kern_resource.c revision 1.162 1 1.162 christos /* $NetBSD: kern_resource.c,v 1.162 2011/05/01 02:46:19 christos Exp $ */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.162 christos __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.162 2011/05/01 02:46:19 christos Exp $");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.17 cgd #include <sys/malloc.h>
48 1.132 yamt #include <sys/kmem.h>
49 1.100 yamt #include <sys/namei.h>
50 1.49 thorpej #include <sys/pool.h>
51 1.17 cgd #include <sys/proc.h>
52 1.74 atatat #include <sys/sysctl.h>
53 1.129 yamt #include <sys/timevar.h>
54 1.101 elad #include <sys/kauth.h>
55 1.125 ad #include <sys/atomic.h>
56 1.22 cgd #include <sys/mount.h>
57 1.22 cgd #include <sys/syscallargs.h>
58 1.136 ad #include <sys/atomic.h>
59 1.17 cgd
60 1.43 mrg #include <uvm/uvm_extern.h>
61 1.43 mrg
62 1.17 cgd /*
63 1.60 eeh * Maximum process data and stack limits.
64 1.60 eeh * They are variables so they are patchable.
65 1.60 eeh */
66 1.60 eeh rlim_t maxdmap = MAXDSIZ;
67 1.60 eeh rlim_t maxsmap = MAXSSIZ;
68 1.60 eeh
69 1.134 rmind static pool_cache_t plimit_cache;
70 1.134 rmind static pool_cache_t pstats_cache;
71 1.130 ad
72 1.154 elad static kauth_listener_t resource_listener;
73 1.153 elad
74 1.156 pooka static void sysctl_proc_setup(void);
75 1.156 pooka
76 1.153 elad static int
77 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
78 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
79 1.153 elad {
80 1.153 elad struct proc *p;
81 1.153 elad int result;
82 1.153 elad
83 1.153 elad result = KAUTH_RESULT_DEFER;
84 1.153 elad p = arg0;
85 1.153 elad
86 1.154 elad switch (action) {
87 1.154 elad case KAUTH_PROCESS_NICE:
88 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
89 1.154 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
90 1.154 elad break;
91 1.154 elad }
92 1.153 elad
93 1.154 elad if ((u_long)arg1 >= p->p_nice)
94 1.154 elad result = KAUTH_RESULT_ALLOW;
95 1.153 elad
96 1.154 elad break;
97 1.154 elad
98 1.154 elad case KAUTH_PROCESS_RLIMIT: {
99 1.154 elad enum kauth_process_req req;
100 1.153 elad
101 1.154 elad req = (enum kauth_process_req)(unsigned long)arg1;
102 1.153 elad
103 1.154 elad switch (req) {
104 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET:
105 1.153 elad result = KAUTH_RESULT_ALLOW;
106 1.154 elad break;
107 1.154 elad
108 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: {
109 1.154 elad struct rlimit *new_rlimit;
110 1.154 elad u_long which;
111 1.154 elad
112 1.154 elad if ((p != curlwp->l_proc) &&
113 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0))
114 1.154 elad break;
115 1.154 elad
116 1.154 elad new_rlimit = arg2;
117 1.154 elad which = (u_long)arg3;
118 1.154 elad
119 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
120 1.154 elad result = KAUTH_RESULT_ALLOW;
121 1.154 elad
122 1.154 elad break;
123 1.154 elad }
124 1.154 elad
125 1.154 elad default:
126 1.154 elad break;
127 1.154 elad }
128 1.154 elad
129 1.154 elad break;
130 1.154 elad }
131 1.154 elad
132 1.154 elad default:
133 1.154 elad break;
134 1.153 elad }
135 1.153 elad
136 1.153 elad return result;
137 1.153 elad }
138 1.153 elad
139 1.130 ad void
140 1.130 ad resource_init(void)
141 1.130 ad {
142 1.130 ad
143 1.130 ad plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
144 1.130 ad "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
145 1.130 ad pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
146 1.130 ad "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
147 1.153 elad
148 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
149 1.154 elad resource_listener_cb, NULL);
150 1.156 pooka
151 1.156 pooka sysctl_proc_setup();
152 1.130 ad }
153 1.130 ad
154 1.60 eeh /*
155 1.17 cgd * Resource controls and accounting.
156 1.17 cgd */
157 1.17 cgd
158 1.25 cgd int
159 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
160 1.134 rmind register_t *retval)
161 1.30 thorpej {
162 1.128 dsl /* {
163 1.22 cgd syscallarg(int) which;
164 1.81 kleink syscallarg(id_t) who;
165 1.128 dsl } */
166 1.68 thorpej struct proc *curp = l->l_proc, *p;
167 1.54 augustss int low = NZERO + PRIO_MAX + 1;
168 1.113 ad int who = SCARG(uap, who);
169 1.17 cgd
170 1.138 ad mutex_enter(proc_lock);
171 1.22 cgd switch (SCARG(uap, which)) {
172 1.17 cgd case PRIO_PROCESS:
173 1.157 rmind p = who ? proc_find(who) : curp;;
174 1.113 ad if (p != NULL)
175 1.113 ad low = p->p_nice;
176 1.17 cgd break;
177 1.17 cgd
178 1.17 cgd case PRIO_PGRP: {
179 1.54 augustss struct pgrp *pg;
180 1.17 cgd
181 1.113 ad if (who == 0)
182 1.17 cgd pg = curp->p_pgrp;
183 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
184 1.17 cgd break;
185 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
186 1.17 cgd if (p->p_nice < low)
187 1.17 cgd low = p->p_nice;
188 1.17 cgd }
189 1.17 cgd break;
190 1.17 cgd }
191 1.17 cgd
192 1.17 cgd case PRIO_USER:
193 1.113 ad if (who == 0)
194 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
195 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
196 1.139 ad mutex_enter(p->p_lock);
197 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
198 1.113 ad (uid_t)who && p->p_nice < low)
199 1.17 cgd low = p->p_nice;
200 1.139 ad mutex_exit(p->p_lock);
201 1.64 matt }
202 1.17 cgd break;
203 1.17 cgd
204 1.17 cgd default:
205 1.138 ad mutex_exit(proc_lock);
206 1.17 cgd return (EINVAL);
207 1.17 cgd }
208 1.138 ad mutex_exit(proc_lock);
209 1.113 ad
210 1.37 ws if (low == NZERO + PRIO_MAX + 1)
211 1.17 cgd return (ESRCH);
212 1.37 ws *retval = low - NZERO;
213 1.17 cgd return (0);
214 1.17 cgd }
215 1.17 cgd
216 1.17 cgd /* ARGSUSED */
217 1.25 cgd int
218 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
219 1.134 rmind register_t *retval)
220 1.30 thorpej {
221 1.128 dsl /* {
222 1.22 cgd syscallarg(int) which;
223 1.81 kleink syscallarg(id_t) who;
224 1.22 cgd syscallarg(int) prio;
225 1.128 dsl } */
226 1.68 thorpej struct proc *curp = l->l_proc, *p;
227 1.17 cgd int found = 0, error = 0;
228 1.113 ad int who = SCARG(uap, who);
229 1.17 cgd
230 1.138 ad mutex_enter(proc_lock);
231 1.22 cgd switch (SCARG(uap, which)) {
232 1.17 cgd case PRIO_PROCESS:
233 1.157 rmind p = who ? proc_find(who) : curp;
234 1.157 rmind if (p != NULL) {
235 1.139 ad mutex_enter(p->p_lock);
236 1.162 christos found++;
237 1.113 ad error = donice(l, p, SCARG(uap, prio));
238 1.139 ad mutex_exit(p->p_lock);
239 1.113 ad }
240 1.17 cgd break;
241 1.17 cgd
242 1.17 cgd case PRIO_PGRP: {
243 1.54 augustss struct pgrp *pg;
244 1.87 perry
245 1.113 ad if (who == 0)
246 1.17 cgd pg = curp->p_pgrp;
247 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
248 1.17 cgd break;
249 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
250 1.139 ad mutex_enter(p->p_lock);
251 1.162 christos found++;
252 1.102 ad error = donice(l, p, SCARG(uap, prio));
253 1.139 ad mutex_exit(p->p_lock);
254 1.162 christos if (error)
255 1.162 christos break;
256 1.17 cgd }
257 1.17 cgd break;
258 1.17 cgd }
259 1.17 cgd
260 1.17 cgd case PRIO_USER:
261 1.113 ad if (who == 0)
262 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
263 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
264 1.139 ad mutex_enter(p->p_lock);
265 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
266 1.102 ad (uid_t)SCARG(uap, who)) {
267 1.162 christos found++;
268 1.102 ad error = donice(l, p, SCARG(uap, prio));
269 1.17 cgd }
270 1.139 ad mutex_exit(p->p_lock);
271 1.162 christos if (error)
272 1.162 christos break;
273 1.64 matt }
274 1.17 cgd break;
275 1.17 cgd
276 1.17 cgd default:
277 1.144 njoly mutex_exit(proc_lock);
278 1.144 njoly return EINVAL;
279 1.17 cgd }
280 1.138 ad mutex_exit(proc_lock);
281 1.17 cgd if (found == 0)
282 1.162 christos return ESRCH;
283 1.162 christos return error;
284 1.17 cgd }
285 1.17 cgd
286 1.113 ad /*
287 1.113 ad * Renice a process.
288 1.113 ad *
289 1.113 ad * Call with the target process' credentials locked.
290 1.113 ad */
291 1.25 cgd int
292 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
293 1.17 cgd {
294 1.102 ad kauth_cred_t cred = l->l_cred;
295 1.113 ad
296 1.139 ad KASSERT(mutex_owned(chgp->p_lock));
297 1.17 cgd
298 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 1.152 elad return (EPERM);
302 1.152 elad
303 1.17 cgd if (n > PRIO_MAX)
304 1.17 cgd n = PRIO_MAX;
305 1.17 cgd if (n < PRIO_MIN)
306 1.17 cgd n = PRIO_MIN;
307 1.37 ws n += NZERO;
308 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
309 1.112 elad KAUTH_ARG(n), NULL, NULL))
310 1.17 cgd return (EACCES);
311 1.117 yamt sched_nice(chgp, n);
312 1.17 cgd return (0);
313 1.17 cgd }
314 1.17 cgd
315 1.17 cgd /* ARGSUSED */
316 1.25 cgd int
317 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
318 1.134 rmind register_t *retval)
319 1.30 thorpej {
320 1.128 dsl /* {
321 1.42 mycroft syscallarg(int) which;
322 1.39 cgd syscallarg(const struct rlimit *) rlp;
323 1.128 dsl } */
324 1.42 mycroft int which = SCARG(uap, which);
325 1.19 cgd struct rlimit alim;
326 1.17 cgd int error;
327 1.17 cgd
328 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
329 1.33 christos if (error)
330 1.17 cgd return (error);
331 1.102 ad return (dosetrlimit(l, l->l_proc, which, &alim));
332 1.17 cgd }
333 1.17 cgd
334 1.17 cgd int
335 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
336 1.17 cgd {
337 1.54 augustss struct rlimit *alimp;
338 1.17 cgd int error;
339 1.17 cgd
340 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
341 1.17 cgd return (EINVAL);
342 1.38 matthias
343 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
344 1.62 jdolecek /*
345 1.62 jdolecek * This is programming error. According to SUSv2, we should
346 1.62 jdolecek * return error in this case.
347 1.62 jdolecek */
348 1.62 jdolecek return (EINVAL);
349 1.62 jdolecek }
350 1.122 dsl
351 1.122 dsl alimp = &p->p_rlimit[which];
352 1.122 dsl /* if we don't change the value, no need to limcopy() */
353 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur &&
354 1.122 dsl limp->rlim_max == alimp->rlim_max)
355 1.122 dsl return 0;
356 1.122 dsl
357 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
358 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
359 1.111 elad if (error)
360 1.122 dsl return (error);
361 1.62 jdolecek
362 1.161 rmind lim_privatise(p);
363 1.122 dsl /* p->p_limit is now unchangeable */
364 1.122 dsl alimp = &p->p_rlimit[which];
365 1.17 cgd
366 1.17 cgd switch (which) {
367 1.17 cgd
368 1.17 cgd case RLIMIT_DATA:
369 1.19 cgd if (limp->rlim_cur > maxdmap)
370 1.19 cgd limp->rlim_cur = maxdmap;
371 1.19 cgd if (limp->rlim_max > maxdmap)
372 1.19 cgd limp->rlim_max = maxdmap;
373 1.17 cgd break;
374 1.17 cgd
375 1.17 cgd case RLIMIT_STACK:
376 1.19 cgd if (limp->rlim_cur > maxsmap)
377 1.19 cgd limp->rlim_cur = maxsmap;
378 1.19 cgd if (limp->rlim_max > maxsmap)
379 1.19 cgd limp->rlim_max = maxsmap;
380 1.62 jdolecek
381 1.62 jdolecek /*
382 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
383 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
384 1.62 jdolecek * moment it would try to access anything on it's current stack.
385 1.62 jdolecek * This conforms to SUSv2.
386 1.62 jdolecek */
387 1.62 jdolecek if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
388 1.113 ad || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
389 1.62 jdolecek return (EINVAL);
390 1.113 ad }
391 1.40 enami
392 1.17 cgd /*
393 1.40 enami * Stack is allocated to the max at exec time with
394 1.40 enami * only "rlim_cur" bytes accessible (In other words,
395 1.40 enami * allocates stack dividing two contiguous regions at
396 1.40 enami * "rlim_cur" bytes boundary).
397 1.40 enami *
398 1.40 enami * Since allocation is done in terms of page, roundup
399 1.40 enami * "rlim_cur" (otherwise, contiguous regions
400 1.40 enami * overlap). If stack limit is going up make more
401 1.40 enami * accessible, if going down make inaccessible.
402 1.17 cgd */
403 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
404 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
405 1.48 eeh vaddr_t addr;
406 1.48 eeh vsize_t size;
407 1.17 cgd vm_prot_t prot;
408 1.17 cgd
409 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
410 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
411 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
412 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
413 1.91 fvdl limp->rlim_cur;
414 1.17 cgd } else {
415 1.17 cgd prot = VM_PROT_NONE;
416 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
417 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
418 1.91 fvdl alimp->rlim_cur;
419 1.17 cgd }
420 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
421 1.114 thorpej addr, addr+size, prot, false);
422 1.17 cgd }
423 1.17 cgd break;
424 1.19 cgd
425 1.19 cgd case RLIMIT_NOFILE:
426 1.19 cgd if (limp->rlim_cur > maxfiles)
427 1.19 cgd limp->rlim_cur = maxfiles;
428 1.19 cgd if (limp->rlim_max > maxfiles)
429 1.19 cgd limp->rlim_max = maxfiles;
430 1.19 cgd break;
431 1.19 cgd
432 1.19 cgd case RLIMIT_NPROC:
433 1.19 cgd if (limp->rlim_cur > maxproc)
434 1.19 cgd limp->rlim_cur = maxproc;
435 1.19 cgd if (limp->rlim_max > maxproc)
436 1.19 cgd limp->rlim_max = maxproc;
437 1.19 cgd break;
438 1.17 cgd }
439 1.122 dsl
440 1.122 dsl mutex_enter(&p->p_limit->pl_lock);
441 1.17 cgd *alimp = *limp;
442 1.122 dsl mutex_exit(&p->p_limit->pl_lock);
443 1.17 cgd return (0);
444 1.17 cgd }
445 1.17 cgd
446 1.17 cgd /* ARGSUSED */
447 1.25 cgd int
448 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
449 1.134 rmind register_t *retval)
450 1.30 thorpej {
451 1.128 dsl /* {
452 1.42 mycroft syscallarg(int) which;
453 1.22 cgd syscallarg(struct rlimit *) rlp;
454 1.128 dsl } */
455 1.68 thorpej struct proc *p = l->l_proc;
456 1.42 mycroft int which = SCARG(uap, which);
457 1.119 ad struct rlimit rl;
458 1.17 cgd
459 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
460 1.17 cgd return (EINVAL);
461 1.119 ad
462 1.139 ad mutex_enter(p->p_lock);
463 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
464 1.139 ad mutex_exit(p->p_lock);
465 1.119 ad
466 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
467 1.17 cgd }
468 1.17 cgd
469 1.17 cgd /*
470 1.17 cgd * Transform the running time and tick information in proc p into user,
471 1.17 cgd * system, and interrupt time usage.
472 1.113 ad *
473 1.139 ad * Should be called with p->p_lock held unless called from exit1().
474 1.17 cgd */
475 1.25 cgd void
476 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
477 1.113 ad struct timeval *ip, struct timeval *rp)
478 1.17 cgd {
479 1.129 yamt uint64_t u, st, ut, it, tot;
480 1.68 thorpej struct lwp *l;
481 1.129 yamt struct bintime tm;
482 1.129 yamt struct timeval tv;
483 1.17 cgd
484 1.113 ad mutex_spin_enter(&p->p_stmutex);
485 1.17 cgd st = p->p_sticks;
486 1.17 cgd ut = p->p_uticks;
487 1.17 cgd it = p->p_iticks;
488 1.113 ad mutex_spin_exit(&p->p_stmutex);
489 1.17 cgd
490 1.129 yamt tm = p->p_rtime;
491 1.113 ad
492 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
493 1.113 ad lwp_lock(l);
494 1.129 yamt bintime_add(&tm, &l->l_rtime);
495 1.142 ad if ((l->l_pflag & LP_RUNNING) != 0) {
496 1.129 yamt struct bintime diff;
497 1.68 thorpej /*
498 1.68 thorpej * Adjust for the current time slice. This is
499 1.68 thorpej * actually fairly important since the error
500 1.68 thorpej * here is on the order of a time quantum,
501 1.68 thorpej * which is much greater than the sampling
502 1.87 perry * error.
503 1.68 thorpej */
504 1.129 yamt binuptime(&diff);
505 1.129 yamt bintime_sub(&diff, &l->l_stime);
506 1.129 yamt bintime_add(&tm, &diff);
507 1.68 thorpej }
508 1.113 ad lwp_unlock(l);
509 1.17 cgd }
510 1.69 dsl
511 1.69 dsl tot = st + ut + it;
512 1.129 yamt bintime2timeval(&tm, &tv);
513 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
514 1.70 dsl
515 1.69 dsl if (tot == 0) {
516 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
517 1.70 dsl st = ut = u / 2;
518 1.70 dsl } else {
519 1.70 dsl st = (u * st) / tot;
520 1.70 dsl ut = (u * ut) / tot;
521 1.69 dsl }
522 1.113 ad if (sp != NULL) {
523 1.113 ad sp->tv_sec = st / 1000000;
524 1.113 ad sp->tv_usec = st % 1000000;
525 1.113 ad }
526 1.113 ad if (up != NULL) {
527 1.113 ad up->tv_sec = ut / 1000000;
528 1.113 ad up->tv_usec = ut % 1000000;
529 1.113 ad }
530 1.17 cgd if (ip != NULL) {
531 1.70 dsl if (it != 0)
532 1.70 dsl it = (u * it) / tot;
533 1.17 cgd ip->tv_sec = it / 1000000;
534 1.17 cgd ip->tv_usec = it % 1000000;
535 1.17 cgd }
536 1.113 ad if (rp != NULL) {
537 1.129 yamt *rp = tv;
538 1.113 ad }
539 1.17 cgd }
540 1.17 cgd
541 1.17 cgd /* ARGSUSED */
542 1.25 cgd int
543 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
544 1.134 rmind register_t *retval)
545 1.30 thorpej {
546 1.128 dsl /* {
547 1.22 cgd syscallarg(int) who;
548 1.22 cgd syscallarg(struct rusage *) rusage;
549 1.128 dsl } */
550 1.119 ad struct rusage ru;
551 1.68 thorpej struct proc *p = l->l_proc;
552 1.17 cgd
553 1.22 cgd switch (SCARG(uap, who)) {
554 1.19 cgd case RUSAGE_SELF:
555 1.139 ad mutex_enter(p->p_lock);
556 1.119 ad memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
557 1.119 ad calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
558 1.137 ad rulwps(p, &ru);
559 1.139 ad mutex_exit(p->p_lock);
560 1.17 cgd break;
561 1.17 cgd
562 1.17 cgd case RUSAGE_CHILDREN:
563 1.139 ad mutex_enter(p->p_lock);
564 1.119 ad memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
565 1.139 ad mutex_exit(p->p_lock);
566 1.17 cgd break;
567 1.17 cgd
568 1.17 cgd default:
569 1.119 ad return EINVAL;
570 1.17 cgd }
571 1.119 ad
572 1.119 ad return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
573 1.17 cgd }
574 1.17 cgd
575 1.25 cgd void
576 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
577 1.17 cgd {
578 1.54 augustss long *ip, *ip2;
579 1.54 augustss int i;
580 1.17 cgd
581 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
582 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
583 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
584 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
585 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
586 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
587 1.17 cgd *ip++ += *ip2++;
588 1.17 cgd }
589 1.17 cgd
590 1.137 ad void
591 1.137 ad rulwps(proc_t *p, struct rusage *ru)
592 1.137 ad {
593 1.137 ad lwp_t *l;
594 1.137 ad
595 1.139 ad KASSERT(mutex_owned(p->p_lock));
596 1.137 ad
597 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
598 1.137 ad ruadd(ru, &l->l_ru);
599 1.137 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
600 1.137 ad ru->ru_nivcsw += l->l_nivcsw;
601 1.137 ad }
602 1.137 ad }
603 1.137 ad
604 1.17 cgd /*
605 1.161 rmind * lim_copy: make a copy of the plimit structure.
606 1.113 ad *
607 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed.
608 1.17 cgd */
609 1.17 cgd struct plimit *
610 1.122 dsl lim_copy(struct plimit *lim)
611 1.17 cgd {
612 1.122 dsl struct plimit *newlim;
613 1.113 ad char *corename;
614 1.122 dsl size_t alen, len;
615 1.17 cgd
616 1.130 ad newlim = pool_cache_get(plimit_cache, PR_WAITOK);
617 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
618 1.161 rmind newlim->pl_writeable = false;
619 1.121 dsl newlim->pl_refcnt = 1;
620 1.122 dsl newlim->pl_sv_limit = NULL;
621 1.122 dsl
622 1.122 dsl mutex_enter(&lim->pl_lock);
623 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit,
624 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS);
625 1.83 pk
626 1.161 rmind /*
627 1.161 rmind * Note: the common case is a use of default core name.
628 1.161 rmind */
629 1.122 dsl alen = 0;
630 1.122 dsl corename = NULL;
631 1.113 ad for (;;) {
632 1.122 dsl if (lim->pl_corename == defcorename) {
633 1.122 dsl newlim->pl_corename = defcorename;
634 1.161 rmind newlim->pl_cnlen = 0;
635 1.122 dsl break;
636 1.122 dsl }
637 1.161 rmind len = lim->pl_cnlen;
638 1.161 rmind if (len == alen) {
639 1.122 dsl newlim->pl_corename = corename;
640 1.161 rmind newlim->pl_cnlen = len;
641 1.122 dsl memcpy(corename, lim->pl_corename, len);
642 1.122 dsl corename = NULL;
643 1.122 dsl break;
644 1.122 dsl }
645 1.122 dsl mutex_exit(&lim->pl_lock);
646 1.161 rmind if (corename) {
647 1.161 rmind kmem_free(corename, alen);
648 1.161 rmind }
649 1.122 dsl alen = len;
650 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP);
651 1.121 dsl mutex_enter(&lim->pl_lock);
652 1.122 dsl }
653 1.122 dsl mutex_exit(&lim->pl_lock);
654 1.161 rmind
655 1.161 rmind if (corename) {
656 1.161 rmind kmem_free(corename, alen);
657 1.161 rmind }
658 1.122 dsl return newlim;
659 1.122 dsl }
660 1.122 dsl
661 1.122 dsl void
662 1.122 dsl lim_addref(struct plimit *lim)
663 1.122 dsl {
664 1.125 ad atomic_inc_uint(&lim->pl_refcnt);
665 1.122 dsl }
666 1.113 ad
667 1.122 dsl /*
668 1.161 rmind * lim_privatise: give a process its own private plimit structure.
669 1.122 dsl */
670 1.122 dsl void
671 1.161 rmind lim_privatise(proc_t *p)
672 1.122 dsl {
673 1.161 rmind struct plimit *lim = p->p_limit, *newlim;
674 1.122 dsl
675 1.161 rmind if (lim->pl_writeable) {
676 1.122 dsl return;
677 1.122 dsl }
678 1.122 dsl
679 1.122 dsl newlim = lim_copy(lim);
680 1.113 ad
681 1.139 ad mutex_enter(p->p_lock);
682 1.161 rmind if (p->p_limit->pl_writeable) {
683 1.161 rmind /* Other thread won the race. */
684 1.139 ad mutex_exit(p->p_lock);
685 1.159 rmind lim_free(newlim);
686 1.122 dsl return;
687 1.113 ad }
688 1.83 pk
689 1.122 dsl /*
690 1.161 rmind * Since p->p_limit can be accessed without locked held,
691 1.161 rmind * old limit structure must not be deleted yet.
692 1.122 dsl */
693 1.122 dsl newlim->pl_sv_limit = p->p_limit;
694 1.161 rmind newlim->pl_writeable = true;
695 1.122 dsl p->p_limit = newlim;
696 1.139 ad mutex_exit(p->p_lock);
697 1.32 mycroft }
698 1.32 mycroft
699 1.32 mycroft void
700 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len)
701 1.160 rmind {
702 1.160 rmind struct plimit *lim;
703 1.160 rmind char *oname;
704 1.161 rmind size_t olen;
705 1.160 rmind
706 1.161 rmind lim_privatise(p);
707 1.160 rmind lim = p->p_limit;
708 1.160 rmind
709 1.160 rmind mutex_enter(&lim->pl_lock);
710 1.160 rmind oname = lim->pl_corename;
711 1.161 rmind olen = lim->pl_cnlen;
712 1.160 rmind lim->pl_corename = name;
713 1.161 rmind lim->pl_cnlen = len;
714 1.160 rmind mutex_exit(&lim->pl_lock);
715 1.160 rmind
716 1.160 rmind if (oname != defcorename) {
717 1.161 rmind kmem_free(oname, olen);
718 1.160 rmind }
719 1.160 rmind }
720 1.160 rmind
721 1.160 rmind void
722 1.159 rmind lim_free(struct plimit *lim)
723 1.32 mycroft {
724 1.122 dsl struct plimit *sv_lim;
725 1.85 kleink
726 1.122 dsl do {
727 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
728 1.122 dsl return;
729 1.159 rmind }
730 1.159 rmind if (lim->pl_corename != defcorename) {
731 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen);
732 1.159 rmind }
733 1.122 dsl sv_lim = lim->pl_sv_limit;
734 1.122 dsl mutex_destroy(&lim->pl_lock);
735 1.130 ad pool_cache_put(plimit_cache, lim);
736 1.122 dsl } while ((lim = sv_lim) != NULL);
737 1.68 thorpej }
738 1.68 thorpej
739 1.68 thorpej struct pstats *
740 1.98 thorpej pstatscopy(struct pstats *ps)
741 1.68 thorpej {
742 1.87 perry
743 1.68 thorpej struct pstats *newps;
744 1.68 thorpej
745 1.130 ad newps = pool_cache_get(pstats_cache, PR_WAITOK);
746 1.68 thorpej
747 1.68 thorpej memset(&newps->pstat_startzero, 0,
748 1.115 christos (unsigned) ((char *)&newps->pstat_endzero -
749 1.115 christos (char *)&newps->pstat_startzero));
750 1.68 thorpej memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
751 1.115 christos ((char *)&newps->pstat_endcopy -
752 1.115 christos (char *)&newps->pstat_startcopy));
753 1.68 thorpej
754 1.68 thorpej return (newps);
755 1.68 thorpej
756 1.68 thorpej }
757 1.68 thorpej
758 1.68 thorpej void
759 1.98 thorpej pstatsfree(struct pstats *ps)
760 1.68 thorpej {
761 1.68 thorpej
762 1.130 ad pool_cache_put(pstats_cache, ps);
763 1.74 atatat }
764 1.74 atatat
765 1.74 atatat /*
766 1.74 atatat * sysctl interface in five parts
767 1.74 atatat */
768 1.74 atatat
769 1.74 atatat /*
770 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
771 1.157 rmind * need to pick a valid process by PID.
772 1.157 rmind *
773 1.157 rmind * => Hold a reference on the process, on success.
774 1.74 atatat */
775 1.74 atatat static int
776 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
777 1.74 atatat {
778 1.157 rmind proc_t *p;
779 1.157 rmind int error;
780 1.74 atatat
781 1.157 rmind if (pid == PROC_CURPROC) {
782 1.157 rmind p = l->l_proc;
783 1.157 rmind } else {
784 1.157 rmind mutex_enter(proc_lock);
785 1.157 rmind p = proc_find(pid);
786 1.157 rmind if (p == NULL) {
787 1.157 rmind mutex_exit(proc_lock);
788 1.157 rmind return ESRCH;
789 1.157 rmind }
790 1.157 rmind }
791 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
792 1.157 rmind if (pid != PROC_CURPROC) {
793 1.157 rmind mutex_exit(proc_lock);
794 1.157 rmind }
795 1.157 rmind *p2 = p;
796 1.157 rmind return error;
797 1.74 atatat }
798 1.74 atatat
799 1.74 atatat /*
800 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name
801 1.158 rmind * for a process specified by PID.
802 1.74 atatat */
803 1.74 atatat static int
804 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
805 1.74 atatat {
806 1.158 rmind struct proc *p;
807 1.83 pk struct plimit *lim;
808 1.158 rmind char *cnbuf, *cname;
809 1.157 rmind struct sysctlnode node;
810 1.158 rmind size_t len;
811 1.158 rmind int error;
812 1.74 atatat
813 1.158 rmind /* First, validate the request. */
814 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
815 1.158 rmind return EINVAL;
816 1.74 atatat
817 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
818 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
819 1.74 atatat if (error)
820 1.157 rmind return error;
821 1.74 atatat
822 1.131 elad /* XXX-elad */
823 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
824 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
825 1.157 rmind if (error) {
826 1.158 rmind rw_exit(&p->p_reflock);
827 1.157 rmind return error;
828 1.157 rmind }
829 1.111 elad
830 1.158 rmind cnbuf = PNBUF_GET();
831 1.158 rmind
832 1.131 elad if (newp == NULL) {
833 1.158 rmind /* Get case: copy the core name into the buffer. */
834 1.131 elad error = kauth_authorize_process(l->l_cred,
835 1.158 rmind KAUTH_PROCESS_CORENAME, p,
836 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
837 1.157 rmind if (error) {
838 1.158 rmind goto done;
839 1.158 rmind }
840 1.158 rmind lim = p->p_limit;
841 1.158 rmind mutex_enter(&lim->pl_lock);
842 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
843 1.158 rmind mutex_exit(&lim->pl_lock);
844 1.158 rmind } else {
845 1.158 rmind /* Set case: just use the temporary buffer. */
846 1.158 rmind error = kauth_authorize_process(l->l_cred,
847 1.158 rmind KAUTH_PROCESS_CORENAME, p,
848 1.158 rmind KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
849 1.158 rmind if (error) {
850 1.158 rmind goto done;
851 1.157 rmind }
852 1.131 elad }
853 1.131 elad
854 1.74 atatat node = *rnode;
855 1.158 rmind node.sysctl_data = cnbuf;
856 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
857 1.74 atatat
858 1.158 rmind /* Return if error, or if we are only retrieving the core name. */
859 1.158 rmind if (error || newp == NULL) {
860 1.100 yamt goto done;
861 1.157 rmind }
862 1.103 elad
863 1.74 atatat /*
864 1.158 rmind * Validate new core name. It must be either "core", "/core",
865 1.158 rmind * or end in ".core".
866 1.74 atatat */
867 1.158 rmind len = strlen(cnbuf);
868 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
869 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
870 1.100 yamt error = EINVAL;
871 1.100 yamt goto done;
872 1.100 yamt }
873 1.74 atatat
874 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */
875 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP);
876 1.158 rmind if (cname == NULL) {
877 1.100 yamt error = ENOMEM;
878 1.100 yamt goto done;
879 1.100 yamt }
880 1.158 rmind memcpy(cname, cnbuf, len);
881 1.160 rmind lim_setcorename(p, cname, len);
882 1.100 yamt done:
883 1.158 rmind rw_exit(&p->p_reflock);
884 1.158 rmind PNBUF_PUT(cnbuf);
885 1.100 yamt return error;
886 1.74 atatat }
887 1.74 atatat
888 1.74 atatat /*
889 1.74 atatat * sysctl helper routine for checking/setting a process's stop flags,
890 1.74 atatat * one for fork and one for exec.
891 1.74 atatat */
892 1.74 atatat static int
893 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
894 1.74 atatat {
895 1.102 ad struct proc *ptmp;
896 1.74 atatat int i, f, error = 0;
897 1.74 atatat struct sysctlnode node;
898 1.74 atatat
899 1.74 atatat if (namelen != 0)
900 1.74 atatat return (EINVAL);
901 1.74 atatat
902 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
903 1.157 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &ptmp);
904 1.74 atatat if (error)
905 1.157 rmind return error;
906 1.74 atatat
907 1.131 elad /* XXX-elad */
908 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
909 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
910 1.111 elad if (error)
911 1.157 rmind goto out;
912 1.111 elad
913 1.74 atatat switch (rnode->sysctl_num) {
914 1.74 atatat case PROC_PID_STOPFORK:
915 1.113 ad f = PS_STOPFORK;
916 1.74 atatat break;
917 1.74 atatat case PROC_PID_STOPEXEC:
918 1.113 ad f = PS_STOPEXEC;
919 1.74 atatat break;
920 1.74 atatat case PROC_PID_STOPEXIT:
921 1.113 ad f = PS_STOPEXIT;
922 1.74 atatat break;
923 1.74 atatat default:
924 1.157 rmind error = EINVAL;
925 1.157 rmind goto out;
926 1.74 atatat }
927 1.74 atatat
928 1.74 atatat i = (ptmp->p_flag & f) ? 1 : 0;
929 1.74 atatat node = *rnode;
930 1.74 atatat node.sysctl_data = &i;
931 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
932 1.74 atatat if (error || newp == NULL)
933 1.157 rmind goto out;
934 1.74 atatat
935 1.139 ad mutex_enter(ptmp->p_lock);
936 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
937 1.111 elad ptmp, KAUTH_ARG(f), NULL, NULL);
938 1.143 rmind if (!error) {
939 1.143 rmind if (i) {
940 1.143 rmind ptmp->p_sflag |= f;
941 1.143 rmind } else {
942 1.143 rmind ptmp->p_sflag &= ~f;
943 1.143 rmind }
944 1.143 rmind }
945 1.139 ad mutex_exit(ptmp->p_lock);
946 1.157 rmind out:
947 1.157 rmind rw_exit(&ptmp->p_reflock);
948 1.143 rmind return error;
949 1.74 atatat }
950 1.74 atatat
951 1.74 atatat /*
952 1.74 atatat * sysctl helper routine for a process's rlimits as exposed by sysctl.
953 1.74 atatat */
954 1.74 atatat static int
955 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
956 1.74 atatat {
957 1.102 ad struct proc *ptmp;
958 1.74 atatat u_int limitno;
959 1.74 atatat int which, error = 0;
960 1.74 atatat struct rlimit alim;
961 1.74 atatat struct sysctlnode node;
962 1.74 atatat
963 1.74 atatat if (namelen != 0)
964 1.74 atatat return (EINVAL);
965 1.74 atatat
966 1.74 atatat which = name[-1];
967 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
968 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
969 1.74 atatat return (EINVAL);
970 1.74 atatat
971 1.74 atatat limitno = name[-2] - 1;
972 1.74 atatat if (limitno >= RLIM_NLIMITS)
973 1.74 atatat return (EINVAL);
974 1.74 atatat
975 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
976 1.74 atatat return (EINVAL);
977 1.74 atatat
978 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
979 1.157 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &ptmp);
980 1.74 atatat if (error)
981 1.157 rmind return error;
982 1.74 atatat
983 1.131 elad /* XXX-elad */
984 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
985 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
986 1.111 elad if (error)
987 1.157 rmind goto out;
988 1.111 elad
989 1.131 elad /* Check if we can view limits. */
990 1.131 elad if (newp == NULL) {
991 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
992 1.131 elad ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
993 1.131 elad KAUTH_ARG(which));
994 1.131 elad if (error)
995 1.157 rmind goto out;
996 1.131 elad }
997 1.131 elad
998 1.74 atatat node = *rnode;
999 1.74 atatat memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
1000 1.74 atatat if (which == PROC_PID_LIMIT_TYPE_HARD)
1001 1.74 atatat node.sysctl_data = &alim.rlim_max;
1002 1.74 atatat else
1003 1.74 atatat node.sysctl_data = &alim.rlim_cur;
1004 1.74 atatat
1005 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
1006 1.157 rmind if (error || newp == NULL) {
1007 1.157 rmind goto out;
1008 1.157 rmind }
1009 1.157 rmind error = dosetrlimit(l, ptmp, limitno, &alim);
1010 1.157 rmind out:
1011 1.157 rmind rw_exit(&ptmp->p_reflock);
1012 1.157 rmind return error;
1013 1.74 atatat }
1014 1.74 atatat
1015 1.156 pooka static struct sysctllog *proc_sysctllog;
1016 1.156 pooka
1017 1.74 atatat /*
1018 1.74 atatat * and finally, the actually glue that sticks it to the tree
1019 1.74 atatat */
1020 1.156 pooka static void
1021 1.156 pooka sysctl_proc_setup()
1022 1.74 atatat {
1023 1.74 atatat
1024 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1025 1.76 atatat CTLFLAG_PERMANENT,
1026 1.74 atatat CTLTYPE_NODE, "proc", NULL,
1027 1.74 atatat NULL, 0, NULL, 0,
1028 1.74 atatat CTL_PROC, CTL_EOL);
1029 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1030 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1031 1.78 atatat CTLTYPE_NODE, "curproc",
1032 1.78 atatat SYSCTL_DESCR("Per-process settings"),
1033 1.74 atatat NULL, 0, NULL, 0,
1034 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
1035 1.74 atatat
1036 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1037 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1038 1.78 atatat CTLTYPE_STRING, "corename",
1039 1.78 atatat SYSCTL_DESCR("Core file name"),
1040 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1041 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1042 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1043 1.76 atatat CTLFLAG_PERMANENT,
1044 1.78 atatat CTLTYPE_NODE, "rlimit",
1045 1.78 atatat SYSCTL_DESCR("Process limits"),
1046 1.74 atatat NULL, 0, NULL, 0,
1047 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1048 1.74 atatat
1049 1.74 atatat #define create_proc_plimit(s, n) do { \
1050 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1051 1.76 atatat CTLFLAG_PERMANENT, \
1052 1.78 atatat CTLTYPE_NODE, s, \
1053 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
1054 1.74 atatat NULL, 0, NULL, 0, \
1055 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1056 1.74 atatat CTL_EOL); \
1057 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1058 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1059 1.78 atatat CTLTYPE_QUAD, "soft", \
1060 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
1061 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1062 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1063 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1064 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1065 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1066 1.78 atatat CTLTYPE_QUAD, "hard", \
1067 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
1068 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1069 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1070 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1071 1.74 atatat } while (0/*CONSTCOND*/)
1072 1.74 atatat
1073 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1074 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1075 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1076 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1077 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1078 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1079 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1080 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1081 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1082 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1083 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1084 1.74 atatat
1085 1.74 atatat #undef create_proc_plimit
1086 1.74 atatat
1087 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1088 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1089 1.78 atatat CTLTYPE_INT, "stopfork",
1090 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1091 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1092 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1093 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1094 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1095 1.78 atatat CTLTYPE_INT, "stopexec",
1096 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1097 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1098 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1099 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1100 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1101 1.78 atatat CTLTYPE_INT, "stopexit",
1102 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1103 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1104 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1105 1.17 cgd }
1106