Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.158
      1  1.158     rmind /*	$NetBSD: kern_resource.c,v 1.158 2011/04/30 23:41:17 rmind Exp $	*/
      2   1.20       cgd 
      3   1.17       cgd /*-
      4   1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
      5   1.19       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.17       cgd  * (c) UNIX System Laboratories, Inc.
      7   1.17       cgd  * All or some portions of this file are derived from material licensed
      8   1.17       cgd  * to the University of California by American Telephone and Telegraph
      9   1.17       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10   1.17       cgd  * the permission of UNIX System Laboratories, Inc.
     11   1.17       cgd  *
     12   1.17       cgd  * Redistribution and use in source and binary forms, with or without
     13   1.17       cgd  * modification, are permitted provided that the following conditions
     14   1.17       cgd  * are met:
     15   1.17       cgd  * 1. Redistributions of source code must retain the above copyright
     16   1.17       cgd  *    notice, this list of conditions and the following disclaimer.
     17   1.17       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.17       cgd  *    notice, this list of conditions and the following disclaimer in the
     19   1.17       cgd  *    documentation and/or other materials provided with the distribution.
     20   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     21   1.17       cgd  *    may be used to endorse or promote products derived from this software
     22   1.17       cgd  *    without specific prior written permission.
     23   1.17       cgd  *
     24   1.17       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25   1.17       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26   1.17       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27   1.17       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28   1.17       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29   1.17       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30   1.17       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.17       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.17       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.17       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.17       cgd  * SUCH DAMAGE.
     35   1.17       cgd  *
     36   1.45      fvdl  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37   1.17       cgd  */
     38   1.61     lukem 
     39   1.61     lukem #include <sys/cdefs.h>
     40  1.158     rmind __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.158 2011/04/30 23:41:17 rmind Exp $");
     41   1.44       mrg 
     42   1.17       cgd #include <sys/param.h>
     43   1.22       cgd #include <sys/systm.h>
     44   1.17       cgd #include <sys/kernel.h>
     45   1.19       cgd #include <sys/file.h>
     46   1.17       cgd #include <sys/resourcevar.h>
     47   1.17       cgd #include <sys/malloc.h>
     48  1.132      yamt #include <sys/kmem.h>
     49  1.100      yamt #include <sys/namei.h>
     50   1.49   thorpej #include <sys/pool.h>
     51   1.17       cgd #include <sys/proc.h>
     52   1.74    atatat #include <sys/sysctl.h>
     53  1.129      yamt #include <sys/timevar.h>
     54  1.101      elad #include <sys/kauth.h>
     55  1.125        ad #include <sys/atomic.h>
     56   1.22       cgd #include <sys/mount.h>
     57   1.22       cgd #include <sys/syscallargs.h>
     58  1.136        ad #include <sys/atomic.h>
     59   1.17       cgd 
     60   1.43       mrg #include <uvm/uvm_extern.h>
     61   1.43       mrg 
     62   1.17       cgd /*
     63   1.60       eeh  * Maximum process data and stack limits.
     64   1.60       eeh  * They are variables so they are patchable.
     65   1.60       eeh  */
     66   1.60       eeh rlim_t maxdmap = MAXDSIZ;
     67   1.60       eeh rlim_t maxsmap = MAXSSIZ;
     68   1.60       eeh 
     69  1.134     rmind static pool_cache_t	plimit_cache;
     70  1.134     rmind static pool_cache_t	pstats_cache;
     71  1.130        ad 
     72  1.154      elad static kauth_listener_t	resource_listener;
     73  1.153      elad 
     74  1.156     pooka static void sysctl_proc_setup(void);
     75  1.156     pooka 
     76  1.153      elad static int
     77  1.154      elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     78  1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
     79  1.153      elad {
     80  1.153      elad 	struct proc *p;
     81  1.153      elad 	int result;
     82  1.153      elad 
     83  1.153      elad 	result = KAUTH_RESULT_DEFER;
     84  1.153      elad 	p = arg0;
     85  1.153      elad 
     86  1.154      elad 	switch (action) {
     87  1.154      elad 	case KAUTH_PROCESS_NICE:
     88  1.154      elad 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     89  1.154      elad                     kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     90  1.154      elad                         break;
     91  1.154      elad                 }
     92  1.153      elad 
     93  1.154      elad                 if ((u_long)arg1 >= p->p_nice)
     94  1.154      elad                         result = KAUTH_RESULT_ALLOW;
     95  1.153      elad 
     96  1.154      elad 		break;
     97  1.154      elad 
     98  1.154      elad 	case KAUTH_PROCESS_RLIMIT: {
     99  1.154      elad 		enum kauth_process_req req;
    100  1.153      elad 
    101  1.154      elad 		req = (enum kauth_process_req)(unsigned long)arg1;
    102  1.153      elad 
    103  1.154      elad 		switch (req) {
    104  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    105  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    106  1.154      elad 			break;
    107  1.154      elad 
    108  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    109  1.154      elad 			struct rlimit *new_rlimit;
    110  1.154      elad 			u_long which;
    111  1.154      elad 
    112  1.154      elad 			if ((p != curlwp->l_proc) &&
    113  1.154      elad 			    (proc_uidmatch(cred, p->p_cred) != 0))
    114  1.154      elad 				break;
    115  1.154      elad 
    116  1.154      elad 			new_rlimit = arg2;
    117  1.154      elad 			which = (u_long)arg3;
    118  1.154      elad 
    119  1.154      elad 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    120  1.154      elad 				result = KAUTH_RESULT_ALLOW;
    121  1.154      elad 
    122  1.154      elad 			break;
    123  1.154      elad 			}
    124  1.154      elad 
    125  1.154      elad 		default:
    126  1.154      elad 			break;
    127  1.154      elad 		}
    128  1.154      elad 
    129  1.154      elad 		break;
    130  1.154      elad 	}
    131  1.154      elad 
    132  1.154      elad 	default:
    133  1.154      elad 		break;
    134  1.153      elad 	}
    135  1.153      elad 
    136  1.153      elad 	return result;
    137  1.153      elad }
    138  1.153      elad 
    139  1.130        ad void
    140  1.130        ad resource_init(void)
    141  1.130        ad {
    142  1.130        ad 
    143  1.130        ad 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    144  1.130        ad 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    145  1.130        ad 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    146  1.130        ad 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    147  1.153      elad 
    148  1.154      elad 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    149  1.154      elad 	    resource_listener_cb, NULL);
    150  1.156     pooka 
    151  1.156     pooka 	sysctl_proc_setup();
    152  1.130        ad }
    153  1.130        ad 
    154   1.60       eeh /*
    155   1.17       cgd  * Resource controls and accounting.
    156   1.17       cgd  */
    157   1.17       cgd 
    158   1.25       cgd int
    159  1.134     rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    160  1.134     rmind     register_t *retval)
    161   1.30   thorpej {
    162  1.128       dsl 	/* {
    163   1.22       cgd 		syscallarg(int) which;
    164   1.81    kleink 		syscallarg(id_t) who;
    165  1.128       dsl 	} */
    166   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    167   1.54  augustss 	int low = NZERO + PRIO_MAX + 1;
    168  1.113        ad 	int who = SCARG(uap, who);
    169   1.17       cgd 
    170  1.138        ad 	mutex_enter(proc_lock);
    171   1.22       cgd 	switch (SCARG(uap, which)) {
    172   1.17       cgd 	case PRIO_PROCESS:
    173  1.157     rmind 		p = who ? proc_find(who) : curp;;
    174  1.113        ad 		if (p != NULL)
    175  1.113        ad 			low = p->p_nice;
    176   1.17       cgd 		break;
    177   1.17       cgd 
    178   1.17       cgd 	case PRIO_PGRP: {
    179   1.54  augustss 		struct pgrp *pg;
    180   1.17       cgd 
    181  1.113        ad 		if (who == 0)
    182   1.17       cgd 			pg = curp->p_pgrp;
    183  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    184   1.17       cgd 			break;
    185   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    186   1.17       cgd 			if (p->p_nice < low)
    187   1.17       cgd 				low = p->p_nice;
    188   1.17       cgd 		}
    189   1.17       cgd 		break;
    190   1.17       cgd 	}
    191   1.17       cgd 
    192   1.17       cgd 	case PRIO_USER:
    193  1.113        ad 		if (who == 0)
    194  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    195   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    196  1.139        ad 			mutex_enter(p->p_lock);
    197  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    198  1.113        ad 			    (uid_t)who && p->p_nice < low)
    199   1.17       cgd 				low = p->p_nice;
    200  1.139        ad 			mutex_exit(p->p_lock);
    201   1.64      matt 		}
    202   1.17       cgd 		break;
    203   1.17       cgd 
    204   1.17       cgd 	default:
    205  1.138        ad 		mutex_exit(proc_lock);
    206   1.17       cgd 		return (EINVAL);
    207   1.17       cgd 	}
    208  1.138        ad 	mutex_exit(proc_lock);
    209  1.113        ad 
    210   1.37        ws 	if (low == NZERO + PRIO_MAX + 1)
    211   1.17       cgd 		return (ESRCH);
    212   1.37        ws 	*retval = low - NZERO;
    213   1.17       cgd 	return (0);
    214   1.17       cgd }
    215   1.17       cgd 
    216   1.17       cgd /* ARGSUSED */
    217   1.25       cgd int
    218  1.134     rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    219  1.134     rmind     register_t *retval)
    220   1.30   thorpej {
    221  1.128       dsl 	/* {
    222   1.22       cgd 		syscallarg(int) which;
    223   1.81    kleink 		syscallarg(id_t) who;
    224   1.22       cgd 		syscallarg(int) prio;
    225  1.128       dsl 	} */
    226   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    227   1.17       cgd 	int found = 0, error = 0;
    228  1.113        ad 	int who = SCARG(uap, who);
    229   1.17       cgd 
    230  1.138        ad 	mutex_enter(proc_lock);
    231   1.22       cgd 	switch (SCARG(uap, which)) {
    232   1.17       cgd 	case PRIO_PROCESS:
    233  1.157     rmind 		p = who ? proc_find(who) : curp;
    234  1.157     rmind 		if (p != NULL) {
    235  1.139        ad 			mutex_enter(p->p_lock);
    236  1.113        ad 			error = donice(l, p, SCARG(uap, prio));
    237  1.139        ad 			mutex_exit(p->p_lock);
    238  1.145     njoly 			found++;
    239  1.113        ad 		}
    240   1.17       cgd 		break;
    241   1.17       cgd 
    242   1.17       cgd 	case PRIO_PGRP: {
    243   1.54  augustss 		struct pgrp *pg;
    244   1.87     perry 
    245  1.113        ad 		if (who == 0)
    246   1.17       cgd 			pg = curp->p_pgrp;
    247  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    248   1.17       cgd 			break;
    249   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    250  1.139        ad 			mutex_enter(p->p_lock);
    251  1.102        ad 			error = donice(l, p, SCARG(uap, prio));
    252  1.139        ad 			mutex_exit(p->p_lock);
    253   1.17       cgd 			found++;
    254   1.17       cgd 		}
    255   1.17       cgd 		break;
    256   1.17       cgd 	}
    257   1.17       cgd 
    258   1.17       cgd 	case PRIO_USER:
    259  1.113        ad 		if (who == 0)
    260  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    261   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    262  1.139        ad 			mutex_enter(p->p_lock);
    263  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    264  1.102        ad 			    (uid_t)SCARG(uap, who)) {
    265  1.102        ad 				error = donice(l, p, SCARG(uap, prio));
    266   1.17       cgd 				found++;
    267   1.17       cgd 			}
    268  1.139        ad 			mutex_exit(p->p_lock);
    269   1.64      matt 		}
    270   1.17       cgd 		break;
    271   1.17       cgd 
    272   1.17       cgd 	default:
    273  1.144     njoly 		mutex_exit(proc_lock);
    274  1.144     njoly 		return EINVAL;
    275   1.17       cgd 	}
    276  1.138        ad 	mutex_exit(proc_lock);
    277   1.17       cgd 	if (found == 0)
    278   1.17       cgd 		return (ESRCH);
    279   1.17       cgd 	return (error);
    280   1.17       cgd }
    281   1.17       cgd 
    282  1.113        ad /*
    283  1.113        ad  * Renice a process.
    284  1.113        ad  *
    285  1.113        ad  * Call with the target process' credentials locked.
    286  1.113        ad  */
    287   1.25       cgd int
    288  1.102        ad donice(struct lwp *l, struct proc *chgp, int n)
    289   1.17       cgd {
    290  1.102        ad 	kauth_cred_t cred = l->l_cred;
    291  1.113        ad 
    292  1.139        ad 	KASSERT(mutex_owned(chgp->p_lock));
    293   1.17       cgd 
    294  1.152      elad 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    295  1.152      elad 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    296  1.152      elad 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    297  1.152      elad 		return (EPERM);
    298  1.152      elad 
    299   1.17       cgd 	if (n > PRIO_MAX)
    300   1.17       cgd 		n = PRIO_MAX;
    301   1.17       cgd 	if (n < PRIO_MIN)
    302   1.17       cgd 		n = PRIO_MIN;
    303   1.37        ws 	n += NZERO;
    304  1.112      elad 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    305  1.112      elad 	    KAUTH_ARG(n), NULL, NULL))
    306   1.17       cgd 		return (EACCES);
    307  1.117      yamt 	sched_nice(chgp, n);
    308   1.17       cgd 	return (0);
    309   1.17       cgd }
    310   1.17       cgd 
    311   1.17       cgd /* ARGSUSED */
    312   1.25       cgd int
    313  1.134     rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    314  1.134     rmind     register_t *retval)
    315   1.30   thorpej {
    316  1.128       dsl 	/* {
    317   1.42   mycroft 		syscallarg(int) which;
    318   1.39       cgd 		syscallarg(const struct rlimit *) rlp;
    319  1.128       dsl 	} */
    320   1.42   mycroft 	int which = SCARG(uap, which);
    321   1.19       cgd 	struct rlimit alim;
    322   1.17       cgd 	int error;
    323   1.17       cgd 
    324   1.46     perry 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    325   1.33  christos 	if (error)
    326   1.17       cgd 		return (error);
    327  1.102        ad 	return (dosetrlimit(l, l->l_proc, which, &alim));
    328   1.17       cgd }
    329   1.17       cgd 
    330   1.17       cgd int
    331  1.102        ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    332   1.17       cgd {
    333   1.54  augustss 	struct rlimit *alimp;
    334   1.17       cgd 	int error;
    335   1.17       cgd 
    336   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    337   1.17       cgd 		return (EINVAL);
    338   1.38  matthias 
    339   1.62  jdolecek 	if (limp->rlim_cur > limp->rlim_max) {
    340   1.62  jdolecek 		/*
    341   1.62  jdolecek 		 * This is programming error. According to SUSv2, we should
    342   1.62  jdolecek 		 * return error in this case.
    343   1.62  jdolecek 		 */
    344   1.62  jdolecek 		return (EINVAL);
    345   1.62  jdolecek 	}
    346  1.122       dsl 
    347  1.122       dsl 	alimp = &p->p_rlimit[which];
    348  1.122       dsl 	/* if we don't change the value, no need to limcopy() */
    349  1.122       dsl 	if (limp->rlim_cur == alimp->rlim_cur &&
    350  1.122       dsl 	    limp->rlim_max == alimp->rlim_max)
    351  1.122       dsl 		return 0;
    352  1.122       dsl 
    353  1.112      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    354  1.131      elad 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    355  1.111      elad 	if (error)
    356  1.122       dsl 		return (error);
    357   1.62  jdolecek 
    358  1.122       dsl 	lim_privatise(p, false);
    359  1.122       dsl 	/* p->p_limit is now unchangeable */
    360  1.122       dsl 	alimp = &p->p_rlimit[which];
    361   1.17       cgd 
    362   1.17       cgd 	switch (which) {
    363   1.17       cgd 
    364   1.17       cgd 	case RLIMIT_DATA:
    365   1.19       cgd 		if (limp->rlim_cur > maxdmap)
    366   1.19       cgd 			limp->rlim_cur = maxdmap;
    367   1.19       cgd 		if (limp->rlim_max > maxdmap)
    368   1.19       cgd 			limp->rlim_max = maxdmap;
    369   1.17       cgd 		break;
    370   1.17       cgd 
    371   1.17       cgd 	case RLIMIT_STACK:
    372   1.19       cgd 		if (limp->rlim_cur > maxsmap)
    373   1.19       cgd 			limp->rlim_cur = maxsmap;
    374   1.19       cgd 		if (limp->rlim_max > maxsmap)
    375   1.19       cgd 			limp->rlim_max = maxsmap;
    376   1.62  jdolecek 
    377   1.62  jdolecek 		/*
    378   1.62  jdolecek 		 * Return EINVAL if the new stack size limit is lower than
    379   1.62  jdolecek 		 * current usage. Otherwise, the process would get SIGSEGV the
    380   1.62  jdolecek 		 * moment it would try to access anything on it's current stack.
    381   1.62  jdolecek 		 * This conforms to SUSv2.
    382   1.62  jdolecek 		 */
    383   1.62  jdolecek 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    384  1.113        ad 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    385   1.62  jdolecek 			return (EINVAL);
    386  1.113        ad 		}
    387   1.40     enami 
    388   1.17       cgd 		/*
    389   1.40     enami 		 * Stack is allocated to the max at exec time with
    390   1.40     enami 		 * only "rlim_cur" bytes accessible (In other words,
    391   1.40     enami 		 * allocates stack dividing two contiguous regions at
    392   1.40     enami 		 * "rlim_cur" bytes boundary).
    393   1.40     enami 		 *
    394   1.40     enami 		 * Since allocation is done in terms of page, roundup
    395   1.40     enami 		 * "rlim_cur" (otherwise, contiguous regions
    396   1.40     enami 		 * overlap).  If stack limit is going up make more
    397   1.40     enami 		 * accessible, if going down make inaccessible.
    398   1.17       cgd 		 */
    399   1.40     enami 		limp->rlim_cur = round_page(limp->rlim_cur);
    400   1.17       cgd 		if (limp->rlim_cur != alimp->rlim_cur) {
    401   1.48       eeh 			vaddr_t addr;
    402   1.48       eeh 			vsize_t size;
    403   1.17       cgd 			vm_prot_t prot;
    404   1.17       cgd 
    405   1.17       cgd 			if (limp->rlim_cur > alimp->rlim_cur) {
    406   1.73       chs 				prot = VM_PROT_READ | VM_PROT_WRITE;
    407   1.17       cgd 				size = limp->rlim_cur - alimp->rlim_cur;
    408   1.91      fvdl 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    409   1.91      fvdl 				    limp->rlim_cur;
    410   1.17       cgd 			} else {
    411   1.17       cgd 				prot = VM_PROT_NONE;
    412   1.17       cgd 				size = alimp->rlim_cur - limp->rlim_cur;
    413   1.91      fvdl 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    414   1.91      fvdl 				     alimp->rlim_cur;
    415   1.17       cgd 			}
    416   1.43       mrg 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    417  1.114   thorpej 			    addr, addr+size, prot, false);
    418   1.17       cgd 		}
    419   1.17       cgd 		break;
    420   1.19       cgd 
    421   1.19       cgd 	case RLIMIT_NOFILE:
    422   1.19       cgd 		if (limp->rlim_cur > maxfiles)
    423   1.19       cgd 			limp->rlim_cur = maxfiles;
    424   1.19       cgd 		if (limp->rlim_max > maxfiles)
    425   1.19       cgd 			limp->rlim_max = maxfiles;
    426   1.19       cgd 		break;
    427   1.19       cgd 
    428   1.19       cgd 	case RLIMIT_NPROC:
    429   1.19       cgd 		if (limp->rlim_cur > maxproc)
    430   1.19       cgd 			limp->rlim_cur = maxproc;
    431   1.19       cgd 		if (limp->rlim_max > maxproc)
    432   1.19       cgd 			limp->rlim_max = maxproc;
    433   1.19       cgd 		break;
    434   1.17       cgd 	}
    435  1.122       dsl 
    436  1.122       dsl 	mutex_enter(&p->p_limit->pl_lock);
    437   1.17       cgd 	*alimp = *limp;
    438  1.122       dsl 	mutex_exit(&p->p_limit->pl_lock);
    439   1.17       cgd 	return (0);
    440   1.17       cgd }
    441   1.17       cgd 
    442   1.17       cgd /* ARGSUSED */
    443   1.25       cgd int
    444  1.134     rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    445  1.134     rmind     register_t *retval)
    446   1.30   thorpej {
    447  1.128       dsl 	/* {
    448   1.42   mycroft 		syscallarg(int) which;
    449   1.22       cgd 		syscallarg(struct rlimit *) rlp;
    450  1.128       dsl 	} */
    451   1.68   thorpej 	struct proc *p = l->l_proc;
    452   1.42   mycroft 	int which = SCARG(uap, which);
    453  1.119        ad 	struct rlimit rl;
    454   1.17       cgd 
    455   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    456   1.17       cgd 		return (EINVAL);
    457  1.119        ad 
    458  1.139        ad 	mutex_enter(p->p_lock);
    459  1.119        ad 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    460  1.139        ad 	mutex_exit(p->p_lock);
    461  1.119        ad 
    462  1.119        ad 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    463   1.17       cgd }
    464   1.17       cgd 
    465   1.17       cgd /*
    466   1.17       cgd  * Transform the running time and tick information in proc p into user,
    467   1.17       cgd  * system, and interrupt time usage.
    468  1.113        ad  *
    469  1.139        ad  * Should be called with p->p_lock held unless called from exit1().
    470   1.17       cgd  */
    471   1.25       cgd void
    472   1.98   thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    473  1.113        ad     struct timeval *ip, struct timeval *rp)
    474   1.17       cgd {
    475  1.129      yamt 	uint64_t u, st, ut, it, tot;
    476   1.68   thorpej 	struct lwp *l;
    477  1.129      yamt 	struct bintime tm;
    478  1.129      yamt 	struct timeval tv;
    479   1.17       cgd 
    480  1.113        ad 	mutex_spin_enter(&p->p_stmutex);
    481   1.17       cgd 	st = p->p_sticks;
    482   1.17       cgd 	ut = p->p_uticks;
    483   1.17       cgd 	it = p->p_iticks;
    484  1.113        ad 	mutex_spin_exit(&p->p_stmutex);
    485   1.17       cgd 
    486  1.129      yamt 	tm = p->p_rtime;
    487  1.113        ad 
    488   1.70       dsl 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    489  1.113        ad 		lwp_lock(l);
    490  1.129      yamt 		bintime_add(&tm, &l->l_rtime);
    491  1.142        ad 		if ((l->l_pflag & LP_RUNNING) != 0) {
    492  1.129      yamt 			struct bintime diff;
    493   1.68   thorpej 			/*
    494   1.68   thorpej 			 * Adjust for the current time slice.  This is
    495   1.68   thorpej 			 * actually fairly important since the error
    496   1.68   thorpej 			 * here is on the order of a time quantum,
    497   1.68   thorpej 			 * which is much greater than the sampling
    498   1.87     perry 			 * error.
    499   1.68   thorpej 			 */
    500  1.129      yamt 			binuptime(&diff);
    501  1.129      yamt 			bintime_sub(&diff, &l->l_stime);
    502  1.129      yamt 			bintime_add(&tm, &diff);
    503   1.68   thorpej 		}
    504  1.113        ad 		lwp_unlock(l);
    505   1.17       cgd 	}
    506   1.69       dsl 
    507   1.69       dsl 	tot = st + ut + it;
    508  1.129      yamt 	bintime2timeval(&tm, &tv);
    509  1.129      yamt 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    510   1.70       dsl 
    511   1.69       dsl 	if (tot == 0) {
    512   1.69       dsl 		/* No ticks, so can't use to share time out, split 50-50 */
    513   1.70       dsl 		st = ut = u / 2;
    514   1.70       dsl 	} else {
    515   1.70       dsl 		st = (u * st) / tot;
    516   1.70       dsl 		ut = (u * ut) / tot;
    517   1.69       dsl 	}
    518  1.113        ad 	if (sp != NULL) {
    519  1.113        ad 		sp->tv_sec = st / 1000000;
    520  1.113        ad 		sp->tv_usec = st % 1000000;
    521  1.113        ad 	}
    522  1.113        ad 	if (up != NULL) {
    523  1.113        ad 		up->tv_sec = ut / 1000000;
    524  1.113        ad 		up->tv_usec = ut % 1000000;
    525  1.113        ad 	}
    526   1.17       cgd 	if (ip != NULL) {
    527   1.70       dsl 		if (it != 0)
    528   1.70       dsl 			it = (u * it) / tot;
    529   1.17       cgd 		ip->tv_sec = it / 1000000;
    530   1.17       cgd 		ip->tv_usec = it % 1000000;
    531   1.17       cgd 	}
    532  1.113        ad 	if (rp != NULL) {
    533  1.129      yamt 		*rp = tv;
    534  1.113        ad 	}
    535   1.17       cgd }
    536   1.17       cgd 
    537   1.17       cgd /* ARGSUSED */
    538   1.25       cgd int
    539  1.148  christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    540  1.134     rmind     register_t *retval)
    541   1.30   thorpej {
    542  1.128       dsl 	/* {
    543   1.22       cgd 		syscallarg(int) who;
    544   1.22       cgd 		syscallarg(struct rusage *) rusage;
    545  1.128       dsl 	} */
    546  1.119        ad 	struct rusage ru;
    547   1.68   thorpej 	struct proc *p = l->l_proc;
    548   1.17       cgd 
    549   1.22       cgd 	switch (SCARG(uap, who)) {
    550   1.19       cgd 	case RUSAGE_SELF:
    551  1.139        ad 		mutex_enter(p->p_lock);
    552  1.119        ad 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    553  1.119        ad 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    554  1.137        ad 		rulwps(p, &ru);
    555  1.139        ad 		mutex_exit(p->p_lock);
    556   1.17       cgd 		break;
    557   1.17       cgd 
    558   1.17       cgd 	case RUSAGE_CHILDREN:
    559  1.139        ad 		mutex_enter(p->p_lock);
    560  1.119        ad 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    561  1.139        ad 		mutex_exit(p->p_lock);
    562   1.17       cgd 		break;
    563   1.17       cgd 
    564   1.17       cgd 	default:
    565  1.119        ad 		return EINVAL;
    566   1.17       cgd 	}
    567  1.119        ad 
    568  1.119        ad 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    569   1.17       cgd }
    570   1.17       cgd 
    571   1.25       cgd void
    572   1.98   thorpej ruadd(struct rusage *ru, struct rusage *ru2)
    573   1.17       cgd {
    574   1.54  augustss 	long *ip, *ip2;
    575   1.54  augustss 	int i;
    576   1.17       cgd 
    577   1.27   mycroft 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    578   1.27   mycroft 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    579   1.17       cgd 	if (ru->ru_maxrss < ru2->ru_maxrss)
    580   1.17       cgd 		ru->ru_maxrss = ru2->ru_maxrss;
    581   1.17       cgd 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    582   1.17       cgd 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    583   1.17       cgd 		*ip++ += *ip2++;
    584   1.17       cgd }
    585   1.17       cgd 
    586  1.137        ad void
    587  1.137        ad rulwps(proc_t *p, struct rusage *ru)
    588  1.137        ad {
    589  1.137        ad 	lwp_t *l;
    590  1.137        ad 
    591  1.139        ad 	KASSERT(mutex_owned(p->p_lock));
    592  1.137        ad 
    593  1.137        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    594  1.137        ad 		ruadd(ru, &l->l_ru);
    595  1.137        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    596  1.137        ad 		ru->ru_nivcsw += l->l_nivcsw;
    597  1.137        ad 	}
    598  1.137        ad }
    599  1.137        ad 
    600   1.17       cgd /*
    601   1.17       cgd  * Make a copy of the plimit structure.
    602   1.17       cgd  * We share these structures copy-on-write after fork,
    603   1.17       cgd  * and copy when a limit is changed.
    604  1.113        ad  *
    605  1.122       dsl  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    606  1.122       dsl  * we are copying to change beneath our feet!
    607   1.17       cgd  */
    608   1.17       cgd struct plimit *
    609  1.122       dsl lim_copy(struct plimit *lim)
    610   1.17       cgd {
    611  1.122       dsl 	struct plimit *newlim;
    612  1.113        ad 	char *corename;
    613  1.122       dsl 	size_t alen, len;
    614   1.17       cgd 
    615  1.130        ad 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    616  1.121       dsl 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    617  1.121       dsl 	newlim->pl_flags = 0;
    618  1.121       dsl 	newlim->pl_refcnt = 1;
    619  1.122       dsl 	newlim->pl_sv_limit = NULL;
    620  1.122       dsl 
    621  1.122       dsl 	mutex_enter(&lim->pl_lock);
    622  1.122       dsl 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    623  1.122       dsl 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    624   1.83        pk 
    625  1.122       dsl 	alen = 0;
    626  1.122       dsl 	corename = NULL;
    627  1.113        ad 	for (;;) {
    628  1.122       dsl 		if (lim->pl_corename == defcorename) {
    629  1.122       dsl 			newlim->pl_corename = defcorename;
    630  1.122       dsl 			break;
    631  1.122       dsl 		}
    632  1.122       dsl 		len = strlen(lim->pl_corename) + 1;
    633  1.122       dsl 		if (len <= alen) {
    634  1.122       dsl 			newlim->pl_corename = corename;
    635  1.122       dsl 			memcpy(corename, lim->pl_corename, len);
    636  1.122       dsl 			corename = NULL;
    637  1.122       dsl 			break;
    638  1.122       dsl 		}
    639  1.122       dsl 		mutex_exit(&lim->pl_lock);
    640  1.122       dsl 		if (corename != NULL)
    641  1.122       dsl 			free(corename, M_TEMP);
    642  1.122       dsl 		alen = len;
    643  1.122       dsl 		corename = malloc(alen, M_TEMP, M_WAITOK);
    644  1.121       dsl 		mutex_enter(&lim->pl_lock);
    645  1.122       dsl 	}
    646  1.122       dsl 	mutex_exit(&lim->pl_lock);
    647  1.122       dsl 	if (corename != NULL)
    648  1.122       dsl 		free(corename, M_TEMP);
    649  1.122       dsl 	return newlim;
    650  1.122       dsl }
    651  1.122       dsl 
    652  1.122       dsl void
    653  1.122       dsl lim_addref(struct plimit *lim)
    654  1.122       dsl {
    655  1.125        ad 	atomic_inc_uint(&lim->pl_refcnt);
    656  1.122       dsl }
    657  1.113        ad 
    658  1.122       dsl /*
    659  1.122       dsl  * Give a process it's own private plimit structure.
    660  1.122       dsl  * This will only be shared (in fork) if modifications are to be shared.
    661  1.122       dsl  */
    662  1.122       dsl void
    663  1.122       dsl lim_privatise(struct proc *p, bool set_shared)
    664  1.122       dsl {
    665  1.122       dsl 	struct plimit *lim, *newlim;
    666  1.122       dsl 
    667  1.122       dsl 	lim = p->p_limit;
    668  1.122       dsl 	if (lim->pl_flags & PL_WRITEABLE) {
    669  1.122       dsl 		if (set_shared)
    670  1.122       dsl 			lim->pl_flags |= PL_SHAREMOD;
    671  1.122       dsl 		return;
    672  1.122       dsl 	}
    673  1.122       dsl 
    674  1.122       dsl 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    675  1.122       dsl 		return;
    676  1.122       dsl 
    677  1.122       dsl 	newlim = lim_copy(lim);
    678  1.113        ad 
    679  1.139        ad 	mutex_enter(p->p_lock);
    680  1.122       dsl 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    681  1.122       dsl 		/* Someone crept in while we were busy */
    682  1.139        ad 		mutex_exit(p->p_lock);
    683  1.122       dsl 		limfree(newlim);
    684  1.122       dsl 		if (set_shared)
    685  1.122       dsl 			p->p_limit->pl_flags |= PL_SHAREMOD;
    686  1.122       dsl 		return;
    687  1.113        ad 	}
    688   1.83        pk 
    689  1.122       dsl 	/*
    690  1.122       dsl 	 * Since most accesses to p->p_limit aren't locked, we must not
    691  1.122       dsl 	 * delete the old limit structure yet.
    692  1.122       dsl 	 */
    693  1.122       dsl 	newlim->pl_sv_limit = p->p_limit;
    694  1.122       dsl 	newlim->pl_flags |= PL_WRITEABLE;
    695  1.122       dsl 	if (set_shared)
    696  1.122       dsl 		newlim->pl_flags |= PL_SHAREMOD;
    697  1.122       dsl 	p->p_limit = newlim;
    698  1.139        ad 	mutex_exit(p->p_lock);
    699   1.32   mycroft }
    700   1.32   mycroft 
    701   1.32   mycroft void
    702   1.98   thorpej limfree(struct plimit *lim)
    703   1.32   mycroft {
    704  1.122       dsl 	struct plimit *sv_lim;
    705   1.85    kleink 
    706  1.122       dsl 	do {
    707  1.125        ad 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    708  1.122       dsl 			return;
    709  1.122       dsl 		if (lim->pl_corename != defcorename)
    710  1.122       dsl 			free(lim->pl_corename, M_TEMP);
    711  1.122       dsl 		sv_lim = lim->pl_sv_limit;
    712  1.122       dsl 		mutex_destroy(&lim->pl_lock);
    713  1.130        ad 		pool_cache_put(plimit_cache, lim);
    714  1.122       dsl 	} while ((lim = sv_lim) != NULL);
    715   1.68   thorpej }
    716   1.68   thorpej 
    717   1.68   thorpej struct pstats *
    718   1.98   thorpej pstatscopy(struct pstats *ps)
    719   1.68   thorpej {
    720   1.87     perry 
    721   1.68   thorpej 	struct pstats *newps;
    722   1.68   thorpej 
    723  1.130        ad 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    724   1.68   thorpej 
    725   1.68   thorpej 	memset(&newps->pstat_startzero, 0,
    726  1.115  christos 	(unsigned) ((char *)&newps->pstat_endzero -
    727  1.115  christos 		    (char *)&newps->pstat_startzero));
    728   1.68   thorpej 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    729  1.115  christos 	((char *)&newps->pstat_endcopy -
    730  1.115  christos 	 (char *)&newps->pstat_startcopy));
    731   1.68   thorpej 
    732   1.68   thorpej 	return (newps);
    733   1.68   thorpej 
    734   1.68   thorpej }
    735   1.68   thorpej 
    736   1.68   thorpej void
    737   1.98   thorpej pstatsfree(struct pstats *ps)
    738   1.68   thorpej {
    739   1.68   thorpej 
    740  1.130        ad 	pool_cache_put(pstats_cache, ps);
    741   1.74    atatat }
    742   1.74    atatat 
    743   1.74    atatat /*
    744   1.74    atatat  * sysctl interface in five parts
    745   1.74    atatat  */
    746   1.74    atatat 
    747   1.74    atatat /*
    748  1.157     rmind  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    749  1.157     rmind  * need to pick a valid process by PID.
    750  1.157     rmind  *
    751  1.157     rmind  * => Hold a reference on the process, on success.
    752   1.74    atatat  */
    753   1.74    atatat static int
    754  1.157     rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    755   1.74    atatat {
    756  1.157     rmind 	proc_t *p;
    757  1.157     rmind 	int error;
    758   1.74    atatat 
    759  1.157     rmind 	if (pid == PROC_CURPROC) {
    760  1.157     rmind 		p = l->l_proc;
    761  1.157     rmind 	} else {
    762  1.157     rmind 		mutex_enter(proc_lock);
    763  1.157     rmind 		p = proc_find(pid);
    764  1.157     rmind 		if (p == NULL) {
    765  1.157     rmind 			mutex_exit(proc_lock);
    766  1.157     rmind 			return ESRCH;
    767  1.157     rmind 		}
    768  1.157     rmind 	}
    769  1.157     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    770  1.157     rmind 	if (pid != PROC_CURPROC) {
    771  1.157     rmind 		mutex_exit(proc_lock);
    772  1.157     rmind 	}
    773  1.157     rmind 	*p2 = p;
    774  1.157     rmind 	return error;
    775   1.74    atatat }
    776   1.74    atatat 
    777   1.74    atatat /*
    778  1.158     rmind  * sysctl_proc_corename: helper routine to get or set the core file name
    779  1.158     rmind  * for a process specified by PID.
    780   1.74    atatat  */
    781   1.74    atatat static int
    782   1.74    atatat sysctl_proc_corename(SYSCTLFN_ARGS)
    783   1.74    atatat {
    784  1.158     rmind 	struct proc *p;
    785   1.83        pk 	struct plimit *lim;
    786  1.158     rmind 	char *cnbuf, *cname;
    787  1.157     rmind 	struct sysctlnode node;
    788  1.158     rmind 	size_t len;
    789  1.158     rmind 	int error;
    790   1.74    atatat 
    791  1.158     rmind 	/* First, validate the request. */
    792  1.158     rmind 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    793  1.158     rmind 		return EINVAL;
    794   1.74    atatat 
    795  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    796  1.158     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    797   1.74    atatat 	if (error)
    798  1.157     rmind 		return error;
    799   1.74    atatat 
    800  1.131      elad 	/* XXX-elad */
    801  1.158     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    802  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    803  1.157     rmind 	if (error) {
    804  1.158     rmind 		rw_exit(&p->p_reflock);
    805  1.157     rmind 		return error;
    806  1.157     rmind 	}
    807  1.111      elad 
    808  1.158     rmind 	cnbuf = PNBUF_GET();
    809  1.158     rmind 
    810  1.131      elad 	if (newp == NULL) {
    811  1.158     rmind 		/* Get case: copy the core name into the buffer. */
    812  1.131      elad 		error = kauth_authorize_process(l->l_cred,
    813  1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    814  1.131      elad 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    815  1.157     rmind 		if (error) {
    816  1.158     rmind 			goto done;
    817  1.158     rmind 		}
    818  1.158     rmind 		lim = p->p_limit;
    819  1.158     rmind 		mutex_enter(&lim->pl_lock);
    820  1.158     rmind 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    821  1.158     rmind 		mutex_exit(&lim->pl_lock);
    822  1.158     rmind 	} else {
    823  1.158     rmind 		/* Set case: just use the temporary buffer. */
    824  1.158     rmind 		error = kauth_authorize_process(l->l_cred,
    825  1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    826  1.158     rmind 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    827  1.158     rmind 		if (error) {
    828  1.158     rmind 			goto done;
    829  1.157     rmind 		}
    830  1.131      elad 	}
    831  1.131      elad 
    832   1.74    atatat 	node = *rnode;
    833  1.158     rmind 	node.sysctl_data = cnbuf;
    834   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    835   1.74    atatat 
    836  1.158     rmind 	/* Return if error, or if we are only retrieving the core name. */
    837  1.158     rmind 	if (error || newp == NULL) {
    838  1.100      yamt 		goto done;
    839  1.157     rmind 	}
    840  1.103      elad 
    841   1.74    atatat 	/*
    842  1.158     rmind 	 * Validate new core name.  It must be either "core", "/core",
    843  1.158     rmind 	 * or end in ".core".
    844   1.74    atatat 	 */
    845  1.158     rmind 	len = strlen(cnbuf);
    846  1.158     rmind 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    847  1.158     rmind 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    848  1.100      yamt 		error = EINVAL;
    849  1.100      yamt 		goto done;
    850  1.100      yamt 	}
    851   1.74    atatat 
    852  1.158     rmind 	/* Allocate, copy and set the new core name for plimit structure. */
    853  1.158     rmind 	cname = malloc(++len, M_TEMP, M_WAITOK | M_CANFAIL);
    854  1.158     rmind 	if (cname == NULL) {
    855  1.100      yamt 		error = ENOMEM;
    856  1.100      yamt 		goto done;
    857  1.100      yamt 	}
    858  1.158     rmind 	memcpy(cname, cnbuf, len);
    859   1.74    atatat 
    860  1.158     rmind 	char *ocname;
    861  1.158     rmind 	lim_privatise(p, false);
    862  1.158     rmind 	lim = p->p_limit;
    863  1.122       dsl 	mutex_enter(&lim->pl_lock);
    864  1.158     rmind 	ocname = lim->pl_corename;
    865  1.158     rmind 	lim->pl_corename = cname;
    866  1.122       dsl 	mutex_exit(&lim->pl_lock);
    867  1.158     rmind 	if (ocname != defcorename)
    868  1.158     rmind 		free(ocname, M_TEMP);
    869  1.122       dsl 
    870  1.100      yamt done:
    871  1.158     rmind 	rw_exit(&p->p_reflock);
    872  1.158     rmind 	PNBUF_PUT(cnbuf);
    873  1.100      yamt 	return error;
    874   1.74    atatat }
    875   1.74    atatat 
    876   1.74    atatat /*
    877   1.74    atatat  * sysctl helper routine for checking/setting a process's stop flags,
    878   1.74    atatat  * one for fork and one for exec.
    879   1.74    atatat  */
    880   1.74    atatat static int
    881   1.74    atatat sysctl_proc_stop(SYSCTLFN_ARGS)
    882   1.74    atatat {
    883  1.102        ad 	struct proc *ptmp;
    884   1.74    atatat 	int i, f, error = 0;
    885   1.74    atatat 	struct sysctlnode node;
    886   1.74    atatat 
    887   1.74    atatat 	if (namelen != 0)
    888   1.74    atatat 		return (EINVAL);
    889   1.74    atatat 
    890  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    891  1.157     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &ptmp);
    892   1.74    atatat 	if (error)
    893  1.157     rmind 		return error;
    894   1.74    atatat 
    895  1.131      elad 	/* XXX-elad */
    896  1.131      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    897  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    898  1.111      elad 	if (error)
    899  1.157     rmind 		goto out;
    900  1.111      elad 
    901   1.74    atatat 	switch (rnode->sysctl_num) {
    902   1.74    atatat 	case PROC_PID_STOPFORK:
    903  1.113        ad 		f = PS_STOPFORK;
    904   1.74    atatat 		break;
    905   1.74    atatat 	case PROC_PID_STOPEXEC:
    906  1.113        ad 		f = PS_STOPEXEC;
    907   1.74    atatat 		break;
    908   1.74    atatat 	case PROC_PID_STOPEXIT:
    909  1.113        ad 		f = PS_STOPEXIT;
    910   1.74    atatat 		break;
    911   1.74    atatat 	default:
    912  1.157     rmind 		error = EINVAL;
    913  1.157     rmind 		goto out;
    914   1.74    atatat 	}
    915   1.74    atatat 
    916   1.74    atatat 	i = (ptmp->p_flag & f) ? 1 : 0;
    917   1.74    atatat 	node = *rnode;
    918   1.74    atatat 	node.sysctl_data = &i;
    919   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    920   1.74    atatat 	if (error || newp == NULL)
    921  1.157     rmind 		goto out;
    922   1.74    atatat 
    923  1.139        ad 	mutex_enter(ptmp->p_lock);
    924  1.111      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    925  1.111      elad 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    926  1.143     rmind 	if (!error) {
    927  1.143     rmind 		if (i) {
    928  1.143     rmind 			ptmp->p_sflag |= f;
    929  1.143     rmind 		} else {
    930  1.143     rmind 			ptmp->p_sflag &= ~f;
    931  1.143     rmind 		}
    932  1.143     rmind 	}
    933  1.139        ad 	mutex_exit(ptmp->p_lock);
    934  1.157     rmind out:
    935  1.157     rmind 	rw_exit(&ptmp->p_reflock);
    936  1.143     rmind 	return error;
    937   1.74    atatat }
    938   1.74    atatat 
    939   1.74    atatat /*
    940   1.74    atatat  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    941   1.74    atatat  */
    942   1.74    atatat static int
    943   1.74    atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
    944   1.74    atatat {
    945  1.102        ad 	struct proc *ptmp;
    946   1.74    atatat 	u_int limitno;
    947   1.74    atatat 	int which, error = 0;
    948   1.74    atatat         struct rlimit alim;
    949   1.74    atatat 	struct sysctlnode node;
    950   1.74    atatat 
    951   1.74    atatat 	if (namelen != 0)
    952   1.74    atatat 		return (EINVAL);
    953   1.74    atatat 
    954   1.74    atatat 	which = name[-1];
    955   1.74    atatat 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    956   1.74    atatat 	    which != PROC_PID_LIMIT_TYPE_HARD)
    957   1.74    atatat 		return (EINVAL);
    958   1.74    atatat 
    959   1.74    atatat 	limitno = name[-2] - 1;
    960   1.74    atatat 	if (limitno >= RLIM_NLIMITS)
    961   1.74    atatat 		return (EINVAL);
    962   1.74    atatat 
    963   1.74    atatat 	if (name[-3] != PROC_PID_LIMIT)
    964   1.74    atatat 		return (EINVAL);
    965   1.74    atatat 
    966  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    967  1.157     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &ptmp);
    968   1.74    atatat 	if (error)
    969  1.157     rmind 		return error;
    970   1.74    atatat 
    971  1.131      elad 	/* XXX-elad */
    972  1.131      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    973  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    974  1.111      elad 	if (error)
    975  1.157     rmind 		goto out;
    976  1.111      elad 
    977  1.131      elad 	/* Check if we can view limits. */
    978  1.131      elad 	if (newp == NULL) {
    979  1.131      elad 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    980  1.131      elad 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    981  1.131      elad 		    KAUTH_ARG(which));
    982  1.131      elad 		if (error)
    983  1.157     rmind 			goto out;
    984  1.131      elad 	}
    985  1.131      elad 
    986   1.74    atatat 	node = *rnode;
    987   1.74    atatat 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    988   1.74    atatat 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    989   1.74    atatat 		node.sysctl_data = &alim.rlim_max;
    990   1.74    atatat 	else
    991   1.74    atatat 		node.sysctl_data = &alim.rlim_cur;
    992   1.74    atatat 
    993   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    994  1.157     rmind 	if (error || newp == NULL) {
    995  1.157     rmind 		goto out;
    996  1.157     rmind 	}
    997  1.157     rmind 	error = dosetrlimit(l, ptmp, limitno, &alim);
    998  1.157     rmind out:
    999  1.157     rmind 	rw_exit(&ptmp->p_reflock);
   1000  1.157     rmind 	return error;
   1001   1.74    atatat }
   1002   1.74    atatat 
   1003  1.156     pooka static struct sysctllog *proc_sysctllog;
   1004  1.156     pooka 
   1005   1.74    atatat /*
   1006   1.74    atatat  * and finally, the actually glue that sticks it to the tree
   1007   1.74    atatat  */
   1008  1.156     pooka static void
   1009  1.156     pooka sysctl_proc_setup()
   1010   1.74    atatat {
   1011   1.74    atatat 
   1012  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1013   1.76    atatat 		       CTLFLAG_PERMANENT,
   1014   1.74    atatat 		       CTLTYPE_NODE, "proc", NULL,
   1015   1.74    atatat 		       NULL, 0, NULL, 0,
   1016   1.74    atatat 		       CTL_PROC, CTL_EOL);
   1017  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1018   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1019   1.78    atatat 		       CTLTYPE_NODE, "curproc",
   1020   1.78    atatat 		       SYSCTL_DESCR("Per-process settings"),
   1021   1.74    atatat 		       NULL, 0, NULL, 0,
   1022   1.74    atatat 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1023   1.74    atatat 
   1024  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1025  1.103      elad 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1026   1.78    atatat 		       CTLTYPE_STRING, "corename",
   1027   1.78    atatat 		       SYSCTL_DESCR("Core file name"),
   1028   1.74    atatat 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1029   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1030  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1031   1.76    atatat 		       CTLFLAG_PERMANENT,
   1032   1.78    atatat 		       CTLTYPE_NODE, "rlimit",
   1033   1.78    atatat 		       SYSCTL_DESCR("Process limits"),
   1034   1.74    atatat 		       NULL, 0, NULL, 0,
   1035   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1036   1.74    atatat 
   1037   1.74    atatat #define create_proc_plimit(s, n) do {					\
   1038  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1039   1.76    atatat 		       CTLFLAG_PERMANENT,				\
   1040   1.78    atatat 		       CTLTYPE_NODE, s,					\
   1041   1.78    atatat 		       SYSCTL_DESCR("Process " s " limits"),		\
   1042   1.74    atatat 		       NULL, 0, NULL, 0,				\
   1043   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1044   1.74    atatat 		       CTL_EOL);					\
   1045  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1046   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1047   1.78    atatat 		       CTLTYPE_QUAD, "soft",				\
   1048   1.78    atatat 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1049   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1050   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1051   1.74    atatat 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1052  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1053   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1054   1.78    atatat 		       CTLTYPE_QUAD, "hard",				\
   1055   1.78    atatat 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1056   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1057   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1058   1.74    atatat 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1059   1.74    atatat 	} while (0/*CONSTCOND*/)
   1060   1.74    atatat 
   1061   1.74    atatat 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1062   1.74    atatat 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1063   1.74    atatat 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1064   1.74    atatat 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1065   1.74    atatat 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1066   1.74    atatat 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1067   1.74    atatat 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1068   1.74    atatat 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1069   1.74    atatat 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1070   1.79  christos 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1071  1.151       mrg 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1072   1.74    atatat 
   1073   1.74    atatat #undef create_proc_plimit
   1074   1.74    atatat 
   1075  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1076   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1077   1.78    atatat 		       CTLTYPE_INT, "stopfork",
   1078   1.78    atatat 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1079   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1080   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1081  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1082   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1083   1.78    atatat 		       CTLTYPE_INT, "stopexec",
   1084   1.78    atatat 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1085   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1086   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1087  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1088   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1089   1.78    atatat 		       CTLTYPE_INT, "stopexit",
   1090   1.78    atatat 		       SYSCTL_DESCR("Stop process before completing exit"),
   1091   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1092   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1093   1.17       cgd }
   1094