kern_resource.c revision 1.119.2.3 1 1.119.2.3 matt /* kern_resource.c,v 1.119.2.2 2008/01/09 01:56:07 matt Exp */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.119.2.3 matt __KERNEL_RCSID(0, "kern_resource.c,v 1.119.2.2 2008/01/09 01:56:07 matt Exp");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.17 cgd #include <sys/malloc.h>
48 1.119.2.3 matt #include <sys/kmem.h>
49 1.100 yamt #include <sys/namei.h>
50 1.49 thorpej #include <sys/pool.h>
51 1.17 cgd #include <sys/proc.h>
52 1.74 atatat #include <sys/sysctl.h>
53 1.119.2.2 matt #include <sys/timevar.h>
54 1.101 elad #include <sys/kauth.h>
55 1.119.2.2 matt #include <sys/atomic.h>
56 1.22 cgd #include <sys/mount.h>
57 1.22 cgd #include <sys/syscallargs.h>
58 1.119.2.3 matt #include <sys/atomic.h>
59 1.17 cgd
60 1.43 mrg #include <uvm/uvm_extern.h>
61 1.43 mrg
62 1.17 cgd /*
63 1.60 eeh * Maximum process data and stack limits.
64 1.60 eeh * They are variables so they are patchable.
65 1.60 eeh */
66 1.60 eeh rlim_t maxdmap = MAXDSIZ;
67 1.60 eeh rlim_t maxsmap = MAXSSIZ;
68 1.60 eeh
69 1.119.2.3 matt static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 1.119.2.3 matt static u_long uihash;
71 1.119.2.3 matt
72 1.119.2.3 matt #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73 1.79 christos
74 1.119.2.3 matt static pool_cache_t plimit_cache;
75 1.119.2.3 matt static pool_cache_t pstats_cache;
76 1.119.2.2 matt
77 1.119.2.2 matt void
78 1.119.2.2 matt resource_init(void)
79 1.119.2.2 matt {
80 1.119.2.3 matt /*
81 1.119.2.3 matt * In case of MP system, SLIST_FOREACH would force a cache line
82 1.119.2.3 matt * write-back for every modified 'uidinfo', thus we try to keep the
83 1.119.2.3 matt * lists short.
84 1.119.2.3 matt */
85 1.119.2.3 matt const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
86 1.119.2.2 matt
87 1.119.2.2 matt plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
88 1.119.2.2 matt "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
89 1.119.2.2 matt pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
90 1.119.2.2 matt "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
91 1.119.2.3 matt uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
92 1.119.2.2 matt }
93 1.119.2.2 matt
94 1.60 eeh /*
95 1.17 cgd * Resource controls and accounting.
96 1.17 cgd */
97 1.17 cgd
98 1.25 cgd int
99 1.119.2.3 matt sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
100 1.119.2.3 matt register_t *retval)
101 1.30 thorpej {
102 1.119.2.2 matt /* {
103 1.22 cgd syscallarg(int) which;
104 1.81 kleink syscallarg(id_t) who;
105 1.119.2.2 matt } */
106 1.68 thorpej struct proc *curp = l->l_proc, *p;
107 1.54 augustss int low = NZERO + PRIO_MAX + 1;
108 1.113 ad int who = SCARG(uap, who);
109 1.17 cgd
110 1.116 ad mutex_enter(&proclist_lock);
111 1.22 cgd switch (SCARG(uap, which)) {
112 1.17 cgd case PRIO_PROCESS:
113 1.113 ad if (who == 0)
114 1.17 cgd p = curp;
115 1.17 cgd else
116 1.113 ad p = p_find(who, PFIND_LOCKED);
117 1.113 ad if (p != NULL)
118 1.113 ad low = p->p_nice;
119 1.17 cgd break;
120 1.17 cgd
121 1.17 cgd case PRIO_PGRP: {
122 1.54 augustss struct pgrp *pg;
123 1.17 cgd
124 1.113 ad if (who == 0)
125 1.17 cgd pg = curp->p_pgrp;
126 1.113 ad else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
127 1.17 cgd break;
128 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 1.17 cgd if (p->p_nice < low)
130 1.17 cgd low = p->p_nice;
131 1.17 cgd }
132 1.17 cgd break;
133 1.17 cgd }
134 1.17 cgd
135 1.17 cgd case PRIO_USER:
136 1.113 ad if (who == 0)
137 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
138 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
139 1.113 ad mutex_enter(&p->p_mutex);
140 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
141 1.113 ad (uid_t)who && p->p_nice < low)
142 1.17 cgd low = p->p_nice;
143 1.113 ad mutex_exit(&p->p_mutex);
144 1.64 matt }
145 1.17 cgd break;
146 1.17 cgd
147 1.17 cgd default:
148 1.116 ad mutex_exit(&proclist_lock);
149 1.17 cgd return (EINVAL);
150 1.17 cgd }
151 1.116 ad mutex_exit(&proclist_lock);
152 1.113 ad
153 1.37 ws if (low == NZERO + PRIO_MAX + 1)
154 1.17 cgd return (ESRCH);
155 1.37 ws *retval = low - NZERO;
156 1.17 cgd return (0);
157 1.17 cgd }
158 1.17 cgd
159 1.17 cgd /* ARGSUSED */
160 1.25 cgd int
161 1.119.2.3 matt sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
162 1.119.2.3 matt register_t *retval)
163 1.30 thorpej {
164 1.119.2.2 matt /* {
165 1.22 cgd syscallarg(int) which;
166 1.81 kleink syscallarg(id_t) who;
167 1.22 cgd syscallarg(int) prio;
168 1.119.2.2 matt } */
169 1.68 thorpej struct proc *curp = l->l_proc, *p;
170 1.17 cgd int found = 0, error = 0;
171 1.113 ad int who = SCARG(uap, who);
172 1.17 cgd
173 1.116 ad mutex_enter(&proclist_lock);
174 1.22 cgd switch (SCARG(uap, which)) {
175 1.17 cgd case PRIO_PROCESS:
176 1.113 ad if (who == 0)
177 1.17 cgd p = curp;
178 1.17 cgd else
179 1.113 ad p = p_find(who, PFIND_LOCKED);
180 1.113 ad if (p != 0) {
181 1.113 ad mutex_enter(&p->p_mutex);
182 1.113 ad error = donice(l, p, SCARG(uap, prio));
183 1.113 ad mutex_exit(&p->p_mutex);
184 1.113 ad }
185 1.17 cgd found++;
186 1.17 cgd break;
187 1.17 cgd
188 1.17 cgd case PRIO_PGRP: {
189 1.54 augustss struct pgrp *pg;
190 1.87 perry
191 1.113 ad if (who == 0)
192 1.17 cgd pg = curp->p_pgrp;
193 1.113 ad else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
194 1.17 cgd break;
195 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
196 1.113 ad mutex_enter(&p->p_mutex);
197 1.102 ad error = donice(l, p, SCARG(uap, prio));
198 1.113 ad mutex_exit(&p->p_mutex);
199 1.17 cgd found++;
200 1.17 cgd }
201 1.17 cgd break;
202 1.17 cgd }
203 1.17 cgd
204 1.17 cgd case PRIO_USER:
205 1.113 ad if (who == 0)
206 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
207 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
208 1.113 ad mutex_enter(&p->p_mutex);
209 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
210 1.102 ad (uid_t)SCARG(uap, who)) {
211 1.102 ad error = donice(l, p, SCARG(uap, prio));
212 1.17 cgd found++;
213 1.17 cgd }
214 1.113 ad mutex_exit(&p->p_mutex);
215 1.64 matt }
216 1.17 cgd break;
217 1.17 cgd
218 1.17 cgd default:
219 1.113 ad error = EINVAL;
220 1.113 ad break;
221 1.17 cgd }
222 1.116 ad mutex_exit(&proclist_lock);
223 1.17 cgd if (found == 0)
224 1.17 cgd return (ESRCH);
225 1.17 cgd return (error);
226 1.17 cgd }
227 1.17 cgd
228 1.113 ad /*
229 1.113 ad * Renice a process.
230 1.113 ad *
231 1.113 ad * Call with the target process' credentials locked.
232 1.113 ad */
233 1.25 cgd int
234 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
235 1.17 cgd {
236 1.102 ad kauth_cred_t cred = l->l_cred;
237 1.113 ad int onice;
238 1.113 ad
239 1.118 ad KASSERT(mutex_owned(&chgp->p_mutex));
240 1.17 cgd
241 1.17 cgd if (n > PRIO_MAX)
242 1.17 cgd n = PRIO_MAX;
243 1.17 cgd if (n < PRIO_MIN)
244 1.17 cgd n = PRIO_MIN;
245 1.37 ws n += NZERO;
246 1.113 ad onice = chgp->p_nice;
247 1.113 ad onice = chgp->p_nice;
248 1.113 ad
249 1.113 ad again:
250 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
251 1.112 elad KAUTH_ARG(n), NULL, NULL))
252 1.17 cgd return (EACCES);
253 1.119.2.1 matt mutex_spin_enter(&chgp->p_smutex);
254 1.113 ad if (onice != chgp->p_nice) {
255 1.119.2.1 matt mutex_spin_exit(&chgp->p_smutex);
256 1.113 ad goto again;
257 1.113 ad }
258 1.117 yamt sched_nice(chgp, n);
259 1.119.2.1 matt mutex_spin_exit(&chgp->p_smutex);
260 1.17 cgd return (0);
261 1.17 cgd }
262 1.17 cgd
263 1.17 cgd /* ARGSUSED */
264 1.25 cgd int
265 1.119.2.3 matt sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
266 1.119.2.3 matt register_t *retval)
267 1.30 thorpej {
268 1.119.2.2 matt /* {
269 1.42 mycroft syscallarg(int) which;
270 1.39 cgd syscallarg(const struct rlimit *) rlp;
271 1.119.2.2 matt } */
272 1.42 mycroft int which = SCARG(uap, which);
273 1.19 cgd struct rlimit alim;
274 1.17 cgd int error;
275 1.17 cgd
276 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
277 1.33 christos if (error)
278 1.17 cgd return (error);
279 1.102 ad return (dosetrlimit(l, l->l_proc, which, &alim));
280 1.17 cgd }
281 1.17 cgd
282 1.17 cgd int
283 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
284 1.17 cgd {
285 1.54 augustss struct rlimit *alimp;
286 1.17 cgd int error;
287 1.17 cgd
288 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
289 1.17 cgd return (EINVAL);
290 1.38 matthias
291 1.38 matthias if (limp->rlim_cur < 0 || limp->rlim_max < 0)
292 1.38 matthias return (EINVAL);
293 1.38 matthias
294 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
295 1.62 jdolecek /*
296 1.62 jdolecek * This is programming error. According to SUSv2, we should
297 1.62 jdolecek * return error in this case.
298 1.62 jdolecek */
299 1.62 jdolecek return (EINVAL);
300 1.62 jdolecek }
301 1.119.2.1 matt
302 1.119.2.1 matt alimp = &p->p_rlimit[which];
303 1.119.2.1 matt /* if we don't change the value, no need to limcopy() */
304 1.119.2.1 matt if (limp->rlim_cur == alimp->rlim_cur &&
305 1.119.2.1 matt limp->rlim_max == alimp->rlim_max)
306 1.119.2.1 matt return 0;
307 1.119.2.1 matt
308 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
309 1.119.2.3 matt p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
310 1.111 elad if (error)
311 1.119.2.1 matt return (error);
312 1.62 jdolecek
313 1.119.2.1 matt lim_privatise(p, false);
314 1.119.2.1 matt /* p->p_limit is now unchangeable */
315 1.119.2.1 matt alimp = &p->p_rlimit[which];
316 1.17 cgd
317 1.17 cgd switch (which) {
318 1.17 cgd
319 1.17 cgd case RLIMIT_DATA:
320 1.19 cgd if (limp->rlim_cur > maxdmap)
321 1.19 cgd limp->rlim_cur = maxdmap;
322 1.19 cgd if (limp->rlim_max > maxdmap)
323 1.19 cgd limp->rlim_max = maxdmap;
324 1.17 cgd break;
325 1.17 cgd
326 1.17 cgd case RLIMIT_STACK:
327 1.19 cgd if (limp->rlim_cur > maxsmap)
328 1.19 cgd limp->rlim_cur = maxsmap;
329 1.19 cgd if (limp->rlim_max > maxsmap)
330 1.19 cgd limp->rlim_max = maxsmap;
331 1.62 jdolecek
332 1.62 jdolecek /*
333 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
334 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
335 1.62 jdolecek * moment it would try to access anything on it's current stack.
336 1.62 jdolecek * This conforms to SUSv2.
337 1.62 jdolecek */
338 1.62 jdolecek if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
339 1.113 ad || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
340 1.62 jdolecek return (EINVAL);
341 1.113 ad }
342 1.40 enami
343 1.17 cgd /*
344 1.40 enami * Stack is allocated to the max at exec time with
345 1.40 enami * only "rlim_cur" bytes accessible (In other words,
346 1.40 enami * allocates stack dividing two contiguous regions at
347 1.40 enami * "rlim_cur" bytes boundary).
348 1.40 enami *
349 1.40 enami * Since allocation is done in terms of page, roundup
350 1.40 enami * "rlim_cur" (otherwise, contiguous regions
351 1.40 enami * overlap). If stack limit is going up make more
352 1.40 enami * accessible, if going down make inaccessible.
353 1.17 cgd */
354 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
355 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
356 1.48 eeh vaddr_t addr;
357 1.48 eeh vsize_t size;
358 1.17 cgd vm_prot_t prot;
359 1.17 cgd
360 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
361 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
362 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
363 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
364 1.91 fvdl limp->rlim_cur;
365 1.17 cgd } else {
366 1.17 cgd prot = VM_PROT_NONE;
367 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
368 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
369 1.91 fvdl alimp->rlim_cur;
370 1.17 cgd }
371 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
372 1.114 thorpej addr, addr+size, prot, false);
373 1.17 cgd }
374 1.17 cgd break;
375 1.19 cgd
376 1.19 cgd case RLIMIT_NOFILE:
377 1.19 cgd if (limp->rlim_cur > maxfiles)
378 1.19 cgd limp->rlim_cur = maxfiles;
379 1.19 cgd if (limp->rlim_max > maxfiles)
380 1.19 cgd limp->rlim_max = maxfiles;
381 1.19 cgd break;
382 1.19 cgd
383 1.19 cgd case RLIMIT_NPROC:
384 1.19 cgd if (limp->rlim_cur > maxproc)
385 1.19 cgd limp->rlim_cur = maxproc;
386 1.19 cgd if (limp->rlim_max > maxproc)
387 1.19 cgd limp->rlim_max = maxproc;
388 1.19 cgd break;
389 1.17 cgd }
390 1.119.2.1 matt
391 1.119.2.1 matt mutex_enter(&p->p_limit->pl_lock);
392 1.17 cgd *alimp = *limp;
393 1.119.2.1 matt mutex_exit(&p->p_limit->pl_lock);
394 1.17 cgd return (0);
395 1.17 cgd }
396 1.17 cgd
397 1.17 cgd /* ARGSUSED */
398 1.25 cgd int
399 1.119.2.3 matt sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
400 1.119.2.3 matt register_t *retval)
401 1.30 thorpej {
402 1.119.2.2 matt /* {
403 1.42 mycroft syscallarg(int) which;
404 1.22 cgd syscallarg(struct rlimit *) rlp;
405 1.119.2.2 matt } */
406 1.68 thorpej struct proc *p = l->l_proc;
407 1.42 mycroft int which = SCARG(uap, which);
408 1.119 ad struct rlimit rl;
409 1.17 cgd
410 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
411 1.17 cgd return (EINVAL);
412 1.119 ad
413 1.119 ad mutex_enter(&p->p_mutex);
414 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
415 1.119 ad mutex_exit(&p->p_mutex);
416 1.119 ad
417 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
418 1.17 cgd }
419 1.17 cgd
420 1.17 cgd /*
421 1.17 cgd * Transform the running time and tick information in proc p into user,
422 1.17 cgd * system, and interrupt time usage.
423 1.113 ad *
424 1.113 ad * Should be called with p->p_smutex held unless called from exit1().
425 1.17 cgd */
426 1.25 cgd void
427 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
428 1.113 ad struct timeval *ip, struct timeval *rp)
429 1.17 cgd {
430 1.119.2.2 matt uint64_t u, st, ut, it, tot;
431 1.68 thorpej struct lwp *l;
432 1.119.2.2 matt struct bintime tm;
433 1.119.2.2 matt struct timeval tv;
434 1.17 cgd
435 1.113 ad mutex_spin_enter(&p->p_stmutex);
436 1.17 cgd st = p->p_sticks;
437 1.17 cgd ut = p->p_uticks;
438 1.17 cgd it = p->p_iticks;
439 1.113 ad mutex_spin_exit(&p->p_stmutex);
440 1.17 cgd
441 1.119.2.2 matt tm = p->p_rtime;
442 1.113 ad
443 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
444 1.113 ad lwp_lock(l);
445 1.119.2.2 matt bintime_add(&tm, &l->l_rtime);
446 1.119.2.1 matt if ((l->l_flag & LW_RUNNING) != 0) {
447 1.119.2.2 matt struct bintime diff;
448 1.68 thorpej /*
449 1.68 thorpej * Adjust for the current time slice. This is
450 1.68 thorpej * actually fairly important since the error
451 1.68 thorpej * here is on the order of a time quantum,
452 1.68 thorpej * which is much greater than the sampling
453 1.87 perry * error.
454 1.68 thorpej */
455 1.119.2.2 matt binuptime(&diff);
456 1.119.2.2 matt bintime_sub(&diff, &l->l_stime);
457 1.119.2.2 matt bintime_add(&tm, &diff);
458 1.68 thorpej }
459 1.113 ad lwp_unlock(l);
460 1.17 cgd }
461 1.69 dsl
462 1.69 dsl tot = st + ut + it;
463 1.119.2.2 matt bintime2timeval(&tm, &tv);
464 1.119.2.2 matt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
465 1.70 dsl
466 1.69 dsl if (tot == 0) {
467 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
468 1.70 dsl st = ut = u / 2;
469 1.70 dsl } else {
470 1.70 dsl st = (u * st) / tot;
471 1.70 dsl ut = (u * ut) / tot;
472 1.69 dsl }
473 1.113 ad if (sp != NULL) {
474 1.113 ad sp->tv_sec = st / 1000000;
475 1.113 ad sp->tv_usec = st % 1000000;
476 1.113 ad }
477 1.113 ad if (up != NULL) {
478 1.113 ad up->tv_sec = ut / 1000000;
479 1.113 ad up->tv_usec = ut % 1000000;
480 1.113 ad }
481 1.17 cgd if (ip != NULL) {
482 1.70 dsl if (it != 0)
483 1.70 dsl it = (u * it) / tot;
484 1.17 cgd ip->tv_sec = it / 1000000;
485 1.17 cgd ip->tv_usec = it % 1000000;
486 1.17 cgd }
487 1.113 ad if (rp != NULL) {
488 1.119.2.2 matt *rp = tv;
489 1.113 ad }
490 1.17 cgd }
491 1.17 cgd
492 1.17 cgd /* ARGSUSED */
493 1.25 cgd int
494 1.119.2.3 matt sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
495 1.119.2.3 matt register_t *retval)
496 1.30 thorpej {
497 1.119.2.2 matt /* {
498 1.22 cgd syscallarg(int) who;
499 1.22 cgd syscallarg(struct rusage *) rusage;
500 1.119.2.2 matt } */
501 1.119 ad struct rusage ru;
502 1.68 thorpej struct proc *p = l->l_proc;
503 1.17 cgd
504 1.22 cgd switch (SCARG(uap, who)) {
505 1.19 cgd case RUSAGE_SELF:
506 1.113 ad mutex_enter(&p->p_smutex);
507 1.119 ad memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
508 1.119 ad calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
509 1.113 ad mutex_exit(&p->p_smutex);
510 1.17 cgd break;
511 1.17 cgd
512 1.17 cgd case RUSAGE_CHILDREN:
513 1.119 ad mutex_enter(&p->p_smutex);
514 1.119 ad memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
515 1.119 ad mutex_exit(&p->p_smutex);
516 1.17 cgd break;
517 1.17 cgd
518 1.17 cgd default:
519 1.119 ad return EINVAL;
520 1.17 cgd }
521 1.119 ad
522 1.119 ad return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
523 1.17 cgd }
524 1.17 cgd
525 1.25 cgd void
526 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
527 1.17 cgd {
528 1.54 augustss long *ip, *ip2;
529 1.54 augustss int i;
530 1.17 cgd
531 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
532 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
533 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
534 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
535 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
536 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
537 1.17 cgd *ip++ += *ip2++;
538 1.17 cgd }
539 1.17 cgd
540 1.17 cgd /*
541 1.17 cgd * Make a copy of the plimit structure.
542 1.17 cgd * We share these structures copy-on-write after fork,
543 1.17 cgd * and copy when a limit is changed.
544 1.113 ad *
545 1.119.2.1 matt * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
546 1.119.2.1 matt * we are copying to change beneath our feet!
547 1.17 cgd */
548 1.17 cgd struct plimit *
549 1.119.2.1 matt lim_copy(struct plimit *lim)
550 1.17 cgd {
551 1.119.2.1 matt struct plimit *newlim;
552 1.113 ad char *corename;
553 1.119.2.1 matt size_t alen, len;
554 1.83 pk
555 1.119.2.2 matt newlim = pool_cache_get(plimit_cache, PR_WAITOK);
556 1.119.2.1 matt mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
557 1.119.2.1 matt newlim->pl_flags = 0;
558 1.119.2.1 matt newlim->pl_refcnt = 1;
559 1.119.2.1 matt newlim->pl_sv_limit = NULL;
560 1.119.2.1 matt
561 1.119.2.1 matt mutex_enter(&lim->pl_lock);
562 1.119.2.1 matt memcpy(newlim->pl_rlimit, lim->pl_rlimit,
563 1.119.2.1 matt sizeof(struct rlimit) * RLIM_NLIMITS);
564 1.83 pk
565 1.119.2.1 matt alen = 0;
566 1.119.2.1 matt corename = NULL;
567 1.113 ad for (;;) {
568 1.119.2.1 matt if (lim->pl_corename == defcorename) {
569 1.119.2.1 matt newlim->pl_corename = defcorename;
570 1.119.2.1 matt break;
571 1.119.2.1 matt }
572 1.119.2.1 matt len = strlen(lim->pl_corename) + 1;
573 1.119.2.1 matt if (len <= alen) {
574 1.119.2.1 matt newlim->pl_corename = corename;
575 1.119.2.1 matt memcpy(corename, lim->pl_corename, len);
576 1.119.2.1 matt corename = NULL;
577 1.119.2.1 matt break;
578 1.119.2.1 matt }
579 1.119.2.1 matt mutex_exit(&lim->pl_lock);
580 1.119.2.1 matt if (corename != NULL)
581 1.119.2.1 matt free(corename, M_TEMP);
582 1.119.2.1 matt alen = len;
583 1.119.2.1 matt corename = malloc(alen, M_TEMP, M_WAITOK);
584 1.119.2.1 matt mutex_enter(&lim->pl_lock);
585 1.119.2.1 matt }
586 1.119.2.1 matt mutex_exit(&lim->pl_lock);
587 1.119.2.1 matt if (corename != NULL)
588 1.119.2.1 matt free(corename, M_TEMP);
589 1.119.2.1 matt return newlim;
590 1.119.2.1 matt }
591 1.113 ad
592 1.119.2.1 matt void
593 1.119.2.1 matt lim_addref(struct plimit *lim)
594 1.119.2.1 matt {
595 1.119.2.2 matt atomic_inc_uint(&lim->pl_refcnt);
596 1.119.2.1 matt }
597 1.113 ad
598 1.119.2.1 matt /*
599 1.119.2.1 matt * Give a process it's own private plimit structure.
600 1.119.2.1 matt * This will only be shared (in fork) if modifications are to be shared.
601 1.119.2.1 matt */
602 1.119.2.1 matt void
603 1.119.2.1 matt lim_privatise(struct proc *p, bool set_shared)
604 1.119.2.1 matt {
605 1.119.2.1 matt struct plimit *lim, *newlim;
606 1.119.2.1 matt
607 1.119.2.1 matt lim = p->p_limit;
608 1.119.2.1 matt if (lim->pl_flags & PL_WRITEABLE) {
609 1.119.2.1 matt if (set_shared)
610 1.119.2.1 matt lim->pl_flags |= PL_SHAREMOD;
611 1.119.2.1 matt return;
612 1.113 ad }
613 1.83 pk
614 1.119.2.1 matt if (set_shared && lim->pl_flags & PL_SHAREMOD)
615 1.119.2.1 matt return;
616 1.119.2.1 matt
617 1.119.2.1 matt newlim = lim_copy(lim);
618 1.119.2.1 matt
619 1.119.2.1 matt mutex_enter(&p->p_mutex);
620 1.119.2.1 matt if (p->p_limit->pl_flags & PL_WRITEABLE) {
621 1.119.2.1 matt /* Someone crept in while we were busy */
622 1.119.2.1 matt mutex_exit(&p->p_mutex);
623 1.119.2.1 matt limfree(newlim);
624 1.119.2.1 matt if (set_shared)
625 1.119.2.1 matt p->p_limit->pl_flags |= PL_SHAREMOD;
626 1.119.2.1 matt return;
627 1.119.2.1 matt }
628 1.119.2.1 matt
629 1.119.2.1 matt /*
630 1.119.2.1 matt * Since most accesses to p->p_limit aren't locked, we must not
631 1.119.2.1 matt * delete the old limit structure yet.
632 1.119.2.1 matt */
633 1.119.2.1 matt newlim->pl_sv_limit = p->p_limit;
634 1.119.2.1 matt newlim->pl_flags |= PL_WRITEABLE;
635 1.119.2.1 matt if (set_shared)
636 1.119.2.1 matt newlim->pl_flags |= PL_SHAREMOD;
637 1.119.2.1 matt p->p_limit = newlim;
638 1.119.2.1 matt mutex_exit(&p->p_mutex);
639 1.32 mycroft }
640 1.32 mycroft
641 1.32 mycroft void
642 1.98 thorpej limfree(struct plimit *lim)
643 1.32 mycroft {
644 1.119.2.1 matt struct plimit *sv_lim;
645 1.85 kleink
646 1.119.2.1 matt do {
647 1.119.2.2 matt if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
648 1.119.2.1 matt return;
649 1.119.2.1 matt if (lim->pl_corename != defcorename)
650 1.119.2.1 matt free(lim->pl_corename, M_TEMP);
651 1.119.2.1 matt sv_lim = lim->pl_sv_limit;
652 1.119.2.1 matt mutex_destroy(&lim->pl_lock);
653 1.119.2.2 matt pool_cache_put(plimit_cache, lim);
654 1.119.2.1 matt } while ((lim = sv_lim) != NULL);
655 1.68 thorpej }
656 1.68 thorpej
657 1.68 thorpej struct pstats *
658 1.98 thorpej pstatscopy(struct pstats *ps)
659 1.68 thorpej {
660 1.87 perry
661 1.68 thorpej struct pstats *newps;
662 1.68 thorpej
663 1.119.2.2 matt newps = pool_cache_get(pstats_cache, PR_WAITOK);
664 1.68 thorpej
665 1.68 thorpej memset(&newps->pstat_startzero, 0,
666 1.115 christos (unsigned) ((char *)&newps->pstat_endzero -
667 1.115 christos (char *)&newps->pstat_startzero));
668 1.68 thorpej memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
669 1.115 christos ((char *)&newps->pstat_endcopy -
670 1.115 christos (char *)&newps->pstat_startcopy));
671 1.68 thorpej
672 1.68 thorpej return (newps);
673 1.68 thorpej
674 1.68 thorpej }
675 1.68 thorpej
676 1.68 thorpej void
677 1.98 thorpej pstatsfree(struct pstats *ps)
678 1.68 thorpej {
679 1.68 thorpej
680 1.119.2.2 matt pool_cache_put(pstats_cache, ps);
681 1.74 atatat }
682 1.74 atatat
683 1.74 atatat /*
684 1.74 atatat * sysctl interface in five parts
685 1.74 atatat */
686 1.74 atatat
687 1.74 atatat /*
688 1.74 atatat * a routine for sysctl proc subtree helpers that need to pick a valid
689 1.74 atatat * process by pid.
690 1.74 atatat */
691 1.74 atatat static int
692 1.102 ad sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
693 1.74 atatat {
694 1.74 atatat struct proc *ptmp;
695 1.101 elad int error = 0;
696 1.74 atatat
697 1.74 atatat if (pid == PROC_CURPROC)
698 1.102 ad ptmp = l->l_proc;
699 1.74 atatat else if ((ptmp = pfind(pid)) == NULL)
700 1.74 atatat error = ESRCH;
701 1.74 atatat
702 1.74 atatat *p2 = ptmp;
703 1.74 atatat return (error);
704 1.74 atatat }
705 1.74 atatat
706 1.74 atatat /*
707 1.74 atatat * sysctl helper routine for setting a process's specific corefile
708 1.74 atatat * name. picks the process based on the given pid and checks the
709 1.74 atatat * correctness of the new value.
710 1.74 atatat */
711 1.74 atatat static int
712 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
713 1.74 atatat {
714 1.102 ad struct proc *ptmp;
715 1.83 pk struct plimit *lim;
716 1.74 atatat int error = 0, len;
717 1.100 yamt char *cname;
718 1.119.2.1 matt char *ocore;
719 1.100 yamt char *tmp;
720 1.74 atatat struct sysctlnode node;
721 1.74 atatat
722 1.74 atatat /*
723 1.74 atatat * is this all correct?
724 1.74 atatat */
725 1.74 atatat if (namelen != 0)
726 1.74 atatat return (EINVAL);
727 1.74 atatat if (name[-1] != PROC_PID_CORENAME)
728 1.74 atatat return (EINVAL);
729 1.74 atatat
730 1.74 atatat /*
731 1.74 atatat * whom are we tweaking?
732 1.74 atatat */
733 1.102 ad error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
734 1.74 atatat if (error)
735 1.74 atatat return (error);
736 1.74 atatat
737 1.119.2.3 matt /* XXX-elad */
738 1.119.2.3 matt error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
739 1.119.2.3 matt KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
740 1.111 elad if (error)
741 1.111 elad return (error);
742 1.111 elad
743 1.119.2.3 matt if (newp == NULL) {
744 1.119.2.3 matt error = kauth_authorize_process(l->l_cred,
745 1.119.2.3 matt KAUTH_PROCESS_CORENAME, ptmp,
746 1.119.2.3 matt KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
747 1.119.2.3 matt if (error)
748 1.119.2.3 matt return (error);
749 1.119.2.3 matt }
750 1.119.2.3 matt
751 1.74 atatat /*
752 1.74 atatat * let them modify a temporary copy of the core name
753 1.74 atatat */
754 1.119.2.1 matt cname = PNBUF_GET();
755 1.119.2.1 matt lim = ptmp->p_limit;
756 1.119.2.1 matt mutex_enter(&lim->pl_lock);
757 1.119.2.1 matt strlcpy(cname, lim->pl_corename, MAXPATHLEN);
758 1.119.2.1 matt mutex_exit(&lim->pl_lock);
759 1.119.2.1 matt
760 1.74 atatat node = *rnode;
761 1.74 atatat node.sysctl_data = cname;
762 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
763 1.74 atatat
764 1.74 atatat /*
765 1.74 atatat * if that failed, or they have nothing new to say, or we've
766 1.74 atatat * heard it before...
767 1.74 atatat */
768 1.119.2.1 matt if (error || newp == NULL)
769 1.119.2.1 matt goto done;
770 1.119.2.1 matt lim = ptmp->p_limit;
771 1.119.2.1 matt mutex_enter(&lim->pl_lock);
772 1.119.2.1 matt error = strcmp(cname, lim->pl_corename);
773 1.119.2.1 matt mutex_exit(&lim->pl_lock);
774 1.119.2.1 matt if (error == 0)
775 1.119.2.1 matt /* Unchanged */
776 1.100 yamt goto done;
777 1.74 atatat
778 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
779 1.119.2.3 matt ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
780 1.111 elad if (error)
781 1.111 elad return (error);
782 1.103 elad
783 1.74 atatat /*
784 1.74 atatat * no error yet and cname now has the new core name in it.
785 1.74 atatat * let's see if it looks acceptable. it must be either "core"
786 1.74 atatat * or end in ".core" or "/core".
787 1.74 atatat */
788 1.74 atatat len = strlen(cname);
789 1.100 yamt if (len < 4) {
790 1.100 yamt error = EINVAL;
791 1.100 yamt } else if (strcmp(cname + len - 4, "core") != 0) {
792 1.100 yamt error = EINVAL;
793 1.100 yamt } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
794 1.100 yamt error = EINVAL;
795 1.100 yamt }
796 1.100 yamt if (error != 0) {
797 1.100 yamt goto done;
798 1.100 yamt }
799 1.74 atatat
800 1.74 atatat /*
801 1.74 atatat * hmm...looks good. now...where do we put it?
802 1.74 atatat */
803 1.74 atatat tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
804 1.100 yamt if (tmp == NULL) {
805 1.100 yamt error = ENOMEM;
806 1.100 yamt goto done;
807 1.100 yamt }
808 1.119.2.1 matt memcpy(tmp, cname, len + 1);
809 1.74 atatat
810 1.119.2.1 matt lim_privatise(ptmp, false);
811 1.83 pk lim = ptmp->p_limit;
812 1.119.2.1 matt mutex_enter(&lim->pl_lock);
813 1.119.2.1 matt ocore = lim->pl_corename;
814 1.83 pk lim->pl_corename = tmp;
815 1.119.2.1 matt mutex_exit(&lim->pl_lock);
816 1.119.2.1 matt if (ocore != defcorename)
817 1.119.2.1 matt free(ocore, M_TEMP);
818 1.119.2.1 matt
819 1.100 yamt done:
820 1.100 yamt PNBUF_PUT(cname);
821 1.100 yamt return error;
822 1.74 atatat }
823 1.74 atatat
824 1.74 atatat /*
825 1.74 atatat * sysctl helper routine for checking/setting a process's stop flags,
826 1.74 atatat * one for fork and one for exec.
827 1.74 atatat */
828 1.74 atatat static int
829 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
830 1.74 atatat {
831 1.102 ad struct proc *ptmp;
832 1.74 atatat int i, f, error = 0;
833 1.74 atatat struct sysctlnode node;
834 1.74 atatat
835 1.74 atatat if (namelen != 0)
836 1.74 atatat return (EINVAL);
837 1.74 atatat
838 1.102 ad error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
839 1.74 atatat if (error)
840 1.74 atatat return (error);
841 1.74 atatat
842 1.119.2.3 matt /* XXX-elad */
843 1.119.2.3 matt error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
844 1.119.2.3 matt KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
845 1.111 elad if (error)
846 1.111 elad return (error);
847 1.111 elad
848 1.74 atatat switch (rnode->sysctl_num) {
849 1.74 atatat case PROC_PID_STOPFORK:
850 1.113 ad f = PS_STOPFORK;
851 1.74 atatat break;
852 1.74 atatat case PROC_PID_STOPEXEC:
853 1.113 ad f = PS_STOPEXEC;
854 1.74 atatat break;
855 1.74 atatat case PROC_PID_STOPEXIT:
856 1.113 ad f = PS_STOPEXIT;
857 1.74 atatat break;
858 1.74 atatat default:
859 1.74 atatat return (EINVAL);
860 1.74 atatat }
861 1.74 atatat
862 1.74 atatat i = (ptmp->p_flag & f) ? 1 : 0;
863 1.74 atatat node = *rnode;
864 1.74 atatat node.sysctl_data = &i;
865 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
866 1.74 atatat if (error || newp == NULL)
867 1.74 atatat return (error);
868 1.74 atatat
869 1.113 ad mutex_enter(&ptmp->p_smutex);
870 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
871 1.111 elad ptmp, KAUTH_ARG(f), NULL, NULL);
872 1.111 elad if (error)
873 1.111 elad return (error);
874 1.74 atatat if (i)
875 1.113 ad ptmp->p_sflag |= f;
876 1.74 atatat else
877 1.113 ad ptmp->p_sflag &= ~f;
878 1.113 ad mutex_exit(&ptmp->p_smutex);
879 1.74 atatat
880 1.74 atatat return (0);
881 1.74 atatat }
882 1.74 atatat
883 1.74 atatat /*
884 1.74 atatat * sysctl helper routine for a process's rlimits as exposed by sysctl.
885 1.74 atatat */
886 1.74 atatat static int
887 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
888 1.74 atatat {
889 1.102 ad struct proc *ptmp;
890 1.74 atatat u_int limitno;
891 1.74 atatat int which, error = 0;
892 1.74 atatat struct rlimit alim;
893 1.74 atatat struct sysctlnode node;
894 1.74 atatat
895 1.74 atatat if (namelen != 0)
896 1.74 atatat return (EINVAL);
897 1.74 atatat
898 1.74 atatat which = name[-1];
899 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
900 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
901 1.74 atatat return (EINVAL);
902 1.74 atatat
903 1.74 atatat limitno = name[-2] - 1;
904 1.74 atatat if (limitno >= RLIM_NLIMITS)
905 1.74 atatat return (EINVAL);
906 1.74 atatat
907 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
908 1.74 atatat return (EINVAL);
909 1.74 atatat
910 1.102 ad error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
911 1.74 atatat if (error)
912 1.74 atatat return (error);
913 1.74 atatat
914 1.119.2.3 matt /* XXX-elad */
915 1.119.2.3 matt error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
916 1.119.2.3 matt KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
917 1.111 elad if (error)
918 1.111 elad return (error);
919 1.111 elad
920 1.119.2.3 matt /* Check if we can view limits. */
921 1.119.2.3 matt if (newp == NULL) {
922 1.119.2.3 matt error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
923 1.119.2.3 matt ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
924 1.119.2.3 matt KAUTH_ARG(which));
925 1.119.2.3 matt if (error)
926 1.119.2.3 matt return (error);
927 1.119.2.3 matt }
928 1.119.2.3 matt
929 1.74 atatat node = *rnode;
930 1.74 atatat memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
931 1.74 atatat if (which == PROC_PID_LIMIT_TYPE_HARD)
932 1.74 atatat node.sysctl_data = &alim.rlim_max;
933 1.74 atatat else
934 1.74 atatat node.sysctl_data = &alim.rlim_cur;
935 1.74 atatat
936 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
937 1.74 atatat if (error || newp == NULL)
938 1.74 atatat return (error);
939 1.74 atatat
940 1.102 ad return (dosetrlimit(l, ptmp, limitno, &alim));
941 1.74 atatat }
942 1.74 atatat
943 1.74 atatat /*
944 1.74 atatat * and finally, the actually glue that sticks it to the tree
945 1.74 atatat */
946 1.74 atatat SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
947 1.74 atatat {
948 1.74 atatat
949 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
950 1.76 atatat CTLFLAG_PERMANENT,
951 1.74 atatat CTLTYPE_NODE, "proc", NULL,
952 1.74 atatat NULL, 0, NULL, 0,
953 1.74 atatat CTL_PROC, CTL_EOL);
954 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
955 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
956 1.78 atatat CTLTYPE_NODE, "curproc",
957 1.78 atatat SYSCTL_DESCR("Per-process settings"),
958 1.74 atatat NULL, 0, NULL, 0,
959 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
960 1.74 atatat
961 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
962 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
963 1.78 atatat CTLTYPE_STRING, "corename",
964 1.78 atatat SYSCTL_DESCR("Core file name"),
965 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
966 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
967 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
968 1.76 atatat CTLFLAG_PERMANENT,
969 1.78 atatat CTLTYPE_NODE, "rlimit",
970 1.78 atatat SYSCTL_DESCR("Process limits"),
971 1.74 atatat NULL, 0, NULL, 0,
972 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
973 1.74 atatat
974 1.74 atatat #define create_proc_plimit(s, n) do { \
975 1.76 atatat sysctl_createv(clog, 0, NULL, NULL, \
976 1.76 atatat CTLFLAG_PERMANENT, \
977 1.78 atatat CTLTYPE_NODE, s, \
978 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
979 1.74 atatat NULL, 0, NULL, 0, \
980 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
981 1.74 atatat CTL_EOL); \
982 1.76 atatat sysctl_createv(clog, 0, NULL, NULL, \
983 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
984 1.78 atatat CTLTYPE_QUAD, "soft", \
985 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
986 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
987 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
988 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
989 1.76 atatat sysctl_createv(clog, 0, NULL, NULL, \
990 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
991 1.78 atatat CTLTYPE_QUAD, "hard", \
992 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
993 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
994 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
995 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
996 1.74 atatat } while (0/*CONSTCOND*/)
997 1.74 atatat
998 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
999 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1000 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1001 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1002 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1003 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1004 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1005 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1006 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1007 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1008 1.74 atatat
1009 1.74 atatat #undef create_proc_plimit
1010 1.74 atatat
1011 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
1012 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1013 1.78 atatat CTLTYPE_INT, "stopfork",
1014 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1015 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1016 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1017 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
1018 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1019 1.78 atatat CTLTYPE_INT, "stopexec",
1020 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1021 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1022 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1023 1.76 atatat sysctl_createv(clog, 0, NULL, NULL,
1024 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1025 1.78 atatat CTLTYPE_INT, "stopexit",
1026 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1027 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1028 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1029 1.17 cgd }
1030 1.79 christos
1031 1.118 ad void
1032 1.118 ad uid_init(void)
1033 1.118 ad {
1034 1.118 ad
1035 1.118 ad /*
1036 1.118 ad * Ensure that uid 0 is always in the user hash table, as
1037 1.118 ad * sbreserve() expects it available from interrupt context.
1038 1.118 ad */
1039 1.118 ad (void)uid_find(0);
1040 1.118 ad }
1041 1.118 ad
1042 1.88 christos struct uidinfo *
1043 1.88 christos uid_find(uid_t uid)
1044 1.79 christos {
1045 1.119.2.3 matt struct uidinfo *uip, *uip_first, *newuip;
1046 1.79 christos struct uihashhead *uipp;
1047 1.79 christos
1048 1.79 christos uipp = UIHASH(uid);
1049 1.119.2.3 matt newuip = NULL;
1050 1.79 christos
1051 1.119.2.3 matt /*
1052 1.119.2.3 matt * To make insertion atomic, abstraction of SLIST will be violated.
1053 1.119.2.3 matt */
1054 1.119.2.3 matt uip_first = uipp->slh_first;
1055 1.119.2.3 matt again:
1056 1.119.2.3 matt SLIST_FOREACH(uip, uipp, ui_hash) {
1057 1.119.2.3 matt if (uip->ui_uid != uid)
1058 1.119.2.3 matt continue;
1059 1.119.2.3 matt if (newuip != NULL)
1060 1.119.2.3 matt kmem_free(newuip, sizeof(*newuip));
1061 1.119.2.3 matt return uip;
1062 1.119.2.3 matt }
1063 1.119.2.3 matt if (newuip == NULL)
1064 1.119.2.3 matt newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
1065 1.119.2.3 matt newuip->ui_uid = uid;
1066 1.119.2.3 matt
1067 1.119.2.3 matt /*
1068 1.119.2.3 matt * If atomic insert is unsuccessful, another thread might be
1069 1.119.2.3 matt * allocated this 'uid', thus full re-check is needed.
1070 1.119.2.3 matt */
1071 1.119.2.3 matt newuip->ui_hash.sle_next = uip_first;
1072 1.119.2.3 matt membar_producer();
1073 1.119.2.3 matt uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
1074 1.119.2.3 matt if (uip != uip_first) {
1075 1.119.2.3 matt uip_first = uip;
1076 1.90 christos goto again;
1077 1.90 christos }
1078 1.89 christos
1079 1.119.2.3 matt return newuip;
1080 1.79 christos }
1081 1.79 christos
1082 1.79 christos /*
1083 1.79 christos * Change the count associated with number of processes
1084 1.79 christos * a given user is using.
1085 1.79 christos */
1086 1.79 christos int
1087 1.79 christos chgproccnt(uid_t uid, int diff)
1088 1.79 christos {
1089 1.79 christos struct uidinfo *uip;
1090 1.119.2.3 matt long proccnt;
1091 1.79 christos
1092 1.88 christos uip = uid_find(uid);
1093 1.119.2.3 matt proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
1094 1.119.2.3 matt KASSERT(proccnt >= 0);
1095 1.119.2.3 matt return proccnt;
1096 1.79 christos }
1097 1.79 christos
1098 1.79 christos int
1099 1.97 christos chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1100 1.79 christos {
1101 1.79 christos rlim_t nsb;
1102 1.119.2.3 matt const long diff = to - *hiwat;
1103 1.79 christos
1104 1.119.2.3 matt nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
1105 1.119.2.3 matt if (diff > 0 && nsb > xmax) {
1106 1.119.2.3 matt atomic_add_long((long *)&uip->ui_sbsize, -diff);
1107 1.88 christos return 0;
1108 1.94 christos }
1109 1.79 christos *hiwat = to;
1110 1.119.2.3 matt KASSERT(nsb >= 0);
1111 1.88 christos return 1;
1112 1.79 christos }
1113