 - 1;
582
583 /*
584 * pid_max starts as PID_MAX (= 30000), once we have 16384
585 * allocated pids we need it to be larger!
586 */
587 if (pid_tbl_mask > PID_MAX) {
588 pid_max = pid_tbl_mask * 2 + 1;
589 pid_alloc_lim |= pid_alloc_lim << 1;
590 } else
591 pid_alloc_lim <<= 1; /* doubles number of free slots... */
592
593 rw_exit(&proclist_lock);
594 FREE(n_pt, M_PROC);
595 }
596
597 struct proc *
598 proc_alloc(void)
599 {
600 struct proc *p;
601 int nxt;
602 pid_t pid;
603 struct pid_table *pt;
604
605 p = pool_get(&proc_pool, PR_WAITOK);
606 p->p_stat = SIDL; /* protect against others */
607
608 proc_initspecific(p);
609 /* allocate next free pid */
610
611 for (;;expand_pid_table()) {
612 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
613 /* ensure pids cycle through 2000+ values */
614 continue;
615 rw_enter(&proclist_lock, RW_WRITER);
616 pt = &pid_table[next_free_pt];
617 #ifdef DIAGNOSTIC
618 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
619 panic("proc_alloc: slot busy");
620 #endif
621 nxt = P_NEXT(pt->pt_proc);
622 if (nxt & pid_tbl_mask)
623 break;
624 /* Table full - expand (NB last entry not used....) */
625 rw_exit(&proclist_lock);
626 }
627
628 /* pid is 'saved use count' + 'size' + entry */
629 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
630 if ((uint)pid > (uint)pid_max)
631 pid &= pid_tbl_mask;
632 p->p_pid = pid;
633 next_free_pt = nxt & pid_tbl_mask;
634
635 /* Grab table slot */
636 mutex_enter(&proclist_mutex);
637 pt->pt_proc = p;
638 mutex_exit(&proclist_mutex);
639 pid_alloc_cnt++;
640
641 rw_exit(&proclist_lock);
642
643 return p;
644 }
645
646 /*
647 * Free last resources of a process - called from proc_free (in kern_exit.c)
648 *
649 * Called with the proclist_lock write held, and releases upon exit.
650 */
651 void
652 proc_free_mem(struct proc *p)
653 {
654 pid_t pid = p->p_pid;
655 struct pid_table *pt;
656
657 LOCK_ASSERT(rw_write_held(&proclist_lock));
658
659 pt = &pid_table[pid & pid_tbl_mask];
660 #ifdef DIAGNOSTIC
661 if (__predict_false(pt->pt_proc != p))
662 panic("proc_free: pid_table mismatch, pid %x, proc %p",
663 pid, p);
664 #endif
665 mutex_enter(&proclist_mutex);
666 /* save pid use count in slot */
667 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
668
669 if (pt->pt_pgrp == NULL) {
670 /* link last freed entry onto ours */
671 pid &= pid_tbl_mask;
672 pt = &pid_table[last_free_pt];
673 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
674 last_free_pt = pid;
675 pid_alloc_cnt--;
676 }
677 mutex_exit(&proclist_mutex);
678
679 nprocs--;
680 rw_exit(&proclist_lock);
681
682 pool_put(&proc_pool, p);
683 }
684
685 /*
686 * Move p to a new or existing process group (and session)
687 *
688 * If we are creating a new pgrp, the pgid should equal
689 * the calling process' pid.
690 * If is only valid to enter a process group that is in the session
691 * of the process.
692 * Also mksess should only be set if we are creating a process group
693 *
694 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
695 * SYSV setpgrp support for hpux.
696 */
697 int
698 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
699 {
700 struct pgrp *new_pgrp, *pgrp;
701 struct session *sess;
702 struct proc *p;
703 int rval;
704 pid_t pg_id = NO_PGID;
705
706 /* Allocate data areas we might need before doing any validity checks */
707 rw_enter(&proclist_lock, RW_READER); /* Because pid_table might change */
708 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
709 rw_exit(&proclist_lock);
710 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
711 } else {
712 rw_exit(&proclist_lock);
713 new_pgrp = NULL;
714 }
715 if (mksess)
716 sess = pool_get(&session_pool, PR_WAITOK);
717 else
718 sess = NULL;
719
720 rw_enter(&proclist_lock, RW_WRITER);
721 rval = EPERM; /* most common error (to save typing) */
722
723 /* Check pgrp exists or can be created */
724 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
725 if (pgrp != NULL && pgrp->pg_id != pgid)
726 goto done;
727
728 /* Can only set another process under restricted circumstances. */
729 if (pid != curp->p_pid) {
730 /* must exist and be one of our children... */
731 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
732 !inferior(p, curp)) {
733 rval = ESRCH;
734 goto done;
735 }
736 /* ... in the same session... */
737 if (sess != NULL || p->p_session != curp->p_session)
738 goto done;
739 /* ... existing pgid must be in same session ... */
740 if (pgrp != NULL && pgrp->pg_session != p->p_session)
741 goto done;
742 /* ... and not done an exec. */
743 if (p->p_flag & P_EXEC) {
744 rval = EACCES;
745 goto done;
746 }
747 } else {
748 /* ... setsid() cannot re-enter a pgrp */
749 if (mksess && (curp->p_pgid == curp->p_pid ||
750 pg_find(curp->p_pid, PFIND_LOCKED)))
751 goto done;
752 p = curp;
753 }
754
755 /* Changing the process group/session of a session
756 leader is definitely off limits. */
757 if (SESS_LEADER(p)) {
758 if (sess == NULL && p->p_pgrp == pgrp)
759 /* unless it's a definite noop */
760 rval = 0;
761 goto done;
762 }
763
764 /* Can only create a process group with id of process */
765 if (pgrp == NULL && pgid != pid)
766 goto done;
767
768 /* Can only create a session if creating pgrp */
769 if (sess != NULL && pgrp != NULL)
770 goto done;
771
772 /* Check we allocated memory for a pgrp... */
773 if (pgrp == NULL && new_pgrp == NULL)
774 goto done;
775
776 /* Don't attach to 'zombie' pgrp */
777 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
778 goto done;
779
780 /* Expect to succeed now */
781 rval = 0;
782
783 if (pgrp == p->p_pgrp)
784 /* nothing to do */
785 goto done;
786
787 /* Ok all setup, link up required structures */
788
789 if (pgrp == NULL) {
790 pgrp = new_pgrp;
791 new_pgrp = 0;
792 if (sess != NULL) {
793 sess->s_sid = p->p_pid;
794 sess->s_leader = p;
795 sess->s_count = 1;
796 sess->s_ttyvp = NULL;
797 sess->s_ttyp = NULL;
798 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
799 memcpy(sess->s_login, p->p_session->s_login,
800 sizeof(sess->s_login));
801 p->p_lflag &= ~PL_CONTROLT;
802 } else {
803 sess = p->p_pgrp->pg_session;
804 SESSHOLD(sess);
805 }
806 pgrp->pg_session = sess;
807 sess = 0;
808
809 pgrp->pg_id = pgid;
810 LIST_INIT(&pgrp->pg_members);
811 #ifdef DIAGNOSTIC
812 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
813 panic("enterpgrp: pgrp table slot in use");
814 if (__predict_false(mksess && p != curp))
815 panic("enterpgrp: mksession and p != curproc");
816 #endif
817 mutex_enter(&proclist_mutex);
818 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
819 pgrp->pg_jobc = 0;
820 } else
821 mutex_enter(&proclist_mutex);
822
823 #ifdef notyet
824 /*
825 * If there's a controlling terminal for the current session, we
826 * have to interlock with it. See ttread().
827 */
828 if (p->p_session->s_ttyvp != NULL) {
829 tp = p->p_session->s_ttyp;
830 mutex_enter(&tp->t_mutex);
831 } else
832 tp = NULL;
833 #endif
834
835 /*
836 * Adjust eligibility of affected pgrps to participate in job control.
837 * Increment eligibility counts before decrementing, otherwise we
838 * could reach 0 spuriously during the first call.
839 */
840 fixjobc(p, pgrp, 1);
841 fixjobc(p, p->p_pgrp, 0);
842
843 /* Move process to requested group. */
844 LIST_REMOVE(p, p_pglist);
845 if (LIST_EMPTY(&p->p_pgrp->pg_members))
846 /* defer delete until we've dumped the lock */
847 pg_id = p->p_pgrp->pg_id;
848 p->p_pgrp = pgrp;
849 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
850 mutex_exit(&proclist_mutex);
851
852 #ifdef notyet
853 /* Done with the swap; we can release the tty mutex. */
854 if (tp != NULL)
855 mutex_exit(&tp->t_mutex);
856 #endif
857
858 done:
859 if (pg_id != NO_PGID)
860 pg_delete(pg_id);
861 rw_exit(&proclist_lock);
862 if (sess != NULL)
863 pool_put(&session_pool, sess);
864 if (new_pgrp != NULL)
865 pool_put(&pgrp_pool, new_pgrp);
866 #ifdef DEBUG_PGRP
867 if (__predict_false(rval))
868 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
869 pid, pgid, mksess, curp->p_pid, rval);
870 #endif
871 return rval;
872 }
873
874 /*
875 * Remove a process from its process group. Must be called with the
876 * proclist_lock write held.
877 */
878 void
879 leavepgrp(struct proc *p)
880 {
881 struct pgrp *pgrp;
882
883 LOCK_ASSERT(rw_write_held(&proclist_lock));
884
885 /*
886 * If there's a controlling terminal for the session, we have to
887 * interlock with it. See ttread().
888 */
889 mutex_enter(&proclist_mutex);
890 #ifdef notyet
891 if (p_>p_session->s_ttyvp != NULL) {
892 tp = p->p_session->s_ttyp;
893 mutex_enter(&tp->t_mutex);
894 } else
895 tp = NULL;
896 #endif
897
898 pgrp = p->p_pgrp;
899 LIST_REMOVE(p, p_pglist);
900 p->p_pgrp = NULL;
901
902 #ifdef notyet
903 if (tp != NULL)
904 mutex_exit(&tp->t_mutex);
905 #endif
906 mutex_exit(&proclist_mutex);
907
908 if (LIST_EMPTY(&pgrp->pg_members))
909 pg_delete(pgrp->pg_id);
910 }
911
912 /*
913 * Free a process group. Must be called with the proclist_lock write held.
914 */
915 static void
916 pg_free(pid_t pg_id)
917 {
918 struct pgrp *pgrp;
919 struct pid_table *pt;
920
921 LOCK_ASSERT(rw_write_held(&proclist_lock));
922
923 pt = &pid_table[pg_id & pid_tbl_mask];
924 pgrp = pt->pt_pgrp;
925 #ifdef DIAGNOSTIC
926 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
927 || !LIST_EMPTY(&pgrp->pg_members)))
928 panic("pg_free: process group absent or has members");
929 #endif
930 pt->pt_pgrp = 0;
931
932 if (!P_VALID(pt->pt_proc)) {
933 /* orphaned pgrp, put slot onto free list */
934 #ifdef DIAGNOSTIC
935 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
936 panic("pg_free: process slot on free list");
937 #endif
938 mutex_enter(&proclist_mutex);
939 pg_id &= pid_tbl_mask;
940 pt = &pid_table[last_free_pt];
941 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
942 mutex_exit(&proclist_mutex);
943 last_free_pt = pg_id;
944 pid_alloc_cnt--;
945 }
946 pool_put(&pgrp_pool, pgrp);
947 }
948
949 /*
950 * Delete a process group. Must be called with the proclist_lock write
951 * held.
952 */
953 static void
954 pg_delete(pid_t pg_id)
955 {
956 struct pgrp *pgrp;
957 struct tty *ttyp;
958 struct session *ss;
959 int is_pgrp_leader;
960
961 LOCK_ASSERT(rw_write_held(&proclist_lock));
962
963 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
964 if (pgrp == NULL || pgrp->pg_id != pg_id ||
965 !LIST_EMPTY(&pgrp->pg_members))
966 return;
967
968 ss = pgrp->pg_session;
969
970 /* Remove reference (if any) from tty to this process group */
971 ttyp = ss->s_ttyp;
972 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
973 ttyp->t_pgrp = NULL;
974 #ifdef DIAGNOSTIC
975 if (ttyp->t_session != ss)
976 panic("pg_delete: wrong session on terminal");
977 #endif
978 }
979
980 /*
981 * The leading process group in a session is freed
982 * by sessdelete() if last reference.
983 */
984 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
985 SESSRELE(ss);
986
987 if (is_pgrp_leader)
988 return;
989
990 pg_free(pg_id);
991 }
992
993 /*
994 * Delete session - called from SESSRELE when s_count becomes zero.
995 * Must be called with the proclist_lock write held.
996 */
997 void
998 sessdelete(struct session *ss)
999 {
1000
1001 LOCK_ASSERT(rw_write_held(&proclist_lock));
1002
1003 /*
1004 * We keep the pgrp with the same id as the session in
1005 * order to stop a process being given the same pid.
1006 * Since the pgrp holds a reference to the session, it
1007 * must be a 'zombie' pgrp by now.
1008 */
1009 pg_free(ss->s_sid);
1010 pool_put(&session_pool, ss);
1011 }
1012
1013 /*
1014 * Adjust pgrp jobc counters when specified process changes process group.
1015 * We count the number of processes in each process group that "qualify"
1016 * the group for terminal job control (those with a parent in a different
1017 * process group of the same session). If that count reaches zero, the
1018 * process group becomes orphaned. Check both the specified process'
1019 * process group and that of its children.
1020 * entering == 0 => p is leaving specified group.
1021 * entering == 1 => p is entering specified group.
1022 *
1023 * Call with proclist_lock write held.
1024 */
1025 void
1026 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1027 {
1028 struct pgrp *hispgrp;
1029 struct session *mysession = pgrp->pg_session;
1030 struct proc *child;
1031
1032 LOCK_ASSERT(rw_write_held(&proclist_lock));
1033
1034 /*
1035 * Check p's parent to see whether p qualifies its own process
1036 * group; if so, adjust count for p's process group.
1037 */
1038 hispgrp = p->p_pptr->p_pgrp;
1039 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1040 if (entering) {
1041 mutex_enter(&p->p_smutex);
1042 p->p_sflag &= ~PS_ORPHANPG;
1043 mutex_exit(&p->p_smutex);
1044 pgrp->pg_jobc++;
1045 } else if (--pgrp->pg_jobc == 0)
1046 orphanpg(pgrp);
1047 }
1048
1049 /*
1050 * Check this process' children to see whether they qualify
1051 * their process groups; if so, adjust counts for children's
1052 * process groups.
1053 */
1054 LIST_FOREACH(child, &p->p_children, p_sibling) {
1055 hispgrp = child->p_pgrp;
1056 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1057 !P_ZOMBIE(child)) {
1058 if (entering) {
1059 mutex_enter(&child->p_smutex);
1060 child->p_sflag &= ~PS_ORPHANPG;
1061 mutex_exit(&child->p_smutex);
1062 hispgrp->pg_jobc++;
1063 } else if (--hispgrp->pg_jobc == 0)
1064 orphanpg(hispgrp);
1065 }
1066 }
1067 }
1068
1069 /*
1070 * A process group has become orphaned;
1071 * if there are any stopped processes in the group,
1072 * hang-up all process in that group.
1073 *
1074 * Call with proclist_lock write held.
1075 */
1076 static void
1077 orphanpg(struct pgrp *pg)
1078 {
1079 struct proc *p;
1080 int doit;
1081
1082 LOCK_ASSERT(rw_write_held(&proclist_lock));
1083
1084 doit = 0;
1085
1086 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1087 mutex_enter(&p->p_smutex);
1088 if (p->p_stat == SSTOP) {
1089 doit = 1;
1090 p->p_sflag |= PS_ORPHANPG;
1091 }
1092 mutex_exit(&p->p_smutex);
1093 }
1094
1095 if (doit) {
1096 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1097 psignal(p, SIGHUP);
1098 psignal(p, SIGCONT);
1099 }
1100 }
1101 }
1102
1103 /* mark process as suid/sgid, reset some values to defaults */
1104 void
1105 p_sugid(struct proc *p)
1106 {
1107 struct plimit *lim;
1108 char *cn;
1109
1110 p->p_flag |= P_SUGID;
1111 /* reset what needs to be reset in plimit */
1112 lim = p->p_limit;
1113 if (lim->pl_corename != defcorename) {
1114 if (lim->p_refcnt > 1 &&
1115 (lim->p_lflags & PL_SHAREMOD) == 0) {
1116 p->p_limit = limcopy(lim);
1117 limfree(lim);
1118 lim = p->p_limit;
1119 }
1120 simple_lock(&lim->p_slock);
1121 cn = lim->pl_corename;
1122 lim->pl_corename = defcorename;
1123 simple_unlock(&lim->p_slock);
1124 if (cn != defcorename)
1125 free(cn, M_TEMP);
1126 }
1127 }
1128
1129 #ifdef DDB
1130 #include <ddb/db_output.h>
1131 void pidtbl_dump(void);
1132 void
1133 pidtbl_dump(void)
1134 {
1135 struct pid_table *pt;
1136 struct proc *p;
1137 struct pgrp *pgrp;
1138 int id;
1139
1140 db_printf("pid table %p size %x, next %x, last %x\n",
1141 pid_table, pid_tbl_mask+1,
1142 next_free_pt, last_free_pt);
1143 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1144 p = pt->pt_proc;
1145 if (!P_VALID(p) && !pt->pt_pgrp)
1146 continue;
1147 db_printf(" id %x: ", id);
1148 if (P_VALID(p))
1149 db_printf("proc %p id %d (0x%x) %s\n",
1150 p, p->p_pid, p->p_pid, p->p_comm);
1151 else
1152 db_printf("next %x use %x\n",
1153 P_NEXT(p) & pid_tbl_mask,
1154 P_NEXT(p) & ~pid_tbl_mask);
1155 if ((pgrp = pt->pt_pgrp)) {
1156 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1157 pgrp->pg_session, pgrp->pg_session->s_sid,
1158 pgrp->pg_session->s_count,
1159 pgrp->pg_session->s_login);
1160 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1161 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1162 pgrp->pg_members.lh_first);
1163 for (p = pgrp->pg_members.lh_first; p != 0;
1164 p = p->p_pglist.le_next) {
1165 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1166 p->p_pid, p, p->p_pgrp, p->p_comm);
1167 }
1168 }
1169 }
1170 }
1171 #endif /* DDB */
1172
1173 #ifdef KSTACK_CHECK_MAGIC
1174 #include <sys/user.h>
1175
1176 #define KSTACK_MAGIC 0xdeadbeaf
1177
1178 /* XXX should be per process basis? */
1179 int kstackleftmin = KSTACK_SIZE;
1180 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1181 less than this */
1182
1183 void
1184 kstack_setup_magic(const struct lwp *l)
1185 {
1186 uint32_t *ip;
1187 uint32_t const *end;
1188
1189 KASSERT(l != NULL);
1190 KASSERT(l != &lwp0);
1191
1192 /*
1193 * fill all the stack with magic number
1194 * so that later modification on it can be detected.
1195 */
1196 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1197 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1198 for (; ip < end; ip++) {
1199 *ip = KSTACK_MAGIC;
1200 }
1201 }
1202
1203 void
1204 kstack_check_magic(const struct lwp *l)
1205 {
1206 uint32_t const *ip, *end;
1207 int stackleft;
1208
1209 KASSERT(l != NULL);
1210
1211 /* don't check proc0 */ /*XXX*/
1212 if (l == &lwp0)
1213 return;
1214
1215 #ifdef __MACHINE_STACK_GROWS_UP
1216 /* stack grows upwards (eg. hppa) */
1217 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1218 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1219 for (ip--; ip >= end; ip--)
1220 if (*ip != KSTACK_MAGIC)
1221 break;
1222
1223 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1224 #else /* __MACHINE_STACK_GROWS_UP */
1225 /* stack grows downwards (eg. i386) */
1226 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1227 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1228 for (; ip < end; ip++)
1229 if (*ip != KSTACK_MAGIC)
1230 break;
1231
1232 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1233 #endif /* __MACHINE_STACK_GROWS_UP */
1234
1235 if (kstackleftmin > stackleft) {
1236 kstackleftmin = stackleft;
1237 if (stackleft < kstackleftthres)
1238 printf("warning: kernel stack left %d bytes"
1239 "(pid %u:lid %u)\n", stackleft,
1240 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1241 }
1242
1243 if (stackleft <= 0) {
1244 panic("magic on the top of kernel stack changed for "
1245 "pid %u, lid %u: maybe kernel stack overflow",
1246 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1247 }
1248 }
1249 #endif /* KSTACK_CHECK_MAGIC */
1250
1251 /*
1252 * XXXSMP this is bust, it grabs a read lock and then messes about
1253 * with allproc.
1254 */
1255 int
1256 proclist_foreach_call(struct proclist *list,
1257 int (*callback)(struct proc *, void *arg), void *arg)
1258 {
1259 struct proc marker;
1260 struct proc *p;
1261 struct lwp * const l = curlwp;
1262 int ret = 0;
1263
1264 marker.p_flag = P_MARKER;
1265 PHOLD(l);
1266 rw_enter(&proclist_lock, RW_READER);
1267 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1268 if (p->p_flag & P_MARKER) {
1269 p = LIST_NEXT(p, p_list);
1270 continue;
1271 }
1272 LIST_INSERT_AFTER(p, &marker, p_list);
1273 ret = (*callback)(p, arg);
1274 KASSERT(rw_read_held(&proclist_lock));
1275 p = LIST_NEXT(&marker, p_list);
1276 LIST_REMOVE(&marker, p_list);
1277 }
1278 rw_exit(&proclist_lock);
1279 PRELE(l);
1280
1281 return ret;
1282 }
1283
1284 int
1285 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1286 {
1287
1288 /* XXXCDC: how should locking work here? */
1289
1290 /* curproc exception is for coredump. */
1291
1292 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1293 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1294 return EFAULT;
1295 }
1296
1297 uvmspace_addref(p->p_vmspace);
1298 *vm = p->p_vmspace;
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * Acquire a write lock on the process credential.
1305 */
1306 void
1307 proc_crmod_enter(void)
1308 {
1309 struct lwp *l = curlwp;
1310 struct proc *p = l->l_proc;
1311 kauth_cred_t oc;
1312
1313 mutex_enter(&p->p_mutex);
1314
1315 /* Ensure the LWP cached credentials are up to date. */
1316 if ((oc = l->l_cred) != p->p_cred) {
1317 kauth_cred_hold(p->p_cred);
1318 l->l_cred = p->p_cred;
1319 kauth_cred_free(oc);
1320 }
1321 }
1322
1323 /*
1324 * Set in a new process credential, and drop the write lock. The credential
1325 * must have a reference already. Optionally, free a no-longer required
1326 * credential. The scheduler also needs to inspect p_cred, so we also
1327 * briefly acquire the sched state mutex.
1328 */
1329 void
1330 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred)
1331 {
1332 struct lwp *l = curlwp;
1333 struct proc *p = l->l_proc;
1334 kauth_cred_t oc;
1335
1336 mutex_enter(&p->p_smutex);
1337 p->p_cred = scred;
1338 mutex_exit(&p->p_smutex);
1339
1340 /* Ensure the LWP cached credentials are up to date. */
1341 if ((oc = l->l_cred) != scred) {
1342 kauth_cred_hold(scred);
1343 l->l_cred = scred;
1344 }
1345
1346 mutex_exit(&p->p_mutex);
1347 kauth_cred_free(fcred);
1348 if (oc != scred)
1349 kauth_cred_free(oc);
1350 }
1351
1352 /*
1353 * Acquire a reference on a process, to prevent it from exiting or execing.
1354 */
1355 int
1356 proc_addref(struct proc *p)
1357 {
1358
1359 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1360
1361 if (p->p_refcnt <= 0)
1362 return EAGAIN;
1363 p->p_refcnt++;
1364
1365 return 0;
1366 }
1367
1368 /*
1369 * Release a reference on a process.
1370 */
1371 void
1372 proc_delref(struct proc *p)
1373 {
1374
1375 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1376
1377 if (p->p_refcnt < 0) {
1378 if (++p->p_refcnt == 0)
1379 cv_broadcast(&p->p_refcv);
1380 } else {
1381 p->p_refcnt--;
1382 KASSERT(p->p_refcnt != 0);
1383 }
1384 }
1385
1386 /*
1387 * Wait for all references on the process to drain, and prevent new
1388 * references from being acquired.
1389 */
1390 void
1391 proc_drainrefs(struct proc *p)
1392 {
1393
1394 LOCK_ASSERT(mutex_owned(&p->p_mutex));
1395 KASSERT(p->p_refcnt > 0);
1396
1397 /*
1398 * The process itself holds the last reference. Once it's released,
1399 * no new references will be granted. If we have already locked out
1400 * new references (refcnt <= 0), potentially due to a failed exec,
1401 * there is nothing more to do.
1402 */
1403 p->p_refcnt = 1 - p->p_refcnt;
1404 while (p->p_refcnt != 0)
1405 cv_wait(&p->p_refcv, &p->p_mutex);
1406 }
1407
1408 /*
1409 * proc_specific_key_create --
1410 * Create a key for subsystem proc-specific data.
1411 */
1412 int
1413 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1414 {
1415
1416 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1417 }
1418
1419 /*
1420 * proc_specific_key_delete --
1421 * Delete a key for subsystem proc-specific data.
1422 */
1423 void
1424 proc_specific_key_delete(specificdata_key_t key)
1425 {
1426
1427 specificdata_key_delete(proc_specificdata_domain, key);
1428 }
1429
1430 /*
1431 * proc_initspecific --
1432 * Initialize a proc's specificdata container.
1433 */
1434 void
1435 proc_initspecific(struct proc *p)
1436 {
1437 int error;
1438
1439 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1440 KASSERT(error == 0);
1441 }
1442
1443 /*
1444 * proc_finispecific --
1445 * Finalize a proc's specificdata container.
1446 */
1447 void
1448 proc_finispecific(struct proc *p)
1449 {
1450
1451 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1452 }
1453
1454 /*
1455 * proc_getspecific --
1456 * Return proc-specific data corresponding to the specified key.
1457 */
1458 void *
1459 proc_getspecific(struct proc *p, specificdata_key_t key)
1460 {
1461
1462 return (specificdata_getspecific(proc_specificdata_domain,
1463 &p->p_specdataref, key));
1464 }
1465
1466 /*
1467 * proc_setspecific --
1468 * Set proc-specific data corresponding to the specified key.
1469 */
1470 void
1471 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1472 {
1473
1474 specificdata_setspecific(proc_specificdata_domain,
1475 &p->p_specdataref, key, data);
1476 }
1477