kern_proc.c revision 1.95 1 /* $NetBSD: kern_proc.c,v 1.95 2006/10/08 04:28:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.95 2006/10/08 04:28:44 thorpej Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 /*
106 * Other process lists
107 */
108
109 struct proclist allproc;
110 struct proclist zombproc; /* resources have been freed */
111
112
113 /*
114 * Process list locking:
115 *
116 * We have two types of locks on the proclists: read locks and write
117 * locks. Read locks can be used in interrupt context, so while we
118 * hold the write lock, we must also block clock interrupts to
119 * lock out any scheduling changes that may happen in interrupt
120 * context.
121 *
122 * The proclist lock locks the following structures:
123 *
124 * allproc
125 * zombproc
126 * pid_table
127 */
128 struct lock proclist_lock;
129
130 /*
131 * pid to proc lookup is done by indexing the pid_table array.
132 * Since pid numbers are only allocated when an empty slot
133 * has been found, there is no need to search any lists ever.
134 * (an orphaned pgrp will lock the slot, a session will lock
135 * the pgrp with the same number.)
136 * If the table is too small it is reallocated with twice the
137 * previous size and the entries 'unzipped' into the two halves.
138 * A linked list of free entries is passed through the pt_proc
139 * field of 'free' items - set odd to be an invalid ptr.
140 */
141
142 struct pid_table {
143 struct proc *pt_proc;
144 struct pgrp *pt_pgrp;
145 };
146 #if 1 /* strongly typed cast - should be a noop */
147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
148 #else
149 #define p2u(p) ((uint)p)
150 #endif
151 #define P_VALID(p) (!(p2u(p) & 1))
152 #define P_NEXT(p) (p2u(p) >> 1)
153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
154
155 #define INITIAL_PID_TABLE_SIZE (1 << 5)
156 static struct pid_table *pid_table;
157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
158 static uint pid_alloc_lim; /* max we allocate before growing table */
159 static uint pid_alloc_cnt; /* number of allocated pids */
160
161 /* links through free slots - never empty! */
162 static uint next_free_pt, last_free_pt;
163 static pid_t pid_max = PID_MAX; /* largest value we allocate */
164
165 /* Components of the first process -- never freed. */
166 struct session session0;
167 struct pgrp pgrp0;
168 struct proc proc0;
169 struct lwp lwp0;
170 kauth_cred_t cred0;
171 struct filedesc0 filedesc0;
172 struct cwdinfo cwdi0;
173 struct plimit limit0;
174 struct pstats pstat0;
175 struct vmspace vmspace0;
176 struct sigacts sigacts0;
177
178 extern struct user *proc0paddr;
179
180 extern const struct emul emul_netbsd; /* defined in kern_exec.c */
181
182 int nofile = NOFILE;
183 int maxuprc = MAXUPRC;
184 int cmask = CMASK;
185
186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
187 &pool_allocator_nointr);
188 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
189 &pool_allocator_nointr);
190 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
191 &pool_allocator_nointr);
192 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
193 &pool_allocator_nointr);
194 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
195 &pool_allocator_nointr);
196 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
197 &pool_allocator_nointr);
198
199 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
200 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
201 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
202
203 /*
204 * The process list descriptors, used during pid allocation and
205 * by sysctl. No locking on this data structure is needed since
206 * it is completely static.
207 */
208 const struct proclist_desc proclists[] = {
209 { &allproc },
210 { &zombproc },
211 { NULL },
212 };
213
214 static void orphanpg(struct pgrp *);
215 static void pg_delete(pid_t);
216
217 static specificdata_domain_t proc_specificdata_domain;
218
219 /*
220 * Initialize global process hashing structures.
221 */
222 void
223 procinit(void)
224 {
225 const struct proclist_desc *pd;
226 int i;
227 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
228
229 for (pd = proclists; pd->pd_list != NULL; pd++)
230 LIST_INIT(pd->pd_list);
231
232 spinlockinit(&proclist_lock, "proclk", 0);
233
234 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
235 M_PROC, M_WAITOK);
236 /* Set free list running through table...
237 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
238 for (i = 0; i <= pid_tbl_mask; i++) {
239 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
240 pid_table[i].pt_pgrp = 0;
241 }
242 /* slot 0 is just grabbed */
243 next_free_pt = 1;
244 /* Need to fix last entry. */
245 last_free_pt = pid_tbl_mask;
246 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
247 /* point at which we grow table - to avoid reusing pids too often */
248 pid_alloc_lim = pid_tbl_mask - 1;
249 #undef LINK_EMPTY
250
251 LIST_INIT(&alllwp);
252
253 uihashtbl =
254 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
255
256 proc_specificdata_domain = specificdata_domain_create();
257 KASSERT(proc_specificdata_domain != NULL);
258 }
259
260 /*
261 * Initialize process 0.
262 */
263 void
264 proc0_init(void)
265 {
266 struct proc *p;
267 struct pgrp *pg;
268 struct session *sess;
269 struct lwp *l;
270 int s;
271 u_int i;
272 rlim_t lim;
273
274 p = &proc0;
275 pg = &pgrp0;
276 sess = &session0;
277 l = &lwp0;
278
279 simple_lock_init(&p->p_lock);
280 LIST_INIT(&p->p_lwps);
281 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
282 p->p_nlwps = 1;
283 simple_lock_init(&p->p_sigctx.ps_silock);
284 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
285
286 s = proclist_lock_write();
287
288 pid_table[0].pt_proc = p;
289 LIST_INSERT_HEAD(&allproc, p, p_list);
290 LIST_INSERT_HEAD(&alllwp, l, l_list);
291
292 p->p_pgrp = pg;
293 pid_table[0].pt_pgrp = pg;
294 LIST_INIT(&pg->pg_members);
295 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
296
297 pg->pg_session = sess;
298 sess->s_count = 1;
299 sess->s_sid = 0;
300 sess->s_leader = p;
301
302 proclist_unlock_write(s);
303
304 /*
305 * Set P_NOCLDWAIT so that kernel threads are reparented to
306 * init(8) when they exit. init(8) can easily wait them out
307 * for us.
308 */
309 p->p_flag = P_SYSTEM | P_NOCLDWAIT;
310 p->p_stat = SACTIVE;
311 p->p_nice = NZERO;
312 p->p_emul = &emul_netbsd;
313 #ifdef __HAVE_SYSCALL_INTERN
314 (*p->p_emul->e_syscall_intern)(p);
315 #endif
316 strncpy(p->p_comm, "swapper", MAXCOMLEN);
317
318 l->l_flag = L_INMEM;
319 l->l_stat = LSONPROC;
320 p->p_nrlwps = 1;
321
322 callout_init(&l->l_tsleep_ch);
323
324 /* Create credentials. */
325 cred0 = kauth_cred_alloc();
326 p->p_cred = cred0;
327 lwp_update_creds(l);
328
329 /* Create the CWD info. */
330 p->p_cwdi = &cwdi0;
331 cwdi0.cwdi_cmask = cmask;
332 cwdi0.cwdi_refcnt = 1;
333 simple_lock_init(&cwdi0.cwdi_slock);
334
335 /* Create the limits structures. */
336 p->p_limit = &limit0;
337 simple_lock_init(&limit0.p_slock);
338 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
339 limit0.pl_rlimit[i].rlim_cur =
340 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
341
342 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
343 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
344 maxfiles < nofile ? maxfiles : nofile;
345
346 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
347 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
348 maxproc < maxuprc ? maxproc : maxuprc;
349
350 lim = ptoa(uvmexp.free);
351 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
352 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
353 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
354 limit0.pl_corename = defcorename;
355 limit0.p_refcnt = 1;
356
357 /* Configure virtual memory system, set vm rlimits. */
358 uvm_init_limits(p);
359
360 /* Initialize file descriptor table for proc0. */
361 p->p_fd = &filedesc0.fd_fd;
362 fdinit1(&filedesc0);
363
364 /*
365 * Initialize proc0's vmspace, which uses the kernel pmap.
366 * All kernel processes (which never have user space mappings)
367 * share proc0's vmspace, and thus, the kernel pmap.
368 */
369 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
370 trunc_page(VM_MAX_ADDRESS));
371 p->p_vmspace = &vmspace0;
372
373 l->l_addr = proc0paddr; /* XXX */
374
375 p->p_stats = &pstat0;
376
377 /* Initialize signal state for proc0. */
378 p->p_sigacts = &sigacts0;
379 siginit(p);
380 }
381
382 /*
383 * Acquire a read lock on the proclist.
384 */
385 void
386 proclist_lock_read(void)
387 {
388 int error;
389
390 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
391 #ifdef DIAGNOSTIC
392 if (__predict_false(error != 0))
393 panic("proclist_lock_read: failed to acquire lock");
394 #endif
395 }
396
397 /*
398 * Release a read lock on the proclist.
399 */
400 void
401 proclist_unlock_read(void)
402 {
403
404 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
405 }
406
407 /*
408 * Acquire a write lock on the proclist.
409 */
410 int
411 proclist_lock_write(void)
412 {
413 int s, error;
414
415 s = splclock();
416 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
417 #ifdef DIAGNOSTIC
418 if (__predict_false(error != 0))
419 panic("proclist_lock: failed to acquire lock");
420 #endif
421 return s;
422 }
423
424 /*
425 * Release a write lock on the proclist.
426 */
427 void
428 proclist_unlock_write(int s)
429 {
430
431 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
432 splx(s);
433 }
434
435 /*
436 * Check that the specified process group is in the session of the
437 * specified process.
438 * Treats -ve ids as process ids.
439 * Used to validate TIOCSPGRP requests.
440 */
441 int
442 pgid_in_session(struct proc *p, pid_t pg_id)
443 {
444 struct pgrp *pgrp;
445
446 if (pg_id < 0) {
447 struct proc *p1 = pfind(-pg_id);
448 if (p1 == NULL)
449 return EINVAL;
450 pgrp = p1->p_pgrp;
451 } else {
452 pgrp = pgfind(pg_id);
453 if (pgrp == NULL)
454 return EINVAL;
455 }
456 if (pgrp->pg_session != p->p_pgrp->pg_session)
457 return EPERM;
458 return 0;
459 }
460
461 /*
462 * Is p an inferior of q?
463 *
464 * Call with the proclist_lock held.
465 */
466 int
467 inferior(struct proc *p, struct proc *q)
468 {
469
470 for (; p != q; p = p->p_pptr)
471 if (p->p_pid == 0)
472 return 0;
473 return 1;
474 }
475
476 /*
477 * Locate a process by number
478 */
479 struct proc *
480 p_find(pid_t pid, uint flags)
481 {
482 struct proc *p;
483 char stat;
484
485 if (!(flags & PFIND_LOCKED))
486 proclist_lock_read();
487 p = pid_table[pid & pid_tbl_mask].pt_proc;
488 /* Only allow live processes to be found by pid. */
489 if (P_VALID(p) && p->p_pid == pid &&
490 ((stat = p->p_stat) == SACTIVE || stat == SSTOP
491 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
492 if (flags & PFIND_UNLOCK_OK)
493 proclist_unlock_read();
494 return p;
495 }
496 if (flags & PFIND_UNLOCK_FAIL)
497 proclist_unlock_read();
498 return NULL;
499 }
500
501
502 /*
503 * Locate a process group by number
504 */
505 struct pgrp *
506 pg_find(pid_t pgid, uint flags)
507 {
508 struct pgrp *pg;
509
510 if (!(flags & PFIND_LOCKED))
511 proclist_lock_read();
512 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
513 /*
514 * Can't look up a pgrp that only exists because the session
515 * hasn't died yet (traditional)
516 */
517 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
518 if (flags & PFIND_UNLOCK_FAIL)
519 proclist_unlock_read();
520 return NULL;
521 }
522
523 if (flags & PFIND_UNLOCK_OK)
524 proclist_unlock_read();
525 return pg;
526 }
527
528 static void
529 expand_pid_table(void)
530 {
531 uint pt_size = pid_tbl_mask + 1;
532 struct pid_table *n_pt, *new_pt;
533 struct proc *proc;
534 struct pgrp *pgrp;
535 int i;
536 int s;
537 pid_t pid;
538
539 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
540
541 s = proclist_lock_write();
542 if (pt_size != pid_tbl_mask + 1) {
543 /* Another process beat us to it... */
544 proclist_unlock_write(s);
545 FREE(new_pt, M_PROC);
546 return;
547 }
548
549 /*
550 * Copy entries from old table into new one.
551 * If 'pid' is 'odd' we need to place in the upper half,
552 * even pid's to the lower half.
553 * Free items stay in the low half so we don't have to
554 * fixup the reference to them.
555 * We stuff free items on the front of the freelist
556 * because we can't write to unmodified entries.
557 * Processing the table backwards maintains a semblance
558 * of issueing pid numbers that increase with time.
559 */
560 i = pt_size - 1;
561 n_pt = new_pt + i;
562 for (; ; i--, n_pt--) {
563 proc = pid_table[i].pt_proc;
564 pgrp = pid_table[i].pt_pgrp;
565 if (!P_VALID(proc)) {
566 /* Up 'use count' so that link is valid */
567 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
568 proc = P_FREE(pid);
569 if (pgrp)
570 pid = pgrp->pg_id;
571 } else
572 pid = proc->p_pid;
573
574 /* Save entry in appropriate half of table */
575 n_pt[pid & pt_size].pt_proc = proc;
576 n_pt[pid & pt_size].pt_pgrp = pgrp;
577
578 /* Put other piece on start of free list */
579 pid = (pid ^ pt_size) & ~pid_tbl_mask;
580 n_pt[pid & pt_size].pt_proc =
581 P_FREE((pid & ~pt_size) | next_free_pt);
582 n_pt[pid & pt_size].pt_pgrp = 0;
583 next_free_pt = i | (pid & pt_size);
584 if (i == 0)
585 break;
586 }
587
588 /* Switch tables */
589 n_pt = pid_table;
590 pid_table = new_pt;
591 pid_tbl_mask = pt_size * 2 - 1;
592
593 /*
594 * pid_max starts as PID_MAX (= 30000), once we have 16384
595 * allocated pids we need it to be larger!
596 */
597 if (pid_tbl_mask > PID_MAX) {
598 pid_max = pid_tbl_mask * 2 + 1;
599 pid_alloc_lim |= pid_alloc_lim << 1;
600 } else
601 pid_alloc_lim <<= 1; /* doubles number of free slots... */
602
603 proclist_unlock_write(s);
604 FREE(n_pt, M_PROC);
605 }
606
607 struct proc *
608 proc_alloc(void)
609 {
610 struct proc *p;
611 int s, nxt, error;
612 pid_t pid;
613 struct pid_table *pt;
614
615 p = pool_get(&proc_pool, PR_WAITOK);
616 p->p_stat = SIDL; /* protect against others */
617
618 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
619 KASSERT(error == 0);
620
621 /* allocate next free pid */
622
623 for (;;expand_pid_table()) {
624 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
625 /* ensure pids cycle through 2000+ values */
626 continue;
627 s = proclist_lock_write();
628 pt = &pid_table[next_free_pt];
629 #ifdef DIAGNOSTIC
630 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
631 panic("proc_alloc: slot busy");
632 #endif
633 nxt = P_NEXT(pt->pt_proc);
634 if (nxt & pid_tbl_mask)
635 break;
636 /* Table full - expand (NB last entry not used....) */
637 proclist_unlock_write(s);
638 }
639
640 /* pid is 'saved use count' + 'size' + entry */
641 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
642 if ((uint)pid > (uint)pid_max)
643 pid &= pid_tbl_mask;
644 p->p_pid = pid;
645 next_free_pt = nxt & pid_tbl_mask;
646
647 /* Grab table slot */
648 pt->pt_proc = p;
649 pid_alloc_cnt++;
650
651 proclist_unlock_write(s);
652
653 return p;
654 }
655
656 /*
657 * Free last resources of a process - called from proc_free (in kern_exit.c)
658 */
659 void
660 proc_free_mem(struct proc *p)
661 {
662 int s;
663 pid_t pid = p->p_pid;
664 struct pid_table *pt;
665
666 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
667
668 s = proclist_lock_write();
669
670 pt = &pid_table[pid & pid_tbl_mask];
671 #ifdef DIAGNOSTIC
672 if (__predict_false(pt->pt_proc != p))
673 panic("proc_free: pid_table mismatch, pid %x, proc %p",
674 pid, p);
675 #endif
676 /* save pid use count in slot */
677 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
678
679 if (pt->pt_pgrp == NULL) {
680 /* link last freed entry onto ours */
681 pid &= pid_tbl_mask;
682 pt = &pid_table[last_free_pt];
683 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
684 last_free_pt = pid;
685 pid_alloc_cnt--;
686 }
687
688 nprocs--;
689 proclist_unlock_write(s);
690
691 pool_put(&proc_pool, p);
692 }
693
694 /*
695 * Move p to a new or existing process group (and session)
696 *
697 * If we are creating a new pgrp, the pgid should equal
698 * the calling process' pid.
699 * If is only valid to enter a process group that is in the session
700 * of the process.
701 * Also mksess should only be set if we are creating a process group
702 *
703 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
704 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
705 */
706 int
707 enterpgrp(struct proc *p, pid_t pgid, int mksess)
708 {
709 struct pgrp *new_pgrp, *pgrp;
710 struct session *sess;
711 struct proc *curp = curproc;
712 pid_t pid = p->p_pid;
713 int rval;
714 int s;
715 pid_t pg_id = NO_PGID;
716
717 /* Allocate data areas we might need before doing any validity checks */
718 proclist_lock_read(); /* Because pid_table might change */
719 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
720 proclist_unlock_read();
721 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
722 } else {
723 proclist_unlock_read();
724 new_pgrp = NULL;
725 }
726 if (mksess)
727 sess = pool_get(&session_pool, M_WAITOK);
728 else
729 sess = NULL;
730
731 s = proclist_lock_write();
732 rval = EPERM; /* most common error (to save typing) */
733
734 /* Check pgrp exists or can be created */
735 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
736 if (pgrp != NULL && pgrp->pg_id != pgid)
737 goto done;
738
739 /* Can only set another process under restricted circumstances. */
740 if (p != curp) {
741 /* must exist and be one of our children... */
742 if (p != pid_table[pid & pid_tbl_mask].pt_proc
743 || !inferior(p, curp)) {
744 rval = ESRCH;
745 goto done;
746 }
747 /* ... in the same session... */
748 if (sess != NULL || p->p_session != curp->p_session)
749 goto done;
750 /* ... existing pgid must be in same session ... */
751 if (pgrp != NULL && pgrp->pg_session != p->p_session)
752 goto done;
753 /* ... and not done an exec. */
754 if (p->p_flag & P_EXEC) {
755 rval = EACCES;
756 goto done;
757 }
758 }
759
760 /* Changing the process group/session of a session
761 leader is definitely off limits. */
762 if (SESS_LEADER(p)) {
763 if (sess == NULL && p->p_pgrp == pgrp)
764 /* unless it's a definite noop */
765 rval = 0;
766 goto done;
767 }
768
769 /* Can only create a process group with id of process */
770 if (pgrp == NULL && pgid != pid)
771 goto done;
772
773 /* Can only create a session if creating pgrp */
774 if (sess != NULL && pgrp != NULL)
775 goto done;
776
777 /* Check we allocated memory for a pgrp... */
778 if (pgrp == NULL && new_pgrp == NULL)
779 goto done;
780
781 /* Don't attach to 'zombie' pgrp */
782 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
783 goto done;
784
785 /* Expect to succeed now */
786 rval = 0;
787
788 if (pgrp == p->p_pgrp)
789 /* nothing to do */
790 goto done;
791
792 /* Ok all setup, link up required structures */
793 if (pgrp == NULL) {
794 pgrp = new_pgrp;
795 new_pgrp = 0;
796 if (sess != NULL) {
797 sess->s_sid = p->p_pid;
798 sess->s_leader = p;
799 sess->s_count = 1;
800 sess->s_ttyvp = NULL;
801 sess->s_ttyp = NULL;
802 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
803 memcpy(sess->s_login, p->p_session->s_login,
804 sizeof(sess->s_login));
805 p->p_flag &= ~P_CONTROLT;
806 } else {
807 sess = p->p_pgrp->pg_session;
808 SESSHOLD(sess);
809 }
810 pgrp->pg_session = sess;
811 sess = 0;
812
813 pgrp->pg_id = pgid;
814 LIST_INIT(&pgrp->pg_members);
815 #ifdef DIAGNOSTIC
816 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
817 panic("enterpgrp: pgrp table slot in use");
818 if (__predict_false(mksess && p != curp))
819 panic("enterpgrp: mksession and p != curproc");
820 #endif
821 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
822 pgrp->pg_jobc = 0;
823 }
824
825 /*
826 * Adjust eligibility of affected pgrps to participate in job control.
827 * Increment eligibility counts before decrementing, otherwise we
828 * could reach 0 spuriously during the first call.
829 */
830 fixjobc(p, pgrp, 1);
831 fixjobc(p, p->p_pgrp, 0);
832
833 /* Move process to requested group */
834 LIST_REMOVE(p, p_pglist);
835 if (LIST_EMPTY(&p->p_pgrp->pg_members))
836 /* defer delete until we've dumped the lock */
837 pg_id = p->p_pgrp->pg_id;
838 p->p_pgrp = pgrp;
839 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
840
841 done:
842 proclist_unlock_write(s);
843 if (sess != NULL)
844 pool_put(&session_pool, sess);
845 if (new_pgrp != NULL)
846 pool_put(&pgrp_pool, new_pgrp);
847 if (pg_id != NO_PGID)
848 pg_delete(pg_id);
849 #ifdef DEBUG_PGRP
850 if (__predict_false(rval))
851 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
852 pid, pgid, mksess, curp->p_pid, rval);
853 #endif
854 return rval;
855 }
856
857 /*
858 * Remove a process from its process group.
859 */
860 int
861 leavepgrp(struct proc *p)
862 {
863 int s;
864 struct pgrp *pgrp;
865 pid_t pg_id;
866
867 s = proclist_lock_write();
868 pgrp = p->p_pgrp;
869 LIST_REMOVE(p, p_pglist);
870 p->p_pgrp = NULL;
871 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
872 proclist_unlock_write(s);
873
874 if (pg_id != NO_PGID)
875 pg_delete(pg_id);
876 return 0;
877 }
878
879 static void
880 pg_free(pid_t pg_id)
881 {
882 struct pgrp *pgrp;
883 struct pid_table *pt;
884 int s;
885
886 s = proclist_lock_write();
887 pt = &pid_table[pg_id & pid_tbl_mask];
888 pgrp = pt->pt_pgrp;
889 #ifdef DIAGNOSTIC
890 if (__predict_false(!pgrp || pgrp->pg_id != pg_id
891 || !LIST_EMPTY(&pgrp->pg_members)))
892 panic("pg_free: process group absent or has members");
893 #endif
894 pt->pt_pgrp = 0;
895
896 if (!P_VALID(pt->pt_proc)) {
897 /* orphaned pgrp, put slot onto free list */
898 #ifdef DIAGNOSTIC
899 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
900 panic("pg_free: process slot on free list");
901 #endif
902
903 pg_id &= pid_tbl_mask;
904 pt = &pid_table[last_free_pt];
905 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
906 last_free_pt = pg_id;
907 pid_alloc_cnt--;
908 }
909 proclist_unlock_write(s);
910
911 pool_put(&pgrp_pool, pgrp);
912 }
913
914 /*
915 * delete a process group
916 */
917 static void
918 pg_delete(pid_t pg_id)
919 {
920 struct pgrp *pgrp;
921 struct tty *ttyp;
922 struct session *ss;
923 int s, is_pgrp_leader;
924
925 s = proclist_lock_write();
926 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
927 if (pgrp == NULL || pgrp->pg_id != pg_id ||
928 !LIST_EMPTY(&pgrp->pg_members)) {
929 proclist_unlock_write(s);
930 return;
931 }
932
933 ss = pgrp->pg_session;
934
935 /* Remove reference (if any) from tty to this process group */
936 ttyp = ss->s_ttyp;
937 if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
938 ttyp->t_pgrp = NULL;
939 #ifdef DIAGNOSTIC
940 if (ttyp->t_session != ss)
941 panic("pg_delete: wrong session on terminal");
942 #endif
943 }
944
945 /*
946 * The leading process group in a session is freed
947 * by sessdelete() if last reference.
948 */
949 is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
950 proclist_unlock_write(s);
951 SESSRELE(ss);
952
953 if (is_pgrp_leader)
954 return;
955
956 pg_free(pg_id);
957 }
958
959 /*
960 * Delete session - called from SESSRELE when s_count becomes zero.
961 */
962 void
963 sessdelete(struct session *ss)
964 {
965 /*
966 * We keep the pgrp with the same id as the session in
967 * order to stop a process being given the same pid.
968 * Since the pgrp holds a reference to the session, it
969 * must be a 'zombie' pgrp by now.
970 */
971
972 pg_free(ss->s_sid);
973
974 pool_put(&session_pool, ss);
975 }
976
977 /*
978 * Adjust pgrp jobc counters when specified process changes process group.
979 * We count the number of processes in each process group that "qualify"
980 * the group for terminal job control (those with a parent in a different
981 * process group of the same session). If that count reaches zero, the
982 * process group becomes orphaned. Check both the specified process'
983 * process group and that of its children.
984 * entering == 0 => p is leaving specified group.
985 * entering == 1 => p is entering specified group.
986 *
987 * Call with proclist_lock held.
988 */
989 void
990 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
991 {
992 struct pgrp *hispgrp;
993 struct session *mysession = pgrp->pg_session;
994 struct proc *child;
995
996 /*
997 * Check p's parent to see whether p qualifies its own process
998 * group; if so, adjust count for p's process group.
999 */
1000 hispgrp = p->p_pptr->p_pgrp;
1001 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1002 if (entering)
1003 pgrp->pg_jobc++;
1004 else if (--pgrp->pg_jobc == 0)
1005 orphanpg(pgrp);
1006 }
1007
1008 /*
1009 * Check this process' children to see whether they qualify
1010 * their process groups; if so, adjust counts for children's
1011 * process groups.
1012 */
1013 LIST_FOREACH(child, &p->p_children, p_sibling) {
1014 hispgrp = child->p_pgrp;
1015 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1016 !P_ZOMBIE(child)) {
1017 if (entering)
1018 hispgrp->pg_jobc++;
1019 else if (--hispgrp->pg_jobc == 0)
1020 orphanpg(hispgrp);
1021 }
1022 }
1023 }
1024
1025 /*
1026 * A process group has become orphaned;
1027 * if there are any stopped processes in the group,
1028 * hang-up all process in that group.
1029 *
1030 * Call with proclist_lock held.
1031 */
1032 static void
1033 orphanpg(struct pgrp *pg)
1034 {
1035 struct proc *p;
1036
1037 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1038 if (p->p_stat == SSTOP) {
1039 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1040 psignal(p, SIGHUP);
1041 psignal(p, SIGCONT);
1042 }
1043 return;
1044 }
1045 }
1046 }
1047
1048 /* mark process as suid/sgid, reset some values to defaults */
1049 void
1050 p_sugid(struct proc *p)
1051 {
1052 struct plimit *lim;
1053 char *cn;
1054
1055 p->p_flag |= P_SUGID;
1056 /* reset what needs to be reset in plimit */
1057 lim = p->p_limit;
1058 if (lim->pl_corename != defcorename) {
1059 if (lim->p_refcnt > 1 &&
1060 (lim->p_lflags & PL_SHAREMOD) == 0) {
1061 p->p_limit = limcopy(lim);
1062 limfree(lim);
1063 lim = p->p_limit;
1064 }
1065 simple_lock(&lim->p_slock);
1066 cn = lim->pl_corename;
1067 lim->pl_corename = defcorename;
1068 simple_unlock(&lim->p_slock);
1069 if (cn != defcorename)
1070 free(cn, M_TEMP);
1071 }
1072 }
1073
1074 #ifdef DDB
1075 #include <ddb/db_output.h>
1076 void pidtbl_dump(void);
1077 void
1078 pidtbl_dump(void)
1079 {
1080 struct pid_table *pt;
1081 struct proc *p;
1082 struct pgrp *pgrp;
1083 int id;
1084
1085 db_printf("pid table %p size %x, next %x, last %x\n",
1086 pid_table, pid_tbl_mask+1,
1087 next_free_pt, last_free_pt);
1088 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1089 p = pt->pt_proc;
1090 if (!P_VALID(p) && !pt->pt_pgrp)
1091 continue;
1092 db_printf(" id %x: ", id);
1093 if (P_VALID(p))
1094 db_printf("proc %p id %d (0x%x) %s\n",
1095 p, p->p_pid, p->p_pid, p->p_comm);
1096 else
1097 db_printf("next %x use %x\n",
1098 P_NEXT(p) & pid_tbl_mask,
1099 P_NEXT(p) & ~pid_tbl_mask);
1100 if ((pgrp = pt->pt_pgrp)) {
1101 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1102 pgrp->pg_session, pgrp->pg_session->s_sid,
1103 pgrp->pg_session->s_count,
1104 pgrp->pg_session->s_login);
1105 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1106 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1107 pgrp->pg_members.lh_first);
1108 for (p = pgrp->pg_members.lh_first; p != 0;
1109 p = p->p_pglist.le_next) {
1110 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1111 p->p_pid, p, p->p_pgrp, p->p_comm);
1112 }
1113 }
1114 }
1115 }
1116 #endif /* DDB */
1117
1118 #ifdef KSTACK_CHECK_MAGIC
1119 #include <sys/user.h>
1120
1121 #define KSTACK_MAGIC 0xdeadbeaf
1122
1123 /* XXX should be per process basis? */
1124 int kstackleftmin = KSTACK_SIZE;
1125 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1126 less than this */
1127
1128 void
1129 kstack_setup_magic(const struct lwp *l)
1130 {
1131 uint32_t *ip;
1132 uint32_t const *end;
1133
1134 KASSERT(l != NULL);
1135 KASSERT(l != &lwp0);
1136
1137 /*
1138 * fill all the stack with magic number
1139 * so that later modification on it can be detected.
1140 */
1141 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1142 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1143 for (; ip < end; ip++) {
1144 *ip = KSTACK_MAGIC;
1145 }
1146 }
1147
1148 void
1149 kstack_check_magic(const struct lwp *l)
1150 {
1151 uint32_t const *ip, *end;
1152 int stackleft;
1153
1154 KASSERT(l != NULL);
1155
1156 /* don't check proc0 */ /*XXX*/
1157 if (l == &lwp0)
1158 return;
1159
1160 #ifdef __MACHINE_STACK_GROWS_UP
1161 /* stack grows upwards (eg. hppa) */
1162 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1163 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1164 for (ip--; ip >= end; ip--)
1165 if (*ip != KSTACK_MAGIC)
1166 break;
1167
1168 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1169 #else /* __MACHINE_STACK_GROWS_UP */
1170 /* stack grows downwards (eg. i386) */
1171 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1172 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1173 for (; ip < end; ip++)
1174 if (*ip != KSTACK_MAGIC)
1175 break;
1176
1177 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1178 #endif /* __MACHINE_STACK_GROWS_UP */
1179
1180 if (kstackleftmin > stackleft) {
1181 kstackleftmin = stackleft;
1182 if (stackleft < kstackleftthres)
1183 printf("warning: kernel stack left %d bytes"
1184 "(pid %u:lid %u)\n", stackleft,
1185 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1186 }
1187
1188 if (stackleft <= 0) {
1189 panic("magic on the top of kernel stack changed for "
1190 "pid %u, lid %u: maybe kernel stack overflow",
1191 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1192 }
1193 }
1194 #endif /* KSTACK_CHECK_MAGIC */
1195
1196 /* XXX shouldn't be here */
1197 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1198 #define PROCLIST_ASSERT_LOCKED_READ() \
1199 KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1200 #else
1201 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */
1202 #endif
1203
1204 int
1205 proclist_foreach_call(struct proclist *list,
1206 int (*callback)(struct proc *, void *arg), void *arg)
1207 {
1208 struct proc marker;
1209 struct proc *p;
1210 struct lwp * const l = curlwp;
1211 int ret = 0;
1212
1213 marker.p_flag = P_MARKER;
1214 PHOLD(l);
1215 proclist_lock_read();
1216 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1217 if (p->p_flag & P_MARKER) {
1218 p = LIST_NEXT(p, p_list);
1219 continue;
1220 }
1221 LIST_INSERT_AFTER(p, &marker, p_list);
1222 ret = (*callback)(p, arg);
1223 PROCLIST_ASSERT_LOCKED_READ();
1224 p = LIST_NEXT(&marker, p_list);
1225 LIST_REMOVE(&marker, p_list);
1226 }
1227 proclist_unlock_read();
1228 PRELE(l);
1229
1230 return ret;
1231 }
1232
1233 int
1234 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1235 {
1236
1237 /* XXXCDC: how should locking work here? */
1238
1239 /* curproc exception is for coredump. */
1240
1241 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1242 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1243 return EFAULT;
1244 }
1245
1246 uvmspace_addref(p->p_vmspace);
1247 *vm = p->p_vmspace;
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Acquire a write lock on the process credential.
1254 */
1255 void
1256 proc_crmod_enter(struct proc *p)
1257 {
1258
1259 /*
1260 * XXXSMP This should be a lightweight sleep lock. 'struct lock' is
1261 * too large.
1262 */
1263 simple_lock(&p->p_lock);
1264 while ((p->p_flag & P_CRLOCK) != 0)
1265 ltsleep(&p->p_cred, PLOCK, "crlock", 0, &p->p_lock);
1266 p->p_flag |= P_CRLOCK;
1267 simple_unlock(&p->p_lock);
1268 }
1269
1270 /*
1271 * Block out readers, set in a new process credential, and drop the write
1272 * lock. The credential must have a reference already. Optionally, free a
1273 * no-longer required credential.
1274 */
1275 void
1276 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
1277 {
1278
1279 KDASSERT((p->p_flag & P_CRLOCK) != 0);
1280 simple_lock(&p->p_lock);
1281 p->p_cred = scred;
1282 p->p_flag &= ~P_CRLOCK;
1283 simple_unlock(&p->p_lock);
1284 wakeup(&p->p_cred);
1285 if (fcred != NULL)
1286 kauth_cred_free(fcred);
1287 }
1288
1289 /*
1290 * proc_specific_key_create --
1291 * Create a key for subsystem proc-specific data.
1292 */
1293 int
1294 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1295 {
1296
1297 return (specificdata_key_create(proc_specificdata_domain,
1298 keyp, dtor));
1299 }
1300
1301 /*
1302 * proc_specific_key_delete --
1303 * Delete a key for subsystem proc-specific data.
1304 */
1305 void
1306 proc_specific_key_delete(specificdata_key_t key)
1307 {
1308
1309 specificdata_key_delete(proc_specificdata_domain, key);
1310 }
1311
1312 /*
1313 * proc_getspecific --
1314 * Return proc-specific data corresponding to the specified key.
1315 */
1316 void *
1317 proc_getspecific(struct proc *p, specificdata_key_t key)
1318 {
1319
1320 return (specificdata_getspecific(proc_specificdata_domain,
1321 &p->p_specdataref, key));
1322 }
1323
1324 /*
1325 * proc_setspecific --
1326 * Set proc-specific data corresponding to the specified key.
1327 */
1328 void
1329 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1330 {
1331
1332 specificdata_setspecific(proc_specificdata_domain,
1333 &p->p_specdataref, key, data);
1334 }
1335