1 1.195 ad /* $NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $ */ 2 1.20 cgd 3 1.17 cgd /*- 4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993 5 1.19 cgd * The Regents of the University of California. All rights reserved. 6 1.17 cgd * (c) UNIX System Laboratories, Inc. 7 1.17 cgd * All or some portions of this file are derived from material licensed 8 1.17 cgd * to the University of California by American Telephone and Telegraph 9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 1.17 cgd * the permission of UNIX System Laboratories, Inc. 11 1.17 cgd * 12 1.17 cgd * Redistribution and use in source and binary forms, with or without 13 1.17 cgd * modification, are permitted provided that the following conditions 14 1.17 cgd * are met: 15 1.17 cgd * 1. Redistributions of source code must retain the above copyright 16 1.17 cgd * notice, this list of conditions and the following disclaimer. 17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright 18 1.17 cgd * notice, this list of conditions and the following disclaimer in the 19 1.17 cgd * documentation and/or other materials provided with the distribution. 20 1.72 agc * 3. Neither the name of the University nor the names of its contributors 21 1.17 cgd * may be used to endorse or promote products derived from this software 22 1.17 cgd * without specific prior written permission. 23 1.17 cgd * 24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 1.17 cgd * SUCH DAMAGE. 35 1.17 cgd * 36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 1.17 cgd */ 38 1.61 lukem 39 1.61 lukem #include <sys/cdefs.h> 40 1.195 ad __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $"); 41 1.44 mrg 42 1.17 cgd #include <sys/param.h> 43 1.22 cgd #include <sys/systm.h> 44 1.17 cgd #include <sys/kernel.h> 45 1.19 cgd #include <sys/file.h> 46 1.17 cgd #include <sys/resourcevar.h> 47 1.132 yamt #include <sys/kmem.h> 48 1.100 yamt #include <sys/namei.h> 49 1.49 thorpej #include <sys/pool.h> 50 1.17 cgd #include <sys/proc.h> 51 1.74 atatat #include <sys/sysctl.h> 52 1.129 yamt #include <sys/timevar.h> 53 1.101 elad #include <sys/kauth.h> 54 1.125 ad #include <sys/atomic.h> 55 1.22 cgd #include <sys/mount.h> 56 1.22 cgd #include <sys/syscallargs.h> 57 1.136 ad #include <sys/atomic.h> 58 1.17 cgd 59 1.43 mrg #include <uvm/uvm_extern.h> 60 1.43 mrg 61 1.17 cgd /* 62 1.60 eeh * Maximum process data and stack limits. 63 1.60 eeh * They are variables so they are patchable. 64 1.60 eeh */ 65 1.167 rmind rlim_t maxdmap = MAXDSIZ; 66 1.167 rmind rlim_t maxsmap = MAXSSIZ; 67 1.60 eeh 68 1.154 elad static kauth_listener_t resource_listener; 69 1.164 rmind static struct sysctllog *proc_sysctllog; 70 1.153 elad 71 1.164 rmind static int donice(struct lwp *, struct proc *, int); 72 1.164 rmind static void sysctl_proc_setup(void); 73 1.156 pooka 74 1.153 elad static int 75 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 76 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3) 77 1.153 elad { 78 1.153 elad struct proc *p; 79 1.153 elad int result; 80 1.153 elad 81 1.153 elad result = KAUTH_RESULT_DEFER; 82 1.153 elad p = arg0; 83 1.153 elad 84 1.154 elad switch (action) { 85 1.154 elad case KAUTH_PROCESS_NICE: 86 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && 87 1.164 rmind kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { 88 1.164 rmind break; 89 1.164 rmind } 90 1.153 elad 91 1.164 rmind if ((u_long)arg1 >= p->p_nice) 92 1.164 rmind result = KAUTH_RESULT_ALLOW; 93 1.153 elad 94 1.154 elad break; 95 1.154 elad 96 1.154 elad case KAUTH_PROCESS_RLIMIT: { 97 1.154 elad enum kauth_process_req req; 98 1.153 elad 99 1.186 joerg req = (enum kauth_process_req)(uintptr_t)arg1; 100 1.153 elad 101 1.154 elad switch (req) { 102 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET: 103 1.153 elad result = KAUTH_RESULT_ALLOW; 104 1.154 elad break; 105 1.154 elad 106 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: { 107 1.154 elad struct rlimit *new_rlimit; 108 1.154 elad u_long which; 109 1.154 elad 110 1.154 elad if ((p != curlwp->l_proc) && 111 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0)) 112 1.154 elad break; 113 1.154 elad 114 1.154 elad new_rlimit = arg2; 115 1.154 elad which = (u_long)arg3; 116 1.154 elad 117 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) 118 1.154 elad result = KAUTH_RESULT_ALLOW; 119 1.154 elad 120 1.154 elad break; 121 1.154 elad } 122 1.154 elad 123 1.154 elad default: 124 1.154 elad break; 125 1.154 elad } 126 1.154 elad 127 1.154 elad break; 128 1.154 elad } 129 1.154 elad 130 1.154 elad default: 131 1.154 elad break; 132 1.153 elad } 133 1.153 elad 134 1.153 elad return result; 135 1.153 elad } 136 1.153 elad 137 1.130 ad void 138 1.130 ad resource_init(void) 139 1.130 ad { 140 1.130 ad 141 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 142 1.154 elad resource_listener_cb, NULL); 143 1.156 pooka 144 1.156 pooka sysctl_proc_setup(); 145 1.130 ad } 146 1.130 ad 147 1.60 eeh /* 148 1.17 cgd * Resource controls and accounting. 149 1.17 cgd */ 150 1.17 cgd 151 1.25 cgd int 152 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 153 1.134 rmind register_t *retval) 154 1.30 thorpej { 155 1.128 dsl /* { 156 1.22 cgd syscallarg(int) which; 157 1.81 kleink syscallarg(id_t) who; 158 1.128 dsl } */ 159 1.68 thorpej struct proc *curp = l->l_proc, *p; 160 1.164 rmind id_t who = SCARG(uap, who); 161 1.54 augustss int low = NZERO + PRIO_MAX + 1; 162 1.17 cgd 163 1.187 ad mutex_enter(&proc_lock); 164 1.22 cgd switch (SCARG(uap, which)) { 165 1.17 cgd case PRIO_PROCESS: 166 1.171 njoly p = who ? proc_find(who) : curp; 167 1.113 ad if (p != NULL) 168 1.113 ad low = p->p_nice; 169 1.17 cgd break; 170 1.17 cgd 171 1.17 cgd case PRIO_PGRP: { 172 1.54 augustss struct pgrp *pg; 173 1.17 cgd 174 1.113 ad if (who == 0) 175 1.17 cgd pg = curp->p_pgrp; 176 1.157 rmind else if ((pg = pgrp_find(who)) == NULL) 177 1.17 cgd break; 178 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) { 179 1.17 cgd if (p->p_nice < low) 180 1.17 cgd low = p->p_nice; 181 1.17 cgd } 182 1.17 cgd break; 183 1.17 cgd } 184 1.17 cgd 185 1.17 cgd case PRIO_USER: 186 1.113 ad if (who == 0) 187 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred); 188 1.86 yamt PROCLIST_FOREACH(p, &allproc) { 189 1.139 ad mutex_enter(p->p_lock); 190 1.102 ad if (kauth_cred_geteuid(p->p_cred) == 191 1.113 ad (uid_t)who && p->p_nice < low) 192 1.17 cgd low = p->p_nice; 193 1.139 ad mutex_exit(p->p_lock); 194 1.64 matt } 195 1.17 cgd break; 196 1.17 cgd 197 1.17 cgd default: 198 1.187 ad mutex_exit(&proc_lock); 199 1.164 rmind return EINVAL; 200 1.17 cgd } 201 1.187 ad mutex_exit(&proc_lock); 202 1.113 ad 203 1.164 rmind if (low == NZERO + PRIO_MAX + 1) { 204 1.164 rmind return ESRCH; 205 1.164 rmind } 206 1.37 ws *retval = low - NZERO; 207 1.164 rmind return 0; 208 1.17 cgd } 209 1.17 cgd 210 1.25 cgd int 211 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 212 1.134 rmind register_t *retval) 213 1.30 thorpej { 214 1.128 dsl /* { 215 1.22 cgd syscallarg(int) which; 216 1.81 kleink syscallarg(id_t) who; 217 1.22 cgd syscallarg(int) prio; 218 1.128 dsl } */ 219 1.68 thorpej struct proc *curp = l->l_proc, *p; 220 1.164 rmind id_t who = SCARG(uap, who); 221 1.17 cgd int found = 0, error = 0; 222 1.17 cgd 223 1.187 ad mutex_enter(&proc_lock); 224 1.22 cgd switch (SCARG(uap, which)) { 225 1.17 cgd case PRIO_PROCESS: 226 1.157 rmind p = who ? proc_find(who) : curp; 227 1.157 rmind if (p != NULL) { 228 1.139 ad mutex_enter(p->p_lock); 229 1.162 christos found++; 230 1.113 ad error = donice(l, p, SCARG(uap, prio)); 231 1.139 ad mutex_exit(p->p_lock); 232 1.113 ad } 233 1.17 cgd break; 234 1.17 cgd 235 1.17 cgd case PRIO_PGRP: { 236 1.54 augustss struct pgrp *pg; 237 1.87 perry 238 1.113 ad if (who == 0) 239 1.17 cgd pg = curp->p_pgrp; 240 1.157 rmind else if ((pg = pgrp_find(who)) == NULL) 241 1.17 cgd break; 242 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) { 243 1.139 ad mutex_enter(p->p_lock); 244 1.162 christos found++; 245 1.102 ad error = donice(l, p, SCARG(uap, prio)); 246 1.139 ad mutex_exit(p->p_lock); 247 1.162 christos if (error) 248 1.162 christos break; 249 1.17 cgd } 250 1.17 cgd break; 251 1.17 cgd } 252 1.17 cgd 253 1.17 cgd case PRIO_USER: 254 1.113 ad if (who == 0) 255 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred); 256 1.86 yamt PROCLIST_FOREACH(p, &allproc) { 257 1.139 ad mutex_enter(p->p_lock); 258 1.102 ad if (kauth_cred_geteuid(p->p_cred) == 259 1.102 ad (uid_t)SCARG(uap, who)) { 260 1.162 christos found++; 261 1.102 ad error = donice(l, p, SCARG(uap, prio)); 262 1.17 cgd } 263 1.139 ad mutex_exit(p->p_lock); 264 1.162 christos if (error) 265 1.162 christos break; 266 1.64 matt } 267 1.17 cgd break; 268 1.17 cgd 269 1.17 cgd default: 270 1.187 ad mutex_exit(&proc_lock); 271 1.144 njoly return EINVAL; 272 1.17 cgd } 273 1.187 ad mutex_exit(&proc_lock); 274 1.164 rmind 275 1.164 rmind return (found == 0) ? ESRCH : error; 276 1.17 cgd } 277 1.17 cgd 278 1.113 ad /* 279 1.113 ad * Renice a process. 280 1.113 ad * 281 1.113 ad * Call with the target process' credentials locked. 282 1.113 ad */ 283 1.164 rmind static int 284 1.102 ad donice(struct lwp *l, struct proc *chgp, int n) 285 1.17 cgd { 286 1.102 ad kauth_cred_t cred = l->l_cred; 287 1.113 ad 288 1.139 ad KASSERT(mutex_owned(chgp->p_lock)); 289 1.17 cgd 290 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 291 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 292 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 293 1.164 rmind return EPERM; 294 1.152 elad 295 1.164 rmind if (n > PRIO_MAX) { 296 1.17 cgd n = PRIO_MAX; 297 1.164 rmind } 298 1.164 rmind if (n < PRIO_MIN) { 299 1.17 cgd n = PRIO_MIN; 300 1.164 rmind } 301 1.37 ws n += NZERO; 302 1.164 rmind 303 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 304 1.164 rmind KAUTH_ARG(n), NULL, NULL)) { 305 1.164 rmind return EACCES; 306 1.164 rmind } 307 1.164 rmind 308 1.117 yamt sched_nice(chgp, n); 309 1.164 rmind return 0; 310 1.17 cgd } 311 1.17 cgd 312 1.25 cgd int 313 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 314 1.134 rmind register_t *retval) 315 1.30 thorpej { 316 1.128 dsl /* { 317 1.42 mycroft syscallarg(int) which; 318 1.39 cgd syscallarg(const struct rlimit *) rlp; 319 1.128 dsl } */ 320 1.164 rmind int error, which = SCARG(uap, which); 321 1.19 cgd struct rlimit alim; 322 1.17 cgd 323 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 324 1.164 rmind if (error) { 325 1.164 rmind return error; 326 1.164 rmind } 327 1.164 rmind return dosetrlimit(l, l->l_proc, which, &alim); 328 1.17 cgd } 329 1.17 cgd 330 1.17 cgd int 331 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 332 1.17 cgd { 333 1.54 augustss struct rlimit *alimp; 334 1.17 cgd int error; 335 1.17 cgd 336 1.67 itojun if ((u_int)which >= RLIM_NLIMITS) 337 1.164 rmind return EINVAL; 338 1.38 matthias 339 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) { 340 1.62 jdolecek /* 341 1.62 jdolecek * This is programming error. According to SUSv2, we should 342 1.62 jdolecek * return error in this case. 343 1.62 jdolecek */ 344 1.164 rmind return EINVAL; 345 1.62 jdolecek } 346 1.122 dsl 347 1.122 dsl alimp = &p->p_rlimit[which]; 348 1.122 dsl /* if we don't change the value, no need to limcopy() */ 349 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur && 350 1.122 dsl limp->rlim_max == alimp->rlim_max) 351 1.122 dsl return 0; 352 1.122 dsl 353 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 354 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 355 1.111 elad if (error) 356 1.164 rmind return error; 357 1.62 jdolecek 358 1.161 rmind lim_privatise(p); 359 1.122 dsl /* p->p_limit is now unchangeable */ 360 1.122 dsl alimp = &p->p_rlimit[which]; 361 1.17 cgd 362 1.17 cgd switch (which) { 363 1.17 cgd 364 1.17 cgd case RLIMIT_DATA: 365 1.19 cgd if (limp->rlim_cur > maxdmap) 366 1.19 cgd limp->rlim_cur = maxdmap; 367 1.19 cgd if (limp->rlim_max > maxdmap) 368 1.19 cgd limp->rlim_max = maxdmap; 369 1.17 cgd break; 370 1.17 cgd 371 1.17 cgd case RLIMIT_STACK: 372 1.19 cgd if (limp->rlim_cur > maxsmap) 373 1.19 cgd limp->rlim_cur = maxsmap; 374 1.19 cgd if (limp->rlim_max > maxsmap) 375 1.19 cgd limp->rlim_max = maxsmap; 376 1.62 jdolecek 377 1.62 jdolecek /* 378 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than 379 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the 380 1.174 snj * moment it would try to access anything on its current stack. 381 1.62 jdolecek * This conforms to SUSv2. 382 1.62 jdolecek */ 383 1.177 mlelstv if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize || 384 1.177 mlelstv btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) { 385 1.164 rmind return EINVAL; 386 1.113 ad } 387 1.40 enami 388 1.17 cgd /* 389 1.40 enami * Stack is allocated to the max at exec time with 390 1.40 enami * only "rlim_cur" bytes accessible (In other words, 391 1.40 enami * allocates stack dividing two contiguous regions at 392 1.40 enami * "rlim_cur" bytes boundary). 393 1.40 enami * 394 1.40 enami * Since allocation is done in terms of page, roundup 395 1.40 enami * "rlim_cur" (otherwise, contiguous regions 396 1.40 enami * overlap). If stack limit is going up make more 397 1.40 enami * accessible, if going down make inaccessible. 398 1.17 cgd */ 399 1.175 njoly limp->rlim_max = round_page(limp->rlim_max); 400 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur); 401 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) { 402 1.48 eeh vaddr_t addr; 403 1.48 eeh vsize_t size; 404 1.17 cgd vm_prot_t prot; 405 1.172 chs char *base, *tmp; 406 1.17 cgd 407 1.172 chs base = p->p_vmspace->vm_minsaddr; 408 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) { 409 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE; 410 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur; 411 1.172 chs tmp = STACK_GROW(base, alimp->rlim_cur); 412 1.17 cgd } else { 413 1.17 cgd prot = VM_PROT_NONE; 414 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur; 415 1.172 chs tmp = STACK_GROW(base, limp->rlim_cur); 416 1.17 cgd } 417 1.172 chs addr = (vaddr_t)STACK_ALLOC(tmp, size); 418 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map, 419 1.172 chs addr, addr + size, prot, false); 420 1.17 cgd } 421 1.17 cgd break; 422 1.19 cgd 423 1.19 cgd case RLIMIT_NOFILE: 424 1.19 cgd if (limp->rlim_cur > maxfiles) 425 1.19 cgd limp->rlim_cur = maxfiles; 426 1.19 cgd if (limp->rlim_max > maxfiles) 427 1.19 cgd limp->rlim_max = maxfiles; 428 1.19 cgd break; 429 1.19 cgd 430 1.19 cgd case RLIMIT_NPROC: 431 1.19 cgd if (limp->rlim_cur > maxproc) 432 1.19 cgd limp->rlim_cur = maxproc; 433 1.19 cgd if (limp->rlim_max > maxproc) 434 1.19 cgd limp->rlim_max = maxproc; 435 1.19 cgd break; 436 1.169 christos 437 1.169 christos case RLIMIT_NTHR: 438 1.169 christos if (limp->rlim_cur > maxlwp) 439 1.169 christos limp->rlim_cur = maxlwp; 440 1.169 christos if (limp->rlim_max > maxlwp) 441 1.169 christos limp->rlim_max = maxlwp; 442 1.169 christos break; 443 1.17 cgd } 444 1.122 dsl 445 1.122 dsl mutex_enter(&p->p_limit->pl_lock); 446 1.17 cgd *alimp = *limp; 447 1.122 dsl mutex_exit(&p->p_limit->pl_lock); 448 1.164 rmind return 0; 449 1.17 cgd } 450 1.17 cgd 451 1.25 cgd int 452 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 453 1.134 rmind register_t *retval) 454 1.30 thorpej { 455 1.128 dsl /* { 456 1.42 mycroft syscallarg(int) which; 457 1.22 cgd syscallarg(struct rlimit *) rlp; 458 1.128 dsl } */ 459 1.68 thorpej struct proc *p = l->l_proc; 460 1.42 mycroft int which = SCARG(uap, which); 461 1.119 ad struct rlimit rl; 462 1.17 cgd 463 1.67 itojun if ((u_int)which >= RLIM_NLIMITS) 464 1.164 rmind return EINVAL; 465 1.119 ad 466 1.139 ad mutex_enter(p->p_lock); 467 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 468 1.139 ad mutex_exit(p->p_lock); 469 1.119 ad 470 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 471 1.17 cgd } 472 1.17 cgd 473 1.191 riastrad void 474 1.191 riastrad addrulwp(struct lwp *l, struct bintime *tm) 475 1.191 riastrad { 476 1.191 riastrad 477 1.191 riastrad lwp_lock(l); 478 1.191 riastrad bintime_add(tm, &l->l_rtime); 479 1.191 riastrad if ((l->l_pflag & LP_RUNNING) != 0 && 480 1.191 riastrad (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) { 481 1.191 riastrad struct bintime diff; 482 1.191 riastrad /* 483 1.191 riastrad * Adjust for the current time slice. This is 484 1.191 riastrad * actually fairly important since the error 485 1.191 riastrad * here is on the order of a time quantum, 486 1.191 riastrad * which is much greater than the sampling 487 1.191 riastrad * error. 488 1.191 riastrad */ 489 1.191 riastrad binuptime(&diff); 490 1.191 riastrad membar_consumer(); /* for softint_dispatch() */ 491 1.191 riastrad bintime_sub(&diff, &l->l_stime); 492 1.191 riastrad bintime_add(tm, &diff); 493 1.191 riastrad } 494 1.191 riastrad lwp_unlock(l); 495 1.191 riastrad } 496 1.191 riastrad 497 1.17 cgd /* 498 1.17 cgd * Transform the running time and tick information in proc p into user, 499 1.17 cgd * system, and interrupt time usage. 500 1.113 ad * 501 1.139 ad * Should be called with p->p_lock held unless called from exit1(). 502 1.17 cgd */ 503 1.25 cgd void 504 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp, 505 1.113 ad struct timeval *ip, struct timeval *rp) 506 1.17 cgd { 507 1.182 mlelstv uint64_t u, st, ut, it, tot, dt; 508 1.68 thorpej struct lwp *l; 509 1.129 yamt struct bintime tm; 510 1.129 yamt struct timeval tv; 511 1.17 cgd 512 1.168 yamt KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock)); 513 1.168 yamt 514 1.113 ad mutex_spin_enter(&p->p_stmutex); 515 1.17 cgd st = p->p_sticks; 516 1.17 cgd ut = p->p_uticks; 517 1.17 cgd it = p->p_iticks; 518 1.113 ad mutex_spin_exit(&p->p_stmutex); 519 1.17 cgd 520 1.129 yamt tm = p->p_rtime; 521 1.113 ad 522 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) { 523 1.191 riastrad addrulwp(l, &tm); 524 1.17 cgd } 525 1.69 dsl 526 1.69 dsl tot = st + ut + it; 527 1.129 yamt bintime2timeval(&tm, &tv); 528 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 529 1.70 dsl 530 1.69 dsl if (tot == 0) { 531 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */ 532 1.70 dsl st = ut = u / 2; 533 1.70 dsl } else { 534 1.70 dsl st = (u * st) / tot; 535 1.70 dsl ut = (u * ut) / tot; 536 1.69 dsl } 537 1.180 kre 538 1.180 kre /* 539 1.180 kre * Try to avoid lying to the users (too much) 540 1.180 kre * 541 1.180 kre * Of course, user/sys time are based on sampling (ie: statistics) 542 1.180 kre * so that would be impossible, but convincing the mark 543 1.180 kre * that we have used less ?time this call than we had 544 1.180 kre * last time, is beyond reasonable... (the con fails!) 545 1.180 kre * 546 1.180 kre * Note that since actual used time cannot decrease, either 547 1.180 kre * utime or stime (or both) must be greater now than last time 548 1.180 kre * (or both the same) - if one seems to have decreased, hold 549 1.180 kre * it constant and steal the necessary bump from the other 550 1.180 kre * which must have increased. 551 1.180 kre */ 552 1.180 kre if (p->p_xutime > ut) { 553 1.182 mlelstv dt = p->p_xutime - ut; 554 1.182 mlelstv st -= uimin(dt, st); 555 1.180 kre ut = p->p_xutime; 556 1.180 kre } else if (p->p_xstime > st) { 557 1.182 mlelstv dt = p->p_xstime - st; 558 1.182 mlelstv ut -= uimin(dt, ut); 559 1.180 kre st = p->p_xstime; 560 1.180 kre } 561 1.180 kre 562 1.113 ad if (sp != NULL) { 563 1.180 kre p->p_xstime = st; 564 1.113 ad sp->tv_sec = st / 1000000; 565 1.113 ad sp->tv_usec = st % 1000000; 566 1.113 ad } 567 1.113 ad if (up != NULL) { 568 1.180 kre p->p_xutime = ut; 569 1.113 ad up->tv_sec = ut / 1000000; 570 1.113 ad up->tv_usec = ut % 1000000; 571 1.113 ad } 572 1.17 cgd if (ip != NULL) { 573 1.180 kre if (it != 0) /* it != 0 --> tot != 0 */ 574 1.70 dsl it = (u * it) / tot; 575 1.17 cgd ip->tv_sec = it / 1000000; 576 1.17 cgd ip->tv_usec = it % 1000000; 577 1.17 cgd } 578 1.113 ad if (rp != NULL) { 579 1.129 yamt *rp = tv; 580 1.113 ad } 581 1.17 cgd } 582 1.17 cgd 583 1.25 cgd int 584 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 585 1.134 rmind register_t *retval) 586 1.30 thorpej { 587 1.128 dsl /* { 588 1.22 cgd syscallarg(int) who; 589 1.22 cgd syscallarg(struct rusage *) rusage; 590 1.128 dsl } */ 591 1.170 njoly int error; 592 1.119 ad struct rusage ru; 593 1.68 thorpej struct proc *p = l->l_proc; 594 1.17 cgd 595 1.170 njoly error = getrusage1(p, SCARG(uap, who), &ru); 596 1.170 njoly if (error != 0) 597 1.170 njoly return error; 598 1.170 njoly 599 1.170 njoly return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 600 1.170 njoly } 601 1.170 njoly 602 1.170 njoly int 603 1.190 riastrad getrusage1(struct proc *p, int who, struct rusage *ru) 604 1.190 riastrad { 605 1.170 njoly 606 1.170 njoly switch (who) { 607 1.19 cgd case RUSAGE_SELF: 608 1.139 ad mutex_enter(p->p_lock); 609 1.178 christos ruspace(p); 610 1.170 njoly memcpy(ru, &p->p_stats->p_ru, sizeof(*ru)); 611 1.170 njoly calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL); 612 1.170 njoly rulwps(p, ru); 613 1.139 ad mutex_exit(p->p_lock); 614 1.17 cgd break; 615 1.17 cgd case RUSAGE_CHILDREN: 616 1.139 ad mutex_enter(p->p_lock); 617 1.170 njoly memcpy(ru, &p->p_stats->p_cru, sizeof(*ru)); 618 1.139 ad mutex_exit(p->p_lock); 619 1.17 cgd break; 620 1.17 cgd default: 621 1.119 ad return EINVAL; 622 1.17 cgd } 623 1.119 ad 624 1.170 njoly return 0; 625 1.17 cgd } 626 1.17 cgd 627 1.25 cgd void 628 1.178 christos ruspace(struct proc *p) 629 1.178 christos { 630 1.178 christos struct vmspace *vm = p->p_vmspace; 631 1.178 christos struct rusage *ru = &p->p_stats->p_ru; 632 1.178 christos 633 1.178 christos ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10); 634 1.178 christos ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10); 635 1.178 christos ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10); 636 1.179 christos #ifdef __HAVE_NO_PMAP_STATS 637 1.179 christos /* We don't keep track of the max so we get the current */ 638 1.181 christos ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10); 639 1.179 christos #else 640 1.179 christos ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10); 641 1.179 christos #endif 642 1.178 christos } 643 1.178 christos 644 1.178 christos void 645 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2) 646 1.17 cgd { 647 1.54 augustss long *ip, *ip2; 648 1.54 augustss int i; 649 1.17 cgd 650 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 651 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 652 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss) 653 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss; 654 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first; 655 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 656 1.17 cgd *ip++ += *ip2++; 657 1.17 cgd } 658 1.17 cgd 659 1.137 ad void 660 1.137 ad rulwps(proc_t *p, struct rusage *ru) 661 1.137 ad { 662 1.137 ad lwp_t *l; 663 1.137 ad 664 1.139 ad KASSERT(mutex_owned(p->p_lock)); 665 1.137 ad 666 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) { 667 1.137 ad ruadd(ru, &l->l_ru); 668 1.137 ad } 669 1.137 ad } 670 1.137 ad 671 1.17 cgd /* 672 1.161 rmind * lim_copy: make a copy of the plimit structure. 673 1.113 ad * 674 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed. 675 1.17 cgd */ 676 1.17 cgd struct plimit * 677 1.122 dsl lim_copy(struct plimit *lim) 678 1.17 cgd { 679 1.122 dsl struct plimit *newlim; 680 1.113 ad char *corename; 681 1.122 dsl size_t alen, len; 682 1.17 cgd 683 1.194 ad newlim = kmem_alloc(sizeof(*newlim), KM_SLEEP); 684 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 685 1.161 rmind newlim->pl_writeable = false; 686 1.121 dsl newlim->pl_refcnt = 1; 687 1.122 dsl newlim->pl_sv_limit = NULL; 688 1.122 dsl 689 1.122 dsl mutex_enter(&lim->pl_lock); 690 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit, 691 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS); 692 1.83 pk 693 1.161 rmind /* 694 1.161 rmind * Note: the common case is a use of default core name. 695 1.161 rmind */ 696 1.122 dsl alen = 0; 697 1.122 dsl corename = NULL; 698 1.113 ad for (;;) { 699 1.122 dsl if (lim->pl_corename == defcorename) { 700 1.122 dsl newlim->pl_corename = defcorename; 701 1.161 rmind newlim->pl_cnlen = 0; 702 1.122 dsl break; 703 1.122 dsl } 704 1.161 rmind len = lim->pl_cnlen; 705 1.161 rmind if (len == alen) { 706 1.122 dsl newlim->pl_corename = corename; 707 1.161 rmind newlim->pl_cnlen = len; 708 1.122 dsl memcpy(corename, lim->pl_corename, len); 709 1.122 dsl corename = NULL; 710 1.122 dsl break; 711 1.122 dsl } 712 1.122 dsl mutex_exit(&lim->pl_lock); 713 1.161 rmind if (corename) { 714 1.161 rmind kmem_free(corename, alen); 715 1.161 rmind } 716 1.122 dsl alen = len; 717 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP); 718 1.121 dsl mutex_enter(&lim->pl_lock); 719 1.122 dsl } 720 1.122 dsl mutex_exit(&lim->pl_lock); 721 1.161 rmind 722 1.161 rmind if (corename) { 723 1.161 rmind kmem_free(corename, alen); 724 1.161 rmind } 725 1.122 dsl return newlim; 726 1.122 dsl } 727 1.122 dsl 728 1.122 dsl void 729 1.122 dsl lim_addref(struct plimit *lim) 730 1.122 dsl { 731 1.125 ad atomic_inc_uint(&lim->pl_refcnt); 732 1.122 dsl } 733 1.113 ad 734 1.122 dsl /* 735 1.161 rmind * lim_privatise: give a process its own private plimit structure. 736 1.122 dsl */ 737 1.122 dsl void 738 1.161 rmind lim_privatise(proc_t *p) 739 1.122 dsl { 740 1.161 rmind struct plimit *lim = p->p_limit, *newlim; 741 1.122 dsl 742 1.161 rmind if (lim->pl_writeable) { 743 1.122 dsl return; 744 1.122 dsl } 745 1.122 dsl 746 1.122 dsl newlim = lim_copy(lim); 747 1.113 ad 748 1.139 ad mutex_enter(p->p_lock); 749 1.161 rmind if (p->p_limit->pl_writeable) { 750 1.161 rmind /* Other thread won the race. */ 751 1.139 ad mutex_exit(p->p_lock); 752 1.159 rmind lim_free(newlim); 753 1.122 dsl return; 754 1.113 ad } 755 1.83 pk 756 1.122 dsl /* 757 1.161 rmind * Since p->p_limit can be accessed without locked held, 758 1.161 rmind * old limit structure must not be deleted yet. 759 1.122 dsl */ 760 1.122 dsl newlim->pl_sv_limit = p->p_limit; 761 1.161 rmind newlim->pl_writeable = true; 762 1.122 dsl p->p_limit = newlim; 763 1.139 ad mutex_exit(p->p_lock); 764 1.32 mycroft } 765 1.32 mycroft 766 1.32 mycroft void 767 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len) 768 1.160 rmind { 769 1.160 rmind struct plimit *lim; 770 1.160 rmind char *oname; 771 1.161 rmind size_t olen; 772 1.160 rmind 773 1.161 rmind lim_privatise(p); 774 1.160 rmind lim = p->p_limit; 775 1.160 rmind 776 1.160 rmind mutex_enter(&lim->pl_lock); 777 1.160 rmind oname = lim->pl_corename; 778 1.161 rmind olen = lim->pl_cnlen; 779 1.160 rmind lim->pl_corename = name; 780 1.161 rmind lim->pl_cnlen = len; 781 1.160 rmind mutex_exit(&lim->pl_lock); 782 1.160 rmind 783 1.160 rmind if (oname != defcorename) { 784 1.161 rmind kmem_free(oname, olen); 785 1.160 rmind } 786 1.160 rmind } 787 1.160 rmind 788 1.160 rmind void 789 1.159 rmind lim_free(struct plimit *lim) 790 1.32 mycroft { 791 1.122 dsl struct plimit *sv_lim; 792 1.85 kleink 793 1.122 dsl do { 794 1.189 riastrad membar_release(); 795 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) { 796 1.122 dsl return; 797 1.159 rmind } 798 1.189 riastrad membar_acquire(); 799 1.159 rmind if (lim->pl_corename != defcorename) { 800 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen); 801 1.159 rmind } 802 1.122 dsl sv_lim = lim->pl_sv_limit; 803 1.122 dsl mutex_destroy(&lim->pl_lock); 804 1.194 ad kmem_free(lim, sizeof(*lim)); 805 1.122 dsl } while ((lim = sv_lim) != NULL); 806 1.68 thorpej } 807 1.68 thorpej 808 1.68 thorpej struct pstats * 809 1.98 thorpej pstatscopy(struct pstats *ps) 810 1.68 thorpej { 811 1.164 rmind struct pstats *nps; 812 1.164 rmind size_t len; 813 1.87 perry 814 1.194 ad nps = kmem_alloc(sizeof(*nps), KM_SLEEP); 815 1.68 thorpej 816 1.164 rmind len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero; 817 1.164 rmind memset(&nps->pstat_startzero, 0, len); 818 1.68 thorpej 819 1.164 rmind len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy; 820 1.164 rmind memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len); 821 1.68 thorpej 822 1.164 rmind return nps; 823 1.68 thorpej } 824 1.68 thorpej 825 1.68 thorpej void 826 1.98 thorpej pstatsfree(struct pstats *ps) 827 1.68 thorpej { 828 1.68 thorpej 829 1.194 ad kmem_free(ps, sizeof(*ps)); 830 1.74 atatat } 831 1.74 atatat 832 1.74 atatat /* 833 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that 834 1.157 rmind * need to pick a valid process by PID. 835 1.157 rmind * 836 1.157 rmind * => Hold a reference on the process, on success. 837 1.74 atatat */ 838 1.74 atatat static int 839 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2) 840 1.74 atatat { 841 1.157 rmind proc_t *p; 842 1.157 rmind int error; 843 1.74 atatat 844 1.157 rmind if (pid == PROC_CURPROC) { 845 1.157 rmind p = l->l_proc; 846 1.157 rmind } else { 847 1.187 ad mutex_enter(&proc_lock); 848 1.157 rmind p = proc_find(pid); 849 1.157 rmind if (p == NULL) { 850 1.187 ad mutex_exit(&proc_lock); 851 1.157 rmind return ESRCH; 852 1.157 rmind } 853 1.157 rmind } 854 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 855 1.157 rmind if (pid != PROC_CURPROC) { 856 1.187 ad mutex_exit(&proc_lock); 857 1.157 rmind } 858 1.157 rmind *p2 = p; 859 1.157 rmind return error; 860 1.74 atatat } 861 1.74 atatat 862 1.74 atatat /* 863 1.176 pgoyette * sysctl_proc_paxflags: helper routine to get process's paxctl flags 864 1.176 pgoyette */ 865 1.176 pgoyette static int 866 1.176 pgoyette sysctl_proc_paxflags(SYSCTLFN_ARGS) 867 1.176 pgoyette { 868 1.176 pgoyette struct proc *p; 869 1.176 pgoyette struct sysctlnode node; 870 1.176 pgoyette int paxflags; 871 1.176 pgoyette int error; 872 1.176 pgoyette 873 1.176 pgoyette /* First, validate the request. */ 874 1.176 pgoyette if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS) 875 1.176 pgoyette return EINVAL; 876 1.176 pgoyette 877 1.176 pgoyette /* Find the process. Hold a reference (p_reflock), if found. */ 878 1.176 pgoyette error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 879 1.176 pgoyette if (error) 880 1.176 pgoyette return error; 881 1.176 pgoyette 882 1.176 pgoyette /* XXX-elad */ 883 1.176 pgoyette error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 884 1.176 pgoyette KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 885 1.176 pgoyette if (error) { 886 1.176 pgoyette rw_exit(&p->p_reflock); 887 1.176 pgoyette return error; 888 1.176 pgoyette } 889 1.176 pgoyette 890 1.176 pgoyette /* Retrieve the limits. */ 891 1.176 pgoyette node = *rnode; 892 1.176 pgoyette paxflags = p->p_pax; 893 1.176 pgoyette node.sysctl_data = &paxflags; 894 1.176 pgoyette 895 1.176 pgoyette error = sysctl_lookup(SYSCTLFN_CALL(&node)); 896 1.176 pgoyette 897 1.176 pgoyette /* If attempting to write new value, it's an error */ 898 1.176 pgoyette if (error == 0 && newp != NULL) 899 1.176 pgoyette error = EACCES; 900 1.176 pgoyette 901 1.176 pgoyette rw_exit(&p->p_reflock); 902 1.176 pgoyette return error; 903 1.176 pgoyette } 904 1.176 pgoyette 905 1.176 pgoyette /* 906 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name 907 1.158 rmind * for a process specified by PID. 908 1.74 atatat */ 909 1.74 atatat static int 910 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS) 911 1.74 atatat { 912 1.158 rmind struct proc *p; 913 1.83 pk struct plimit *lim; 914 1.158 rmind char *cnbuf, *cname; 915 1.157 rmind struct sysctlnode node; 916 1.158 rmind size_t len; 917 1.158 rmind int error; 918 1.74 atatat 919 1.158 rmind /* First, validate the request. */ 920 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME) 921 1.158 rmind return EINVAL; 922 1.74 atatat 923 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */ 924 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 925 1.74 atatat if (error) 926 1.157 rmind return error; 927 1.74 atatat 928 1.131 elad /* XXX-elad */ 929 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 930 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 931 1.157 rmind if (error) { 932 1.158 rmind rw_exit(&p->p_reflock); 933 1.157 rmind return error; 934 1.157 rmind } 935 1.111 elad 936 1.158 rmind cnbuf = PNBUF_GET(); 937 1.158 rmind 938 1.165 mrg if (oldp) { 939 1.158 rmind /* Get case: copy the core name into the buffer. */ 940 1.131 elad error = kauth_authorize_process(l->l_cred, 941 1.158 rmind KAUTH_PROCESS_CORENAME, p, 942 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 943 1.157 rmind if (error) { 944 1.158 rmind goto done; 945 1.158 rmind } 946 1.158 rmind lim = p->p_limit; 947 1.158 rmind mutex_enter(&lim->pl_lock); 948 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN); 949 1.158 rmind mutex_exit(&lim->pl_lock); 950 1.165 mrg } 951 1.131 elad 952 1.74 atatat node = *rnode; 953 1.158 rmind node.sysctl_data = cnbuf; 954 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node)); 955 1.74 atatat 956 1.163 rmind /* Return if error, or if caller is only getting the core name. */ 957 1.158 rmind if (error || newp == NULL) { 958 1.100 yamt goto done; 959 1.157 rmind } 960 1.103 elad 961 1.74 atatat /* 962 1.166 rmind * Set case. Check permission and then validate new core name. 963 1.166 rmind * It must be either "core", "/core", or end in ".core". 964 1.74 atatat */ 965 1.166 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 966 1.166 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL); 967 1.166 rmind if (error) { 968 1.166 rmind goto done; 969 1.166 rmind } 970 1.158 rmind len = strlen(cnbuf); 971 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) || 972 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) { 973 1.100 yamt error = EINVAL; 974 1.100 yamt goto done; 975 1.100 yamt } 976 1.74 atatat 977 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */ 978 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP); 979 1.158 rmind if (cname == NULL) { 980 1.100 yamt error = ENOMEM; 981 1.100 yamt goto done; 982 1.100 yamt } 983 1.158 rmind memcpy(cname, cnbuf, len); 984 1.160 rmind lim_setcorename(p, cname, len); 985 1.100 yamt done: 986 1.158 rmind rw_exit(&p->p_reflock); 987 1.158 rmind PNBUF_PUT(cnbuf); 988 1.100 yamt return error; 989 1.74 atatat } 990 1.74 atatat 991 1.74 atatat /* 992 1.163 rmind * sysctl_proc_stop: helper routine for checking/setting the stop flags. 993 1.74 atatat */ 994 1.74 atatat static int 995 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS) 996 1.74 atatat { 997 1.163 rmind struct proc *p; 998 1.163 rmind int isset, flag, error = 0; 999 1.74 atatat struct sysctlnode node; 1000 1.74 atatat 1001 1.74 atatat if (namelen != 0) 1002 1.163 rmind return EINVAL; 1003 1.74 atatat 1004 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */ 1005 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 1006 1.74 atatat if (error) 1007 1.157 rmind return error; 1008 1.74 atatat 1009 1.131 elad /* XXX-elad */ 1010 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 1011 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1012 1.163 rmind if (error) { 1013 1.157 rmind goto out; 1014 1.163 rmind } 1015 1.111 elad 1016 1.163 rmind /* Determine the flag. */ 1017 1.74 atatat switch (rnode->sysctl_num) { 1018 1.74 atatat case PROC_PID_STOPFORK: 1019 1.163 rmind flag = PS_STOPFORK; 1020 1.74 atatat break; 1021 1.74 atatat case PROC_PID_STOPEXEC: 1022 1.163 rmind flag = PS_STOPEXEC; 1023 1.74 atatat break; 1024 1.74 atatat case PROC_PID_STOPEXIT: 1025 1.163 rmind flag = PS_STOPEXIT; 1026 1.74 atatat break; 1027 1.74 atatat default: 1028 1.157 rmind error = EINVAL; 1029 1.157 rmind goto out; 1030 1.74 atatat } 1031 1.163 rmind isset = (p->p_flag & flag) ? 1 : 0; 1032 1.74 atatat node = *rnode; 1033 1.163 rmind node.sysctl_data = &isset; 1034 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1035 1.163 rmind 1036 1.163 rmind /* Return if error, or if callers is only getting the flag. */ 1037 1.163 rmind if (error || newp == NULL) { 1038 1.157 rmind goto out; 1039 1.163 rmind } 1040 1.74 atatat 1041 1.163 rmind /* Check if caller can set the flags. */ 1042 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 1043 1.163 rmind p, KAUTH_ARG(flag), NULL, NULL); 1044 1.163 rmind if (error) { 1045 1.163 rmind goto out; 1046 1.163 rmind } 1047 1.163 rmind mutex_enter(p->p_lock); 1048 1.163 rmind if (isset) { 1049 1.163 rmind p->p_sflag |= flag; 1050 1.163 rmind } else { 1051 1.163 rmind p->p_sflag &= ~flag; 1052 1.143 rmind } 1053 1.163 rmind mutex_exit(p->p_lock); 1054 1.157 rmind out: 1055 1.163 rmind rw_exit(&p->p_reflock); 1056 1.143 rmind return error; 1057 1.74 atatat } 1058 1.74 atatat 1059 1.74 atatat /* 1060 1.163 rmind * sysctl_proc_plimit: helper routine to get/set rlimits of a process. 1061 1.74 atatat */ 1062 1.74 atatat static int 1063 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS) 1064 1.74 atatat { 1065 1.163 rmind struct proc *p; 1066 1.74 atatat u_int limitno; 1067 1.74 atatat int which, error = 0; 1068 1.74 atatat struct rlimit alim; 1069 1.74 atatat struct sysctlnode node; 1070 1.74 atatat 1071 1.74 atatat if (namelen != 0) 1072 1.163 rmind return EINVAL; 1073 1.74 atatat 1074 1.74 atatat which = name[-1]; 1075 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT && 1076 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD) 1077 1.163 rmind return EINVAL; 1078 1.74 atatat 1079 1.74 atatat limitno = name[-2] - 1; 1080 1.74 atatat if (limitno >= RLIM_NLIMITS) 1081 1.163 rmind return EINVAL; 1082 1.74 atatat 1083 1.74 atatat if (name[-3] != PROC_PID_LIMIT) 1084 1.163 rmind return EINVAL; 1085 1.74 atatat 1086 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */ 1087 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &p); 1088 1.74 atatat if (error) 1089 1.157 rmind return error; 1090 1.74 atatat 1091 1.131 elad /* XXX-elad */ 1092 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 1093 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1094 1.111 elad if (error) 1095 1.157 rmind goto out; 1096 1.111 elad 1097 1.163 rmind /* Check if caller can retrieve the limits. */ 1098 1.131 elad if (newp == NULL) { 1099 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 1100 1.163 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 1101 1.131 elad KAUTH_ARG(which)); 1102 1.131 elad if (error) 1103 1.157 rmind goto out; 1104 1.131 elad } 1105 1.131 elad 1106 1.163 rmind /* Retrieve the limits. */ 1107 1.74 atatat node = *rnode; 1108 1.163 rmind memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim)); 1109 1.163 rmind if (which == PROC_PID_LIMIT_TYPE_HARD) { 1110 1.74 atatat node.sysctl_data = &alim.rlim_max; 1111 1.163 rmind } else { 1112 1.74 atatat node.sysctl_data = &alim.rlim_cur; 1113 1.163 rmind } 1114 1.163 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1115 1.74 atatat 1116 1.163 rmind /* Return if error, or if we are only retrieving the limits. */ 1117 1.157 rmind if (error || newp == NULL) { 1118 1.157 rmind goto out; 1119 1.157 rmind } 1120 1.163 rmind error = dosetrlimit(l, p, limitno, &alim); 1121 1.157 rmind out: 1122 1.163 rmind rw_exit(&p->p_reflock); 1123 1.157 rmind return error; 1124 1.74 atatat } 1125 1.74 atatat 1126 1.74 atatat /* 1127 1.164 rmind * Setup sysctl nodes. 1128 1.74 atatat */ 1129 1.156 pooka static void 1130 1.164 rmind sysctl_proc_setup(void) 1131 1.74 atatat { 1132 1.74 atatat 1133 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1134 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 1135 1.78 atatat CTLTYPE_NODE, "curproc", 1136 1.78 atatat SYSCTL_DESCR("Per-process settings"), 1137 1.74 atatat NULL, 0, NULL, 0, 1138 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL); 1139 1.74 atatat 1140 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1141 1.176 pgoyette CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1142 1.176 pgoyette CTLTYPE_INT, "paxflags", 1143 1.176 pgoyette SYSCTL_DESCR("Process PAX control flags"), 1144 1.176 pgoyette sysctl_proc_paxflags, 0, NULL, 0, 1145 1.176 pgoyette CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL); 1146 1.176 pgoyette 1147 1.176 pgoyette sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1148 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1149 1.78 atatat CTLTYPE_STRING, "corename", 1150 1.78 atatat SYSCTL_DESCR("Core file name"), 1151 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN, 1152 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 1153 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1154 1.76 atatat CTLFLAG_PERMANENT, 1155 1.78 atatat CTLTYPE_NODE, "rlimit", 1156 1.78 atatat SYSCTL_DESCR("Process limits"), 1157 1.74 atatat NULL, 0, NULL, 0, 1158 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 1159 1.74 atatat 1160 1.74 atatat #define create_proc_plimit(s, n) do { \ 1161 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1162 1.76 atatat CTLFLAG_PERMANENT, \ 1163 1.78 atatat CTLTYPE_NODE, s, \ 1164 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \ 1165 1.74 atatat NULL, 0, NULL, 0, \ 1166 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1167 1.74 atatat CTL_EOL); \ 1168 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1169 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1170 1.78 atatat CTLTYPE_QUAD, "soft", \ 1171 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \ 1172 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \ 1173 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1174 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 1175 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1176 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1177 1.78 atatat CTLTYPE_QUAD, "hard", \ 1178 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \ 1179 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \ 1180 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1181 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 1182 1.74 atatat } while (0/*CONSTCOND*/) 1183 1.74 atatat 1184 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 1185 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 1186 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1187 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1188 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1189 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1190 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1191 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1192 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1193 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1194 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1195 1.169 christos create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR); 1196 1.74 atatat 1197 1.74 atatat #undef create_proc_plimit 1198 1.74 atatat 1199 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1200 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1201 1.78 atatat CTLTYPE_INT, "stopfork", 1202 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"), 1203 1.74 atatat sysctl_proc_stop, 0, NULL, 0, 1204 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1205 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1206 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1207 1.78 atatat CTLTYPE_INT, "stopexec", 1208 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"), 1209 1.74 atatat sysctl_proc_stop, 0, NULL, 0, 1210 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1211 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1212 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1213 1.78 atatat CTLTYPE_INT, "stopexit", 1214 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"), 1215 1.74 atatat sysctl_proc_stop, 0, NULL, 0, 1216 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1217 1.17 cgd } 1218