kern_resource.c revision 1.161 1 1.161 rmind /* $NetBSD: kern_resource.c,v 1.161 2011/05/01 01:15:18 rmind Exp $ */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.161 rmind __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.161 2011/05/01 01:15:18 rmind Exp $");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.17 cgd #include <sys/malloc.h>
48 1.132 yamt #include <sys/kmem.h>
49 1.100 yamt #include <sys/namei.h>
50 1.49 thorpej #include <sys/pool.h>
51 1.17 cgd #include <sys/proc.h>
52 1.74 atatat #include <sys/sysctl.h>
53 1.129 yamt #include <sys/timevar.h>
54 1.101 elad #include <sys/kauth.h>
55 1.125 ad #include <sys/atomic.h>
56 1.22 cgd #include <sys/mount.h>
57 1.22 cgd #include <sys/syscallargs.h>
58 1.136 ad #include <sys/atomic.h>
59 1.17 cgd
60 1.43 mrg #include <uvm/uvm_extern.h>
61 1.43 mrg
62 1.17 cgd /*
63 1.60 eeh * Maximum process data and stack limits.
64 1.60 eeh * They are variables so they are patchable.
65 1.60 eeh */
66 1.60 eeh rlim_t maxdmap = MAXDSIZ;
67 1.60 eeh rlim_t maxsmap = MAXSSIZ;
68 1.60 eeh
69 1.134 rmind static pool_cache_t plimit_cache;
70 1.134 rmind static pool_cache_t pstats_cache;
71 1.130 ad
72 1.154 elad static kauth_listener_t resource_listener;
73 1.153 elad
74 1.156 pooka static void sysctl_proc_setup(void);
75 1.156 pooka
76 1.153 elad static int
77 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
78 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
79 1.153 elad {
80 1.153 elad struct proc *p;
81 1.153 elad int result;
82 1.153 elad
83 1.153 elad result = KAUTH_RESULT_DEFER;
84 1.153 elad p = arg0;
85 1.153 elad
86 1.154 elad switch (action) {
87 1.154 elad case KAUTH_PROCESS_NICE:
88 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
89 1.154 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
90 1.154 elad break;
91 1.154 elad }
92 1.153 elad
93 1.154 elad if ((u_long)arg1 >= p->p_nice)
94 1.154 elad result = KAUTH_RESULT_ALLOW;
95 1.153 elad
96 1.154 elad break;
97 1.154 elad
98 1.154 elad case KAUTH_PROCESS_RLIMIT: {
99 1.154 elad enum kauth_process_req req;
100 1.153 elad
101 1.154 elad req = (enum kauth_process_req)(unsigned long)arg1;
102 1.153 elad
103 1.154 elad switch (req) {
104 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET:
105 1.153 elad result = KAUTH_RESULT_ALLOW;
106 1.154 elad break;
107 1.154 elad
108 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: {
109 1.154 elad struct rlimit *new_rlimit;
110 1.154 elad u_long which;
111 1.154 elad
112 1.154 elad if ((p != curlwp->l_proc) &&
113 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0))
114 1.154 elad break;
115 1.154 elad
116 1.154 elad new_rlimit = arg2;
117 1.154 elad which = (u_long)arg3;
118 1.154 elad
119 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
120 1.154 elad result = KAUTH_RESULT_ALLOW;
121 1.154 elad
122 1.154 elad break;
123 1.154 elad }
124 1.154 elad
125 1.154 elad default:
126 1.154 elad break;
127 1.154 elad }
128 1.154 elad
129 1.154 elad break;
130 1.154 elad }
131 1.154 elad
132 1.154 elad default:
133 1.154 elad break;
134 1.153 elad }
135 1.153 elad
136 1.153 elad return result;
137 1.153 elad }
138 1.153 elad
139 1.130 ad void
140 1.130 ad resource_init(void)
141 1.130 ad {
142 1.130 ad
143 1.130 ad plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
144 1.130 ad "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
145 1.130 ad pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
146 1.130 ad "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
147 1.153 elad
148 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
149 1.154 elad resource_listener_cb, NULL);
150 1.156 pooka
151 1.156 pooka sysctl_proc_setup();
152 1.130 ad }
153 1.130 ad
154 1.60 eeh /*
155 1.17 cgd * Resource controls and accounting.
156 1.17 cgd */
157 1.17 cgd
158 1.25 cgd int
159 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
160 1.134 rmind register_t *retval)
161 1.30 thorpej {
162 1.128 dsl /* {
163 1.22 cgd syscallarg(int) which;
164 1.81 kleink syscallarg(id_t) who;
165 1.128 dsl } */
166 1.68 thorpej struct proc *curp = l->l_proc, *p;
167 1.54 augustss int low = NZERO + PRIO_MAX + 1;
168 1.113 ad int who = SCARG(uap, who);
169 1.17 cgd
170 1.138 ad mutex_enter(proc_lock);
171 1.22 cgd switch (SCARG(uap, which)) {
172 1.17 cgd case PRIO_PROCESS:
173 1.157 rmind p = who ? proc_find(who) : curp;;
174 1.113 ad if (p != NULL)
175 1.113 ad low = p->p_nice;
176 1.17 cgd break;
177 1.17 cgd
178 1.17 cgd case PRIO_PGRP: {
179 1.54 augustss struct pgrp *pg;
180 1.17 cgd
181 1.113 ad if (who == 0)
182 1.17 cgd pg = curp->p_pgrp;
183 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
184 1.17 cgd break;
185 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
186 1.17 cgd if (p->p_nice < low)
187 1.17 cgd low = p->p_nice;
188 1.17 cgd }
189 1.17 cgd break;
190 1.17 cgd }
191 1.17 cgd
192 1.17 cgd case PRIO_USER:
193 1.113 ad if (who == 0)
194 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
195 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
196 1.139 ad mutex_enter(p->p_lock);
197 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
198 1.113 ad (uid_t)who && p->p_nice < low)
199 1.17 cgd low = p->p_nice;
200 1.139 ad mutex_exit(p->p_lock);
201 1.64 matt }
202 1.17 cgd break;
203 1.17 cgd
204 1.17 cgd default:
205 1.138 ad mutex_exit(proc_lock);
206 1.17 cgd return (EINVAL);
207 1.17 cgd }
208 1.138 ad mutex_exit(proc_lock);
209 1.113 ad
210 1.37 ws if (low == NZERO + PRIO_MAX + 1)
211 1.17 cgd return (ESRCH);
212 1.37 ws *retval = low - NZERO;
213 1.17 cgd return (0);
214 1.17 cgd }
215 1.17 cgd
216 1.17 cgd /* ARGSUSED */
217 1.25 cgd int
218 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
219 1.134 rmind register_t *retval)
220 1.30 thorpej {
221 1.128 dsl /* {
222 1.22 cgd syscallarg(int) which;
223 1.81 kleink syscallarg(id_t) who;
224 1.22 cgd syscallarg(int) prio;
225 1.128 dsl } */
226 1.68 thorpej struct proc *curp = l->l_proc, *p;
227 1.17 cgd int found = 0, error = 0;
228 1.113 ad int who = SCARG(uap, who);
229 1.17 cgd
230 1.138 ad mutex_enter(proc_lock);
231 1.22 cgd switch (SCARG(uap, which)) {
232 1.17 cgd case PRIO_PROCESS:
233 1.157 rmind p = who ? proc_find(who) : curp;
234 1.157 rmind if (p != NULL) {
235 1.139 ad mutex_enter(p->p_lock);
236 1.113 ad error = donice(l, p, SCARG(uap, prio));
237 1.139 ad mutex_exit(p->p_lock);
238 1.145 njoly found++;
239 1.113 ad }
240 1.17 cgd break;
241 1.17 cgd
242 1.17 cgd case PRIO_PGRP: {
243 1.54 augustss struct pgrp *pg;
244 1.87 perry
245 1.113 ad if (who == 0)
246 1.17 cgd pg = curp->p_pgrp;
247 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
248 1.17 cgd break;
249 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
250 1.139 ad mutex_enter(p->p_lock);
251 1.102 ad error = donice(l, p, SCARG(uap, prio));
252 1.139 ad mutex_exit(p->p_lock);
253 1.17 cgd found++;
254 1.17 cgd }
255 1.17 cgd break;
256 1.17 cgd }
257 1.17 cgd
258 1.17 cgd case PRIO_USER:
259 1.113 ad if (who == 0)
260 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
261 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
262 1.139 ad mutex_enter(p->p_lock);
263 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
264 1.102 ad (uid_t)SCARG(uap, who)) {
265 1.102 ad error = donice(l, p, SCARG(uap, prio));
266 1.17 cgd found++;
267 1.17 cgd }
268 1.139 ad mutex_exit(p->p_lock);
269 1.64 matt }
270 1.17 cgd break;
271 1.17 cgd
272 1.17 cgd default:
273 1.144 njoly mutex_exit(proc_lock);
274 1.144 njoly return EINVAL;
275 1.17 cgd }
276 1.138 ad mutex_exit(proc_lock);
277 1.17 cgd if (found == 0)
278 1.17 cgd return (ESRCH);
279 1.17 cgd return (error);
280 1.17 cgd }
281 1.17 cgd
282 1.113 ad /*
283 1.113 ad * Renice a process.
284 1.113 ad *
285 1.113 ad * Call with the target process' credentials locked.
286 1.113 ad */
287 1.25 cgd int
288 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
289 1.17 cgd {
290 1.102 ad kauth_cred_t cred = l->l_cred;
291 1.113 ad
292 1.139 ad KASSERT(mutex_owned(chgp->p_lock));
293 1.17 cgd
294 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
295 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
296 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
297 1.152 elad return (EPERM);
298 1.152 elad
299 1.17 cgd if (n > PRIO_MAX)
300 1.17 cgd n = PRIO_MAX;
301 1.17 cgd if (n < PRIO_MIN)
302 1.17 cgd n = PRIO_MIN;
303 1.37 ws n += NZERO;
304 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
305 1.112 elad KAUTH_ARG(n), NULL, NULL))
306 1.17 cgd return (EACCES);
307 1.117 yamt sched_nice(chgp, n);
308 1.17 cgd return (0);
309 1.17 cgd }
310 1.17 cgd
311 1.17 cgd /* ARGSUSED */
312 1.25 cgd int
313 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
314 1.134 rmind register_t *retval)
315 1.30 thorpej {
316 1.128 dsl /* {
317 1.42 mycroft syscallarg(int) which;
318 1.39 cgd syscallarg(const struct rlimit *) rlp;
319 1.128 dsl } */
320 1.42 mycroft int which = SCARG(uap, which);
321 1.19 cgd struct rlimit alim;
322 1.17 cgd int error;
323 1.17 cgd
324 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
325 1.33 christos if (error)
326 1.17 cgd return (error);
327 1.102 ad return (dosetrlimit(l, l->l_proc, which, &alim));
328 1.17 cgd }
329 1.17 cgd
330 1.17 cgd int
331 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
332 1.17 cgd {
333 1.54 augustss struct rlimit *alimp;
334 1.17 cgd int error;
335 1.17 cgd
336 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
337 1.17 cgd return (EINVAL);
338 1.38 matthias
339 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
340 1.62 jdolecek /*
341 1.62 jdolecek * This is programming error. According to SUSv2, we should
342 1.62 jdolecek * return error in this case.
343 1.62 jdolecek */
344 1.62 jdolecek return (EINVAL);
345 1.62 jdolecek }
346 1.122 dsl
347 1.122 dsl alimp = &p->p_rlimit[which];
348 1.122 dsl /* if we don't change the value, no need to limcopy() */
349 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur &&
350 1.122 dsl limp->rlim_max == alimp->rlim_max)
351 1.122 dsl return 0;
352 1.122 dsl
353 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
354 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
355 1.111 elad if (error)
356 1.122 dsl return (error);
357 1.62 jdolecek
358 1.161 rmind lim_privatise(p);
359 1.122 dsl /* p->p_limit is now unchangeable */
360 1.122 dsl alimp = &p->p_rlimit[which];
361 1.17 cgd
362 1.17 cgd switch (which) {
363 1.17 cgd
364 1.17 cgd case RLIMIT_DATA:
365 1.19 cgd if (limp->rlim_cur > maxdmap)
366 1.19 cgd limp->rlim_cur = maxdmap;
367 1.19 cgd if (limp->rlim_max > maxdmap)
368 1.19 cgd limp->rlim_max = maxdmap;
369 1.17 cgd break;
370 1.17 cgd
371 1.17 cgd case RLIMIT_STACK:
372 1.19 cgd if (limp->rlim_cur > maxsmap)
373 1.19 cgd limp->rlim_cur = maxsmap;
374 1.19 cgd if (limp->rlim_max > maxsmap)
375 1.19 cgd limp->rlim_max = maxsmap;
376 1.62 jdolecek
377 1.62 jdolecek /*
378 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
379 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
380 1.62 jdolecek * moment it would try to access anything on it's current stack.
381 1.62 jdolecek * This conforms to SUSv2.
382 1.62 jdolecek */
383 1.62 jdolecek if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
384 1.113 ad || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
385 1.62 jdolecek return (EINVAL);
386 1.113 ad }
387 1.40 enami
388 1.17 cgd /*
389 1.40 enami * Stack is allocated to the max at exec time with
390 1.40 enami * only "rlim_cur" bytes accessible (In other words,
391 1.40 enami * allocates stack dividing two contiguous regions at
392 1.40 enami * "rlim_cur" bytes boundary).
393 1.40 enami *
394 1.40 enami * Since allocation is done in terms of page, roundup
395 1.40 enami * "rlim_cur" (otherwise, contiguous regions
396 1.40 enami * overlap). If stack limit is going up make more
397 1.40 enami * accessible, if going down make inaccessible.
398 1.17 cgd */
399 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
400 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
401 1.48 eeh vaddr_t addr;
402 1.48 eeh vsize_t size;
403 1.17 cgd vm_prot_t prot;
404 1.17 cgd
405 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
406 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
407 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
408 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
409 1.91 fvdl limp->rlim_cur;
410 1.17 cgd } else {
411 1.17 cgd prot = VM_PROT_NONE;
412 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
413 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
414 1.91 fvdl alimp->rlim_cur;
415 1.17 cgd }
416 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
417 1.114 thorpej addr, addr+size, prot, false);
418 1.17 cgd }
419 1.17 cgd break;
420 1.19 cgd
421 1.19 cgd case RLIMIT_NOFILE:
422 1.19 cgd if (limp->rlim_cur > maxfiles)
423 1.19 cgd limp->rlim_cur = maxfiles;
424 1.19 cgd if (limp->rlim_max > maxfiles)
425 1.19 cgd limp->rlim_max = maxfiles;
426 1.19 cgd break;
427 1.19 cgd
428 1.19 cgd case RLIMIT_NPROC:
429 1.19 cgd if (limp->rlim_cur > maxproc)
430 1.19 cgd limp->rlim_cur = maxproc;
431 1.19 cgd if (limp->rlim_max > maxproc)
432 1.19 cgd limp->rlim_max = maxproc;
433 1.19 cgd break;
434 1.17 cgd }
435 1.122 dsl
436 1.122 dsl mutex_enter(&p->p_limit->pl_lock);
437 1.17 cgd *alimp = *limp;
438 1.122 dsl mutex_exit(&p->p_limit->pl_lock);
439 1.17 cgd return (0);
440 1.17 cgd }
441 1.17 cgd
442 1.17 cgd /* ARGSUSED */
443 1.25 cgd int
444 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
445 1.134 rmind register_t *retval)
446 1.30 thorpej {
447 1.128 dsl /* {
448 1.42 mycroft syscallarg(int) which;
449 1.22 cgd syscallarg(struct rlimit *) rlp;
450 1.128 dsl } */
451 1.68 thorpej struct proc *p = l->l_proc;
452 1.42 mycroft int which = SCARG(uap, which);
453 1.119 ad struct rlimit rl;
454 1.17 cgd
455 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
456 1.17 cgd return (EINVAL);
457 1.119 ad
458 1.139 ad mutex_enter(p->p_lock);
459 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
460 1.139 ad mutex_exit(p->p_lock);
461 1.119 ad
462 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
463 1.17 cgd }
464 1.17 cgd
465 1.17 cgd /*
466 1.17 cgd * Transform the running time and tick information in proc p into user,
467 1.17 cgd * system, and interrupt time usage.
468 1.113 ad *
469 1.139 ad * Should be called with p->p_lock held unless called from exit1().
470 1.17 cgd */
471 1.25 cgd void
472 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
473 1.113 ad struct timeval *ip, struct timeval *rp)
474 1.17 cgd {
475 1.129 yamt uint64_t u, st, ut, it, tot;
476 1.68 thorpej struct lwp *l;
477 1.129 yamt struct bintime tm;
478 1.129 yamt struct timeval tv;
479 1.17 cgd
480 1.113 ad mutex_spin_enter(&p->p_stmutex);
481 1.17 cgd st = p->p_sticks;
482 1.17 cgd ut = p->p_uticks;
483 1.17 cgd it = p->p_iticks;
484 1.113 ad mutex_spin_exit(&p->p_stmutex);
485 1.17 cgd
486 1.129 yamt tm = p->p_rtime;
487 1.113 ad
488 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
489 1.113 ad lwp_lock(l);
490 1.129 yamt bintime_add(&tm, &l->l_rtime);
491 1.142 ad if ((l->l_pflag & LP_RUNNING) != 0) {
492 1.129 yamt struct bintime diff;
493 1.68 thorpej /*
494 1.68 thorpej * Adjust for the current time slice. This is
495 1.68 thorpej * actually fairly important since the error
496 1.68 thorpej * here is on the order of a time quantum,
497 1.68 thorpej * which is much greater than the sampling
498 1.87 perry * error.
499 1.68 thorpej */
500 1.129 yamt binuptime(&diff);
501 1.129 yamt bintime_sub(&diff, &l->l_stime);
502 1.129 yamt bintime_add(&tm, &diff);
503 1.68 thorpej }
504 1.113 ad lwp_unlock(l);
505 1.17 cgd }
506 1.69 dsl
507 1.69 dsl tot = st + ut + it;
508 1.129 yamt bintime2timeval(&tm, &tv);
509 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
510 1.70 dsl
511 1.69 dsl if (tot == 0) {
512 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
513 1.70 dsl st = ut = u / 2;
514 1.70 dsl } else {
515 1.70 dsl st = (u * st) / tot;
516 1.70 dsl ut = (u * ut) / tot;
517 1.69 dsl }
518 1.113 ad if (sp != NULL) {
519 1.113 ad sp->tv_sec = st / 1000000;
520 1.113 ad sp->tv_usec = st % 1000000;
521 1.113 ad }
522 1.113 ad if (up != NULL) {
523 1.113 ad up->tv_sec = ut / 1000000;
524 1.113 ad up->tv_usec = ut % 1000000;
525 1.113 ad }
526 1.17 cgd if (ip != NULL) {
527 1.70 dsl if (it != 0)
528 1.70 dsl it = (u * it) / tot;
529 1.17 cgd ip->tv_sec = it / 1000000;
530 1.17 cgd ip->tv_usec = it % 1000000;
531 1.17 cgd }
532 1.113 ad if (rp != NULL) {
533 1.129 yamt *rp = tv;
534 1.113 ad }
535 1.17 cgd }
536 1.17 cgd
537 1.17 cgd /* ARGSUSED */
538 1.25 cgd int
539 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
540 1.134 rmind register_t *retval)
541 1.30 thorpej {
542 1.128 dsl /* {
543 1.22 cgd syscallarg(int) who;
544 1.22 cgd syscallarg(struct rusage *) rusage;
545 1.128 dsl } */
546 1.119 ad struct rusage ru;
547 1.68 thorpej struct proc *p = l->l_proc;
548 1.17 cgd
549 1.22 cgd switch (SCARG(uap, who)) {
550 1.19 cgd case RUSAGE_SELF:
551 1.139 ad mutex_enter(p->p_lock);
552 1.119 ad memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
553 1.119 ad calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
554 1.137 ad rulwps(p, &ru);
555 1.139 ad mutex_exit(p->p_lock);
556 1.17 cgd break;
557 1.17 cgd
558 1.17 cgd case RUSAGE_CHILDREN:
559 1.139 ad mutex_enter(p->p_lock);
560 1.119 ad memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
561 1.139 ad mutex_exit(p->p_lock);
562 1.17 cgd break;
563 1.17 cgd
564 1.17 cgd default:
565 1.119 ad return EINVAL;
566 1.17 cgd }
567 1.119 ad
568 1.119 ad return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
569 1.17 cgd }
570 1.17 cgd
571 1.25 cgd void
572 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
573 1.17 cgd {
574 1.54 augustss long *ip, *ip2;
575 1.54 augustss int i;
576 1.17 cgd
577 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
578 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
579 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
580 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
581 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
582 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
583 1.17 cgd *ip++ += *ip2++;
584 1.17 cgd }
585 1.17 cgd
586 1.137 ad void
587 1.137 ad rulwps(proc_t *p, struct rusage *ru)
588 1.137 ad {
589 1.137 ad lwp_t *l;
590 1.137 ad
591 1.139 ad KASSERT(mutex_owned(p->p_lock));
592 1.137 ad
593 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
594 1.137 ad ruadd(ru, &l->l_ru);
595 1.137 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
596 1.137 ad ru->ru_nivcsw += l->l_nivcsw;
597 1.137 ad }
598 1.137 ad }
599 1.137 ad
600 1.17 cgd /*
601 1.161 rmind * lim_copy: make a copy of the plimit structure.
602 1.113 ad *
603 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed.
604 1.17 cgd */
605 1.17 cgd struct plimit *
606 1.122 dsl lim_copy(struct plimit *lim)
607 1.17 cgd {
608 1.122 dsl struct plimit *newlim;
609 1.113 ad char *corename;
610 1.122 dsl size_t alen, len;
611 1.17 cgd
612 1.130 ad newlim = pool_cache_get(plimit_cache, PR_WAITOK);
613 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
614 1.161 rmind newlim->pl_writeable = false;
615 1.121 dsl newlim->pl_refcnt = 1;
616 1.122 dsl newlim->pl_sv_limit = NULL;
617 1.122 dsl
618 1.122 dsl mutex_enter(&lim->pl_lock);
619 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit,
620 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS);
621 1.83 pk
622 1.161 rmind /*
623 1.161 rmind * Note: the common case is a use of default core name.
624 1.161 rmind */
625 1.122 dsl alen = 0;
626 1.122 dsl corename = NULL;
627 1.113 ad for (;;) {
628 1.122 dsl if (lim->pl_corename == defcorename) {
629 1.122 dsl newlim->pl_corename = defcorename;
630 1.161 rmind newlim->pl_cnlen = 0;
631 1.122 dsl break;
632 1.122 dsl }
633 1.161 rmind len = lim->pl_cnlen;
634 1.161 rmind if (len == alen) {
635 1.122 dsl newlim->pl_corename = corename;
636 1.161 rmind newlim->pl_cnlen = len;
637 1.122 dsl memcpy(corename, lim->pl_corename, len);
638 1.122 dsl corename = NULL;
639 1.122 dsl break;
640 1.122 dsl }
641 1.122 dsl mutex_exit(&lim->pl_lock);
642 1.161 rmind if (corename) {
643 1.161 rmind kmem_free(corename, alen);
644 1.161 rmind }
645 1.122 dsl alen = len;
646 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP);
647 1.121 dsl mutex_enter(&lim->pl_lock);
648 1.122 dsl }
649 1.122 dsl mutex_exit(&lim->pl_lock);
650 1.161 rmind
651 1.161 rmind if (corename) {
652 1.161 rmind kmem_free(corename, alen);
653 1.161 rmind }
654 1.122 dsl return newlim;
655 1.122 dsl }
656 1.122 dsl
657 1.122 dsl void
658 1.122 dsl lim_addref(struct plimit *lim)
659 1.122 dsl {
660 1.125 ad atomic_inc_uint(&lim->pl_refcnt);
661 1.122 dsl }
662 1.113 ad
663 1.122 dsl /*
664 1.161 rmind * lim_privatise: give a process its own private plimit structure.
665 1.122 dsl */
666 1.122 dsl void
667 1.161 rmind lim_privatise(proc_t *p)
668 1.122 dsl {
669 1.161 rmind struct plimit *lim = p->p_limit, *newlim;
670 1.122 dsl
671 1.161 rmind if (lim->pl_writeable) {
672 1.122 dsl return;
673 1.122 dsl }
674 1.122 dsl
675 1.122 dsl newlim = lim_copy(lim);
676 1.113 ad
677 1.139 ad mutex_enter(p->p_lock);
678 1.161 rmind if (p->p_limit->pl_writeable) {
679 1.161 rmind /* Other thread won the race. */
680 1.139 ad mutex_exit(p->p_lock);
681 1.159 rmind lim_free(newlim);
682 1.122 dsl return;
683 1.113 ad }
684 1.83 pk
685 1.122 dsl /*
686 1.161 rmind * Since p->p_limit can be accessed without locked held,
687 1.161 rmind * old limit structure must not be deleted yet.
688 1.122 dsl */
689 1.122 dsl newlim->pl_sv_limit = p->p_limit;
690 1.161 rmind newlim->pl_writeable = true;
691 1.122 dsl p->p_limit = newlim;
692 1.139 ad mutex_exit(p->p_lock);
693 1.32 mycroft }
694 1.32 mycroft
695 1.32 mycroft void
696 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len)
697 1.160 rmind {
698 1.160 rmind struct plimit *lim;
699 1.160 rmind char *oname;
700 1.161 rmind size_t olen;
701 1.160 rmind
702 1.161 rmind lim_privatise(p);
703 1.160 rmind lim = p->p_limit;
704 1.160 rmind
705 1.160 rmind mutex_enter(&lim->pl_lock);
706 1.160 rmind oname = lim->pl_corename;
707 1.161 rmind olen = lim->pl_cnlen;
708 1.160 rmind lim->pl_corename = name;
709 1.161 rmind lim->pl_cnlen = len;
710 1.160 rmind mutex_exit(&lim->pl_lock);
711 1.160 rmind
712 1.160 rmind if (oname != defcorename) {
713 1.161 rmind kmem_free(oname, olen);
714 1.160 rmind }
715 1.160 rmind }
716 1.160 rmind
717 1.160 rmind void
718 1.159 rmind lim_free(struct plimit *lim)
719 1.32 mycroft {
720 1.122 dsl struct plimit *sv_lim;
721 1.85 kleink
722 1.122 dsl do {
723 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
724 1.122 dsl return;
725 1.159 rmind }
726 1.159 rmind if (lim->pl_corename != defcorename) {
727 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen);
728 1.159 rmind }
729 1.122 dsl sv_lim = lim->pl_sv_limit;
730 1.122 dsl mutex_destroy(&lim->pl_lock);
731 1.130 ad pool_cache_put(plimit_cache, lim);
732 1.122 dsl } while ((lim = sv_lim) != NULL);
733 1.68 thorpej }
734 1.68 thorpej
735 1.68 thorpej struct pstats *
736 1.98 thorpej pstatscopy(struct pstats *ps)
737 1.68 thorpej {
738 1.87 perry
739 1.68 thorpej struct pstats *newps;
740 1.68 thorpej
741 1.130 ad newps = pool_cache_get(pstats_cache, PR_WAITOK);
742 1.68 thorpej
743 1.68 thorpej memset(&newps->pstat_startzero, 0,
744 1.115 christos (unsigned) ((char *)&newps->pstat_endzero -
745 1.115 christos (char *)&newps->pstat_startzero));
746 1.68 thorpej memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
747 1.115 christos ((char *)&newps->pstat_endcopy -
748 1.115 christos (char *)&newps->pstat_startcopy));
749 1.68 thorpej
750 1.68 thorpej return (newps);
751 1.68 thorpej
752 1.68 thorpej }
753 1.68 thorpej
754 1.68 thorpej void
755 1.98 thorpej pstatsfree(struct pstats *ps)
756 1.68 thorpej {
757 1.68 thorpej
758 1.130 ad pool_cache_put(pstats_cache, ps);
759 1.74 atatat }
760 1.74 atatat
761 1.74 atatat /*
762 1.74 atatat * sysctl interface in five parts
763 1.74 atatat */
764 1.74 atatat
765 1.74 atatat /*
766 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
767 1.157 rmind * need to pick a valid process by PID.
768 1.157 rmind *
769 1.157 rmind * => Hold a reference on the process, on success.
770 1.74 atatat */
771 1.74 atatat static int
772 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
773 1.74 atatat {
774 1.157 rmind proc_t *p;
775 1.157 rmind int error;
776 1.74 atatat
777 1.157 rmind if (pid == PROC_CURPROC) {
778 1.157 rmind p = l->l_proc;
779 1.157 rmind } else {
780 1.157 rmind mutex_enter(proc_lock);
781 1.157 rmind p = proc_find(pid);
782 1.157 rmind if (p == NULL) {
783 1.157 rmind mutex_exit(proc_lock);
784 1.157 rmind return ESRCH;
785 1.157 rmind }
786 1.157 rmind }
787 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
788 1.157 rmind if (pid != PROC_CURPROC) {
789 1.157 rmind mutex_exit(proc_lock);
790 1.157 rmind }
791 1.157 rmind *p2 = p;
792 1.157 rmind return error;
793 1.74 atatat }
794 1.74 atatat
795 1.74 atatat /*
796 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name
797 1.158 rmind * for a process specified by PID.
798 1.74 atatat */
799 1.74 atatat static int
800 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
801 1.74 atatat {
802 1.158 rmind struct proc *p;
803 1.83 pk struct plimit *lim;
804 1.158 rmind char *cnbuf, *cname;
805 1.157 rmind struct sysctlnode node;
806 1.158 rmind size_t len;
807 1.158 rmind int error;
808 1.74 atatat
809 1.158 rmind /* First, validate the request. */
810 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
811 1.158 rmind return EINVAL;
812 1.74 atatat
813 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
814 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
815 1.74 atatat if (error)
816 1.157 rmind return error;
817 1.74 atatat
818 1.131 elad /* XXX-elad */
819 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
820 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
821 1.157 rmind if (error) {
822 1.158 rmind rw_exit(&p->p_reflock);
823 1.157 rmind return error;
824 1.157 rmind }
825 1.111 elad
826 1.158 rmind cnbuf = PNBUF_GET();
827 1.158 rmind
828 1.131 elad if (newp == NULL) {
829 1.158 rmind /* Get case: copy the core name into the buffer. */
830 1.131 elad error = kauth_authorize_process(l->l_cred,
831 1.158 rmind KAUTH_PROCESS_CORENAME, p,
832 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
833 1.157 rmind if (error) {
834 1.158 rmind goto done;
835 1.158 rmind }
836 1.158 rmind lim = p->p_limit;
837 1.158 rmind mutex_enter(&lim->pl_lock);
838 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
839 1.158 rmind mutex_exit(&lim->pl_lock);
840 1.158 rmind } else {
841 1.158 rmind /* Set case: just use the temporary buffer. */
842 1.158 rmind error = kauth_authorize_process(l->l_cred,
843 1.158 rmind KAUTH_PROCESS_CORENAME, p,
844 1.158 rmind KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
845 1.158 rmind if (error) {
846 1.158 rmind goto done;
847 1.157 rmind }
848 1.131 elad }
849 1.131 elad
850 1.74 atatat node = *rnode;
851 1.158 rmind node.sysctl_data = cnbuf;
852 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
853 1.74 atatat
854 1.158 rmind /* Return if error, or if we are only retrieving the core name. */
855 1.158 rmind if (error || newp == NULL) {
856 1.100 yamt goto done;
857 1.157 rmind }
858 1.103 elad
859 1.74 atatat /*
860 1.158 rmind * Validate new core name. It must be either "core", "/core",
861 1.158 rmind * or end in ".core".
862 1.74 atatat */
863 1.158 rmind len = strlen(cnbuf);
864 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
865 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
866 1.100 yamt error = EINVAL;
867 1.100 yamt goto done;
868 1.100 yamt }
869 1.74 atatat
870 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */
871 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP);
872 1.158 rmind if (cname == NULL) {
873 1.100 yamt error = ENOMEM;
874 1.100 yamt goto done;
875 1.100 yamt }
876 1.158 rmind memcpy(cname, cnbuf, len);
877 1.160 rmind lim_setcorename(p, cname, len);
878 1.100 yamt done:
879 1.158 rmind rw_exit(&p->p_reflock);
880 1.158 rmind PNBUF_PUT(cnbuf);
881 1.100 yamt return error;
882 1.74 atatat }
883 1.74 atatat
884 1.74 atatat /*
885 1.74 atatat * sysctl helper routine for checking/setting a process's stop flags,
886 1.74 atatat * one for fork and one for exec.
887 1.74 atatat */
888 1.74 atatat static int
889 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
890 1.74 atatat {
891 1.102 ad struct proc *ptmp;
892 1.74 atatat int i, f, error = 0;
893 1.74 atatat struct sysctlnode node;
894 1.74 atatat
895 1.74 atatat if (namelen != 0)
896 1.74 atatat return (EINVAL);
897 1.74 atatat
898 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
899 1.157 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &ptmp);
900 1.74 atatat if (error)
901 1.157 rmind return error;
902 1.74 atatat
903 1.131 elad /* XXX-elad */
904 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
905 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
906 1.111 elad if (error)
907 1.157 rmind goto out;
908 1.111 elad
909 1.74 atatat switch (rnode->sysctl_num) {
910 1.74 atatat case PROC_PID_STOPFORK:
911 1.113 ad f = PS_STOPFORK;
912 1.74 atatat break;
913 1.74 atatat case PROC_PID_STOPEXEC:
914 1.113 ad f = PS_STOPEXEC;
915 1.74 atatat break;
916 1.74 atatat case PROC_PID_STOPEXIT:
917 1.113 ad f = PS_STOPEXIT;
918 1.74 atatat break;
919 1.74 atatat default:
920 1.157 rmind error = EINVAL;
921 1.157 rmind goto out;
922 1.74 atatat }
923 1.74 atatat
924 1.74 atatat i = (ptmp->p_flag & f) ? 1 : 0;
925 1.74 atatat node = *rnode;
926 1.74 atatat node.sysctl_data = &i;
927 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
928 1.74 atatat if (error || newp == NULL)
929 1.157 rmind goto out;
930 1.74 atatat
931 1.139 ad mutex_enter(ptmp->p_lock);
932 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
933 1.111 elad ptmp, KAUTH_ARG(f), NULL, NULL);
934 1.143 rmind if (!error) {
935 1.143 rmind if (i) {
936 1.143 rmind ptmp->p_sflag |= f;
937 1.143 rmind } else {
938 1.143 rmind ptmp->p_sflag &= ~f;
939 1.143 rmind }
940 1.143 rmind }
941 1.139 ad mutex_exit(ptmp->p_lock);
942 1.157 rmind out:
943 1.157 rmind rw_exit(&ptmp->p_reflock);
944 1.143 rmind return error;
945 1.74 atatat }
946 1.74 atatat
947 1.74 atatat /*
948 1.74 atatat * sysctl helper routine for a process's rlimits as exposed by sysctl.
949 1.74 atatat */
950 1.74 atatat static int
951 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
952 1.74 atatat {
953 1.102 ad struct proc *ptmp;
954 1.74 atatat u_int limitno;
955 1.74 atatat int which, error = 0;
956 1.74 atatat struct rlimit alim;
957 1.74 atatat struct sysctlnode node;
958 1.74 atatat
959 1.74 atatat if (namelen != 0)
960 1.74 atatat return (EINVAL);
961 1.74 atatat
962 1.74 atatat which = name[-1];
963 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
964 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
965 1.74 atatat return (EINVAL);
966 1.74 atatat
967 1.74 atatat limitno = name[-2] - 1;
968 1.74 atatat if (limitno >= RLIM_NLIMITS)
969 1.74 atatat return (EINVAL);
970 1.74 atatat
971 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
972 1.74 atatat return (EINVAL);
973 1.74 atatat
974 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
975 1.157 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &ptmp);
976 1.74 atatat if (error)
977 1.157 rmind return error;
978 1.74 atatat
979 1.131 elad /* XXX-elad */
980 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
981 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
982 1.111 elad if (error)
983 1.157 rmind goto out;
984 1.111 elad
985 1.131 elad /* Check if we can view limits. */
986 1.131 elad if (newp == NULL) {
987 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
988 1.131 elad ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
989 1.131 elad KAUTH_ARG(which));
990 1.131 elad if (error)
991 1.157 rmind goto out;
992 1.131 elad }
993 1.131 elad
994 1.74 atatat node = *rnode;
995 1.74 atatat memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
996 1.74 atatat if (which == PROC_PID_LIMIT_TYPE_HARD)
997 1.74 atatat node.sysctl_data = &alim.rlim_max;
998 1.74 atatat else
999 1.74 atatat node.sysctl_data = &alim.rlim_cur;
1000 1.74 atatat
1001 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
1002 1.157 rmind if (error || newp == NULL) {
1003 1.157 rmind goto out;
1004 1.157 rmind }
1005 1.157 rmind error = dosetrlimit(l, ptmp, limitno, &alim);
1006 1.157 rmind out:
1007 1.157 rmind rw_exit(&ptmp->p_reflock);
1008 1.157 rmind return error;
1009 1.74 atatat }
1010 1.74 atatat
1011 1.156 pooka static struct sysctllog *proc_sysctllog;
1012 1.156 pooka
1013 1.74 atatat /*
1014 1.74 atatat * and finally, the actually glue that sticks it to the tree
1015 1.74 atatat */
1016 1.156 pooka static void
1017 1.156 pooka sysctl_proc_setup()
1018 1.74 atatat {
1019 1.74 atatat
1020 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1021 1.76 atatat CTLFLAG_PERMANENT,
1022 1.74 atatat CTLTYPE_NODE, "proc", NULL,
1023 1.74 atatat NULL, 0, NULL, 0,
1024 1.74 atatat CTL_PROC, CTL_EOL);
1025 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1026 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1027 1.78 atatat CTLTYPE_NODE, "curproc",
1028 1.78 atatat SYSCTL_DESCR("Per-process settings"),
1029 1.74 atatat NULL, 0, NULL, 0,
1030 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
1031 1.74 atatat
1032 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1033 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1034 1.78 atatat CTLTYPE_STRING, "corename",
1035 1.78 atatat SYSCTL_DESCR("Core file name"),
1036 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1037 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1038 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1039 1.76 atatat CTLFLAG_PERMANENT,
1040 1.78 atatat CTLTYPE_NODE, "rlimit",
1041 1.78 atatat SYSCTL_DESCR("Process limits"),
1042 1.74 atatat NULL, 0, NULL, 0,
1043 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1044 1.74 atatat
1045 1.74 atatat #define create_proc_plimit(s, n) do { \
1046 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1047 1.76 atatat CTLFLAG_PERMANENT, \
1048 1.78 atatat CTLTYPE_NODE, s, \
1049 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
1050 1.74 atatat NULL, 0, NULL, 0, \
1051 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1052 1.74 atatat CTL_EOL); \
1053 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1054 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1055 1.78 atatat CTLTYPE_QUAD, "soft", \
1056 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
1057 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1058 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1059 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1060 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1061 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1062 1.78 atatat CTLTYPE_QUAD, "hard", \
1063 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
1064 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1065 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1066 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1067 1.74 atatat } while (0/*CONSTCOND*/)
1068 1.74 atatat
1069 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1070 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1071 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1072 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1073 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1074 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1075 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1076 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1077 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1078 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1079 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1080 1.74 atatat
1081 1.74 atatat #undef create_proc_plimit
1082 1.74 atatat
1083 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1084 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1085 1.78 atatat CTLTYPE_INT, "stopfork",
1086 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1087 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1088 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1089 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1090 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1091 1.78 atatat CTLTYPE_INT, "stopexec",
1092 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1093 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1094 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1095 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1096 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1097 1.78 atatat CTLTYPE_INT, "stopexit",
1098 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1099 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1100 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1101 1.17 cgd }
1102