Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.163
      1  1.163     rmind /*	$NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $	*/
      2   1.20       cgd 
      3   1.17       cgd /*-
      4   1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
      5   1.19       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.17       cgd  * (c) UNIX System Laboratories, Inc.
      7   1.17       cgd  * All or some portions of this file are derived from material licensed
      8   1.17       cgd  * to the University of California by American Telephone and Telegraph
      9   1.17       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10   1.17       cgd  * the permission of UNIX System Laboratories, Inc.
     11   1.17       cgd  *
     12   1.17       cgd  * Redistribution and use in source and binary forms, with or without
     13   1.17       cgd  * modification, are permitted provided that the following conditions
     14   1.17       cgd  * are met:
     15   1.17       cgd  * 1. Redistributions of source code must retain the above copyright
     16   1.17       cgd  *    notice, this list of conditions and the following disclaimer.
     17   1.17       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.17       cgd  *    notice, this list of conditions and the following disclaimer in the
     19   1.17       cgd  *    documentation and/or other materials provided with the distribution.
     20   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     21   1.17       cgd  *    may be used to endorse or promote products derived from this software
     22   1.17       cgd  *    without specific prior written permission.
     23   1.17       cgd  *
     24   1.17       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25   1.17       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26   1.17       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27   1.17       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28   1.17       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29   1.17       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30   1.17       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.17       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.17       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.17       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.17       cgd  * SUCH DAMAGE.
     35   1.17       cgd  *
     36   1.45      fvdl  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37   1.17       cgd  */
     38   1.61     lukem 
     39   1.61     lukem #include <sys/cdefs.h>
     40  1.163     rmind __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $");
     41   1.44       mrg 
     42   1.17       cgd #include <sys/param.h>
     43   1.22       cgd #include <sys/systm.h>
     44   1.17       cgd #include <sys/kernel.h>
     45   1.19       cgd #include <sys/file.h>
     46   1.17       cgd #include <sys/resourcevar.h>
     47  1.132      yamt #include <sys/kmem.h>
     48  1.100      yamt #include <sys/namei.h>
     49   1.49   thorpej #include <sys/pool.h>
     50   1.17       cgd #include <sys/proc.h>
     51   1.74    atatat #include <sys/sysctl.h>
     52  1.129      yamt #include <sys/timevar.h>
     53  1.101      elad #include <sys/kauth.h>
     54  1.125        ad #include <sys/atomic.h>
     55   1.22       cgd #include <sys/mount.h>
     56   1.22       cgd #include <sys/syscallargs.h>
     57  1.136        ad #include <sys/atomic.h>
     58   1.17       cgd 
     59   1.43       mrg #include <uvm/uvm_extern.h>
     60   1.43       mrg 
     61   1.17       cgd /*
     62   1.60       eeh  * Maximum process data and stack limits.
     63   1.60       eeh  * They are variables so they are patchable.
     64   1.60       eeh  */
     65   1.60       eeh rlim_t maxdmap = MAXDSIZ;
     66   1.60       eeh rlim_t maxsmap = MAXSSIZ;
     67   1.60       eeh 
     68  1.134     rmind static pool_cache_t	plimit_cache;
     69  1.134     rmind static pool_cache_t	pstats_cache;
     70  1.130        ad 
     71  1.154      elad static kauth_listener_t	resource_listener;
     72  1.153      elad 
     73  1.156     pooka static void sysctl_proc_setup(void);
     74  1.156     pooka 
     75  1.153      elad static int
     76  1.154      elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     77  1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
     78  1.153      elad {
     79  1.153      elad 	struct proc *p;
     80  1.153      elad 	int result;
     81  1.153      elad 
     82  1.153      elad 	result = KAUTH_RESULT_DEFER;
     83  1.153      elad 	p = arg0;
     84  1.153      elad 
     85  1.154      elad 	switch (action) {
     86  1.154      elad 	case KAUTH_PROCESS_NICE:
     87  1.154      elad 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     88  1.154      elad                     kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     89  1.154      elad                         break;
     90  1.154      elad                 }
     91  1.153      elad 
     92  1.154      elad                 if ((u_long)arg1 >= p->p_nice)
     93  1.154      elad                         result = KAUTH_RESULT_ALLOW;
     94  1.153      elad 
     95  1.154      elad 		break;
     96  1.154      elad 
     97  1.154      elad 	case KAUTH_PROCESS_RLIMIT: {
     98  1.154      elad 		enum kauth_process_req req;
     99  1.153      elad 
    100  1.154      elad 		req = (enum kauth_process_req)(unsigned long)arg1;
    101  1.153      elad 
    102  1.154      elad 		switch (req) {
    103  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    104  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    105  1.154      elad 			break;
    106  1.154      elad 
    107  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    108  1.154      elad 			struct rlimit *new_rlimit;
    109  1.154      elad 			u_long which;
    110  1.154      elad 
    111  1.154      elad 			if ((p != curlwp->l_proc) &&
    112  1.154      elad 			    (proc_uidmatch(cred, p->p_cred) != 0))
    113  1.154      elad 				break;
    114  1.154      elad 
    115  1.154      elad 			new_rlimit = arg2;
    116  1.154      elad 			which = (u_long)arg3;
    117  1.154      elad 
    118  1.154      elad 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    119  1.154      elad 				result = KAUTH_RESULT_ALLOW;
    120  1.154      elad 
    121  1.154      elad 			break;
    122  1.154      elad 			}
    123  1.154      elad 
    124  1.154      elad 		default:
    125  1.154      elad 			break;
    126  1.154      elad 		}
    127  1.154      elad 
    128  1.154      elad 		break;
    129  1.154      elad 	}
    130  1.154      elad 
    131  1.154      elad 	default:
    132  1.154      elad 		break;
    133  1.153      elad 	}
    134  1.153      elad 
    135  1.153      elad 	return result;
    136  1.153      elad }
    137  1.153      elad 
    138  1.130        ad void
    139  1.130        ad resource_init(void)
    140  1.130        ad {
    141  1.130        ad 
    142  1.130        ad 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    143  1.130        ad 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    144  1.130        ad 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    145  1.130        ad 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    146  1.153      elad 
    147  1.154      elad 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    148  1.154      elad 	    resource_listener_cb, NULL);
    149  1.156     pooka 
    150  1.156     pooka 	sysctl_proc_setup();
    151  1.130        ad }
    152  1.130        ad 
    153   1.60       eeh /*
    154   1.17       cgd  * Resource controls and accounting.
    155   1.17       cgd  */
    156   1.17       cgd 
    157   1.25       cgd int
    158  1.134     rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    159  1.134     rmind     register_t *retval)
    160   1.30   thorpej {
    161  1.128       dsl 	/* {
    162   1.22       cgd 		syscallarg(int) which;
    163   1.81    kleink 		syscallarg(id_t) who;
    164  1.128       dsl 	} */
    165   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    166   1.54  augustss 	int low = NZERO + PRIO_MAX + 1;
    167  1.113        ad 	int who = SCARG(uap, who);
    168   1.17       cgd 
    169  1.138        ad 	mutex_enter(proc_lock);
    170   1.22       cgd 	switch (SCARG(uap, which)) {
    171   1.17       cgd 	case PRIO_PROCESS:
    172  1.157     rmind 		p = who ? proc_find(who) : curp;;
    173  1.113        ad 		if (p != NULL)
    174  1.113        ad 			low = p->p_nice;
    175   1.17       cgd 		break;
    176   1.17       cgd 
    177   1.17       cgd 	case PRIO_PGRP: {
    178   1.54  augustss 		struct pgrp *pg;
    179   1.17       cgd 
    180  1.113        ad 		if (who == 0)
    181   1.17       cgd 			pg = curp->p_pgrp;
    182  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    183   1.17       cgd 			break;
    184   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    185   1.17       cgd 			if (p->p_nice < low)
    186   1.17       cgd 				low = p->p_nice;
    187   1.17       cgd 		}
    188   1.17       cgd 		break;
    189   1.17       cgd 	}
    190   1.17       cgd 
    191   1.17       cgd 	case PRIO_USER:
    192  1.113        ad 		if (who == 0)
    193  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    194   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    195  1.139        ad 			mutex_enter(p->p_lock);
    196  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    197  1.113        ad 			    (uid_t)who && p->p_nice < low)
    198   1.17       cgd 				low = p->p_nice;
    199  1.139        ad 			mutex_exit(p->p_lock);
    200   1.64      matt 		}
    201   1.17       cgd 		break;
    202   1.17       cgd 
    203   1.17       cgd 	default:
    204  1.138        ad 		mutex_exit(proc_lock);
    205   1.17       cgd 		return (EINVAL);
    206   1.17       cgd 	}
    207  1.138        ad 	mutex_exit(proc_lock);
    208  1.113        ad 
    209   1.37        ws 	if (low == NZERO + PRIO_MAX + 1)
    210   1.17       cgd 		return (ESRCH);
    211   1.37        ws 	*retval = low - NZERO;
    212   1.17       cgd 	return (0);
    213   1.17       cgd }
    214   1.17       cgd 
    215   1.17       cgd /* ARGSUSED */
    216   1.25       cgd int
    217  1.134     rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    218  1.134     rmind     register_t *retval)
    219   1.30   thorpej {
    220  1.128       dsl 	/* {
    221   1.22       cgd 		syscallarg(int) which;
    222   1.81    kleink 		syscallarg(id_t) who;
    223   1.22       cgd 		syscallarg(int) prio;
    224  1.128       dsl 	} */
    225   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    226   1.17       cgd 	int found = 0, error = 0;
    227  1.113        ad 	int who = SCARG(uap, who);
    228   1.17       cgd 
    229  1.138        ad 	mutex_enter(proc_lock);
    230   1.22       cgd 	switch (SCARG(uap, which)) {
    231   1.17       cgd 	case PRIO_PROCESS:
    232  1.157     rmind 		p = who ? proc_find(who) : curp;
    233  1.157     rmind 		if (p != NULL) {
    234  1.139        ad 			mutex_enter(p->p_lock);
    235  1.162  christos 			found++;
    236  1.113        ad 			error = donice(l, p, SCARG(uap, prio));
    237  1.139        ad 			mutex_exit(p->p_lock);
    238  1.113        ad 		}
    239   1.17       cgd 		break;
    240   1.17       cgd 
    241   1.17       cgd 	case PRIO_PGRP: {
    242   1.54  augustss 		struct pgrp *pg;
    243   1.87     perry 
    244  1.113        ad 		if (who == 0)
    245   1.17       cgd 			pg = curp->p_pgrp;
    246  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    247   1.17       cgd 			break;
    248   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    249  1.139        ad 			mutex_enter(p->p_lock);
    250  1.162  christos 			found++;
    251  1.102        ad 			error = donice(l, p, SCARG(uap, prio));
    252  1.139        ad 			mutex_exit(p->p_lock);
    253  1.162  christos 			if (error)
    254  1.162  christos 				break;
    255   1.17       cgd 		}
    256   1.17       cgd 		break;
    257   1.17       cgd 	}
    258   1.17       cgd 
    259   1.17       cgd 	case PRIO_USER:
    260  1.113        ad 		if (who == 0)
    261  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    262   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    263  1.139        ad 			mutex_enter(p->p_lock);
    264  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    265  1.102        ad 			    (uid_t)SCARG(uap, who)) {
    266  1.162  christos 				found++;
    267  1.102        ad 				error = donice(l, p, SCARG(uap, prio));
    268   1.17       cgd 			}
    269  1.139        ad 			mutex_exit(p->p_lock);
    270  1.162  christos 			if (error)
    271  1.162  christos 				break;
    272   1.64      matt 		}
    273   1.17       cgd 		break;
    274   1.17       cgd 
    275   1.17       cgd 	default:
    276  1.144     njoly 		mutex_exit(proc_lock);
    277  1.144     njoly 		return EINVAL;
    278   1.17       cgd 	}
    279  1.138        ad 	mutex_exit(proc_lock);
    280   1.17       cgd 	if (found == 0)
    281  1.162  christos 		return ESRCH;
    282  1.162  christos 	return error;
    283   1.17       cgd }
    284   1.17       cgd 
    285  1.113        ad /*
    286  1.113        ad  * Renice a process.
    287  1.113        ad  *
    288  1.113        ad  * Call with the target process' credentials locked.
    289  1.113        ad  */
    290   1.25       cgd int
    291  1.102        ad donice(struct lwp *l, struct proc *chgp, int n)
    292   1.17       cgd {
    293  1.102        ad 	kauth_cred_t cred = l->l_cred;
    294  1.113        ad 
    295  1.139        ad 	KASSERT(mutex_owned(chgp->p_lock));
    296   1.17       cgd 
    297  1.152      elad 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    298  1.152      elad 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    299  1.152      elad 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    300  1.152      elad 		return (EPERM);
    301  1.152      elad 
    302   1.17       cgd 	if (n > PRIO_MAX)
    303   1.17       cgd 		n = PRIO_MAX;
    304   1.17       cgd 	if (n < PRIO_MIN)
    305   1.17       cgd 		n = PRIO_MIN;
    306   1.37        ws 	n += NZERO;
    307  1.112      elad 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    308  1.112      elad 	    KAUTH_ARG(n), NULL, NULL))
    309   1.17       cgd 		return (EACCES);
    310  1.117      yamt 	sched_nice(chgp, n);
    311   1.17       cgd 	return (0);
    312   1.17       cgd }
    313   1.17       cgd 
    314   1.17       cgd /* ARGSUSED */
    315   1.25       cgd int
    316  1.134     rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    317  1.134     rmind     register_t *retval)
    318   1.30   thorpej {
    319  1.128       dsl 	/* {
    320   1.42   mycroft 		syscallarg(int) which;
    321   1.39       cgd 		syscallarg(const struct rlimit *) rlp;
    322  1.128       dsl 	} */
    323   1.42   mycroft 	int which = SCARG(uap, which);
    324   1.19       cgd 	struct rlimit alim;
    325   1.17       cgd 	int error;
    326   1.17       cgd 
    327   1.46     perry 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    328   1.33  christos 	if (error)
    329   1.17       cgd 		return (error);
    330  1.102        ad 	return (dosetrlimit(l, l->l_proc, which, &alim));
    331   1.17       cgd }
    332   1.17       cgd 
    333   1.17       cgd int
    334  1.102        ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    335   1.17       cgd {
    336   1.54  augustss 	struct rlimit *alimp;
    337   1.17       cgd 	int error;
    338   1.17       cgd 
    339   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    340   1.17       cgd 		return (EINVAL);
    341   1.38  matthias 
    342   1.62  jdolecek 	if (limp->rlim_cur > limp->rlim_max) {
    343   1.62  jdolecek 		/*
    344   1.62  jdolecek 		 * This is programming error. According to SUSv2, we should
    345   1.62  jdolecek 		 * return error in this case.
    346   1.62  jdolecek 		 */
    347   1.62  jdolecek 		return (EINVAL);
    348   1.62  jdolecek 	}
    349  1.122       dsl 
    350  1.122       dsl 	alimp = &p->p_rlimit[which];
    351  1.122       dsl 	/* if we don't change the value, no need to limcopy() */
    352  1.122       dsl 	if (limp->rlim_cur == alimp->rlim_cur &&
    353  1.122       dsl 	    limp->rlim_max == alimp->rlim_max)
    354  1.122       dsl 		return 0;
    355  1.122       dsl 
    356  1.112      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    357  1.131      elad 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    358  1.111      elad 	if (error)
    359  1.122       dsl 		return (error);
    360   1.62  jdolecek 
    361  1.161     rmind 	lim_privatise(p);
    362  1.122       dsl 	/* p->p_limit is now unchangeable */
    363  1.122       dsl 	alimp = &p->p_rlimit[which];
    364   1.17       cgd 
    365   1.17       cgd 	switch (which) {
    366   1.17       cgd 
    367   1.17       cgd 	case RLIMIT_DATA:
    368   1.19       cgd 		if (limp->rlim_cur > maxdmap)
    369   1.19       cgd 			limp->rlim_cur = maxdmap;
    370   1.19       cgd 		if (limp->rlim_max > maxdmap)
    371   1.19       cgd 			limp->rlim_max = maxdmap;
    372   1.17       cgd 		break;
    373   1.17       cgd 
    374   1.17       cgd 	case RLIMIT_STACK:
    375   1.19       cgd 		if (limp->rlim_cur > maxsmap)
    376   1.19       cgd 			limp->rlim_cur = maxsmap;
    377   1.19       cgd 		if (limp->rlim_max > maxsmap)
    378   1.19       cgd 			limp->rlim_max = maxsmap;
    379   1.62  jdolecek 
    380   1.62  jdolecek 		/*
    381   1.62  jdolecek 		 * Return EINVAL if the new stack size limit is lower than
    382   1.62  jdolecek 		 * current usage. Otherwise, the process would get SIGSEGV the
    383   1.62  jdolecek 		 * moment it would try to access anything on it's current stack.
    384   1.62  jdolecek 		 * This conforms to SUSv2.
    385   1.62  jdolecek 		 */
    386   1.62  jdolecek 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    387  1.113        ad 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    388   1.62  jdolecek 			return (EINVAL);
    389  1.113        ad 		}
    390   1.40     enami 
    391   1.17       cgd 		/*
    392   1.40     enami 		 * Stack is allocated to the max at exec time with
    393   1.40     enami 		 * only "rlim_cur" bytes accessible (In other words,
    394   1.40     enami 		 * allocates stack dividing two contiguous regions at
    395   1.40     enami 		 * "rlim_cur" bytes boundary).
    396   1.40     enami 		 *
    397   1.40     enami 		 * Since allocation is done in terms of page, roundup
    398   1.40     enami 		 * "rlim_cur" (otherwise, contiguous regions
    399   1.40     enami 		 * overlap).  If stack limit is going up make more
    400   1.40     enami 		 * accessible, if going down make inaccessible.
    401   1.17       cgd 		 */
    402   1.40     enami 		limp->rlim_cur = round_page(limp->rlim_cur);
    403   1.17       cgd 		if (limp->rlim_cur != alimp->rlim_cur) {
    404   1.48       eeh 			vaddr_t addr;
    405   1.48       eeh 			vsize_t size;
    406   1.17       cgd 			vm_prot_t prot;
    407   1.17       cgd 
    408   1.17       cgd 			if (limp->rlim_cur > alimp->rlim_cur) {
    409   1.73       chs 				prot = VM_PROT_READ | VM_PROT_WRITE;
    410   1.17       cgd 				size = limp->rlim_cur - alimp->rlim_cur;
    411   1.91      fvdl 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    412   1.91      fvdl 				    limp->rlim_cur;
    413   1.17       cgd 			} else {
    414   1.17       cgd 				prot = VM_PROT_NONE;
    415   1.17       cgd 				size = alimp->rlim_cur - limp->rlim_cur;
    416   1.91      fvdl 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    417   1.91      fvdl 				     alimp->rlim_cur;
    418   1.17       cgd 			}
    419   1.43       mrg 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    420  1.114   thorpej 			    addr, addr+size, prot, false);
    421   1.17       cgd 		}
    422   1.17       cgd 		break;
    423   1.19       cgd 
    424   1.19       cgd 	case RLIMIT_NOFILE:
    425   1.19       cgd 		if (limp->rlim_cur > maxfiles)
    426   1.19       cgd 			limp->rlim_cur = maxfiles;
    427   1.19       cgd 		if (limp->rlim_max > maxfiles)
    428   1.19       cgd 			limp->rlim_max = maxfiles;
    429   1.19       cgd 		break;
    430   1.19       cgd 
    431   1.19       cgd 	case RLIMIT_NPROC:
    432   1.19       cgd 		if (limp->rlim_cur > maxproc)
    433   1.19       cgd 			limp->rlim_cur = maxproc;
    434   1.19       cgd 		if (limp->rlim_max > maxproc)
    435   1.19       cgd 			limp->rlim_max = maxproc;
    436   1.19       cgd 		break;
    437   1.17       cgd 	}
    438  1.122       dsl 
    439  1.122       dsl 	mutex_enter(&p->p_limit->pl_lock);
    440   1.17       cgd 	*alimp = *limp;
    441  1.122       dsl 	mutex_exit(&p->p_limit->pl_lock);
    442   1.17       cgd 	return (0);
    443   1.17       cgd }
    444   1.17       cgd 
    445   1.17       cgd /* ARGSUSED */
    446   1.25       cgd int
    447  1.134     rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    448  1.134     rmind     register_t *retval)
    449   1.30   thorpej {
    450  1.128       dsl 	/* {
    451   1.42   mycroft 		syscallarg(int) which;
    452   1.22       cgd 		syscallarg(struct rlimit *) rlp;
    453  1.128       dsl 	} */
    454   1.68   thorpej 	struct proc *p = l->l_proc;
    455   1.42   mycroft 	int which = SCARG(uap, which);
    456  1.119        ad 	struct rlimit rl;
    457   1.17       cgd 
    458   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    459   1.17       cgd 		return (EINVAL);
    460  1.119        ad 
    461  1.139        ad 	mutex_enter(p->p_lock);
    462  1.119        ad 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    463  1.139        ad 	mutex_exit(p->p_lock);
    464  1.119        ad 
    465  1.119        ad 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    466   1.17       cgd }
    467   1.17       cgd 
    468   1.17       cgd /*
    469   1.17       cgd  * Transform the running time and tick information in proc p into user,
    470   1.17       cgd  * system, and interrupt time usage.
    471  1.113        ad  *
    472  1.139        ad  * Should be called with p->p_lock held unless called from exit1().
    473   1.17       cgd  */
    474   1.25       cgd void
    475   1.98   thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    476  1.113        ad     struct timeval *ip, struct timeval *rp)
    477   1.17       cgd {
    478  1.129      yamt 	uint64_t u, st, ut, it, tot;
    479   1.68   thorpej 	struct lwp *l;
    480  1.129      yamt 	struct bintime tm;
    481  1.129      yamt 	struct timeval tv;
    482   1.17       cgd 
    483  1.113        ad 	mutex_spin_enter(&p->p_stmutex);
    484   1.17       cgd 	st = p->p_sticks;
    485   1.17       cgd 	ut = p->p_uticks;
    486   1.17       cgd 	it = p->p_iticks;
    487  1.113        ad 	mutex_spin_exit(&p->p_stmutex);
    488   1.17       cgd 
    489  1.129      yamt 	tm = p->p_rtime;
    490  1.113        ad 
    491   1.70       dsl 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    492  1.113        ad 		lwp_lock(l);
    493  1.129      yamt 		bintime_add(&tm, &l->l_rtime);
    494  1.142        ad 		if ((l->l_pflag & LP_RUNNING) != 0) {
    495  1.129      yamt 			struct bintime diff;
    496   1.68   thorpej 			/*
    497   1.68   thorpej 			 * Adjust for the current time slice.  This is
    498   1.68   thorpej 			 * actually fairly important since the error
    499   1.68   thorpej 			 * here is on the order of a time quantum,
    500   1.68   thorpej 			 * which is much greater than the sampling
    501   1.87     perry 			 * error.
    502   1.68   thorpej 			 */
    503  1.129      yamt 			binuptime(&diff);
    504  1.129      yamt 			bintime_sub(&diff, &l->l_stime);
    505  1.129      yamt 			bintime_add(&tm, &diff);
    506   1.68   thorpej 		}
    507  1.113        ad 		lwp_unlock(l);
    508   1.17       cgd 	}
    509   1.69       dsl 
    510   1.69       dsl 	tot = st + ut + it;
    511  1.129      yamt 	bintime2timeval(&tm, &tv);
    512  1.129      yamt 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    513   1.70       dsl 
    514   1.69       dsl 	if (tot == 0) {
    515   1.69       dsl 		/* No ticks, so can't use to share time out, split 50-50 */
    516   1.70       dsl 		st = ut = u / 2;
    517   1.70       dsl 	} else {
    518   1.70       dsl 		st = (u * st) / tot;
    519   1.70       dsl 		ut = (u * ut) / tot;
    520   1.69       dsl 	}
    521  1.113        ad 	if (sp != NULL) {
    522  1.113        ad 		sp->tv_sec = st / 1000000;
    523  1.113        ad 		sp->tv_usec = st % 1000000;
    524  1.113        ad 	}
    525  1.113        ad 	if (up != NULL) {
    526  1.113        ad 		up->tv_sec = ut / 1000000;
    527  1.113        ad 		up->tv_usec = ut % 1000000;
    528  1.113        ad 	}
    529   1.17       cgd 	if (ip != NULL) {
    530   1.70       dsl 		if (it != 0)
    531   1.70       dsl 			it = (u * it) / tot;
    532   1.17       cgd 		ip->tv_sec = it / 1000000;
    533   1.17       cgd 		ip->tv_usec = it % 1000000;
    534   1.17       cgd 	}
    535  1.113        ad 	if (rp != NULL) {
    536  1.129      yamt 		*rp = tv;
    537  1.113        ad 	}
    538   1.17       cgd }
    539   1.17       cgd 
    540   1.17       cgd /* ARGSUSED */
    541   1.25       cgd int
    542  1.148  christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    543  1.134     rmind     register_t *retval)
    544   1.30   thorpej {
    545  1.128       dsl 	/* {
    546   1.22       cgd 		syscallarg(int) who;
    547   1.22       cgd 		syscallarg(struct rusage *) rusage;
    548  1.128       dsl 	} */
    549  1.119        ad 	struct rusage ru;
    550   1.68   thorpej 	struct proc *p = l->l_proc;
    551   1.17       cgd 
    552   1.22       cgd 	switch (SCARG(uap, who)) {
    553   1.19       cgd 	case RUSAGE_SELF:
    554  1.139        ad 		mutex_enter(p->p_lock);
    555  1.119        ad 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    556  1.119        ad 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    557  1.137        ad 		rulwps(p, &ru);
    558  1.139        ad 		mutex_exit(p->p_lock);
    559   1.17       cgd 		break;
    560   1.17       cgd 
    561   1.17       cgd 	case RUSAGE_CHILDREN:
    562  1.139        ad 		mutex_enter(p->p_lock);
    563  1.119        ad 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    564  1.139        ad 		mutex_exit(p->p_lock);
    565   1.17       cgd 		break;
    566   1.17       cgd 
    567   1.17       cgd 	default:
    568  1.119        ad 		return EINVAL;
    569   1.17       cgd 	}
    570  1.119        ad 
    571  1.119        ad 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    572   1.17       cgd }
    573   1.17       cgd 
    574   1.25       cgd void
    575   1.98   thorpej ruadd(struct rusage *ru, struct rusage *ru2)
    576   1.17       cgd {
    577   1.54  augustss 	long *ip, *ip2;
    578   1.54  augustss 	int i;
    579   1.17       cgd 
    580   1.27   mycroft 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    581   1.27   mycroft 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    582   1.17       cgd 	if (ru->ru_maxrss < ru2->ru_maxrss)
    583   1.17       cgd 		ru->ru_maxrss = ru2->ru_maxrss;
    584   1.17       cgd 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    585   1.17       cgd 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    586   1.17       cgd 		*ip++ += *ip2++;
    587   1.17       cgd }
    588   1.17       cgd 
    589  1.137        ad void
    590  1.137        ad rulwps(proc_t *p, struct rusage *ru)
    591  1.137        ad {
    592  1.137        ad 	lwp_t *l;
    593  1.137        ad 
    594  1.139        ad 	KASSERT(mutex_owned(p->p_lock));
    595  1.137        ad 
    596  1.137        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    597  1.137        ad 		ruadd(ru, &l->l_ru);
    598  1.137        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    599  1.137        ad 		ru->ru_nivcsw += l->l_nivcsw;
    600  1.137        ad 	}
    601  1.137        ad }
    602  1.137        ad 
    603   1.17       cgd /*
    604  1.161     rmind  * lim_copy: make a copy of the plimit structure.
    605  1.113        ad  *
    606  1.161     rmind  * We use copy-on-write after fork, and copy when a limit is changed.
    607   1.17       cgd  */
    608   1.17       cgd struct plimit *
    609  1.122       dsl lim_copy(struct plimit *lim)
    610   1.17       cgd {
    611  1.122       dsl 	struct plimit *newlim;
    612  1.113        ad 	char *corename;
    613  1.122       dsl 	size_t alen, len;
    614   1.17       cgd 
    615  1.130        ad 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    616  1.121       dsl 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    617  1.161     rmind 	newlim->pl_writeable = false;
    618  1.121       dsl 	newlim->pl_refcnt = 1;
    619  1.122       dsl 	newlim->pl_sv_limit = NULL;
    620  1.122       dsl 
    621  1.122       dsl 	mutex_enter(&lim->pl_lock);
    622  1.122       dsl 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    623  1.122       dsl 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    624   1.83        pk 
    625  1.161     rmind 	/*
    626  1.161     rmind 	 * Note: the common case is a use of default core name.
    627  1.161     rmind 	 */
    628  1.122       dsl 	alen = 0;
    629  1.122       dsl 	corename = NULL;
    630  1.113        ad 	for (;;) {
    631  1.122       dsl 		if (lim->pl_corename == defcorename) {
    632  1.122       dsl 			newlim->pl_corename = defcorename;
    633  1.161     rmind 			newlim->pl_cnlen = 0;
    634  1.122       dsl 			break;
    635  1.122       dsl 		}
    636  1.161     rmind 		len = lim->pl_cnlen;
    637  1.161     rmind 		if (len == alen) {
    638  1.122       dsl 			newlim->pl_corename = corename;
    639  1.161     rmind 			newlim->pl_cnlen = len;
    640  1.122       dsl 			memcpy(corename, lim->pl_corename, len);
    641  1.122       dsl 			corename = NULL;
    642  1.122       dsl 			break;
    643  1.122       dsl 		}
    644  1.122       dsl 		mutex_exit(&lim->pl_lock);
    645  1.161     rmind 		if (corename) {
    646  1.161     rmind 			kmem_free(corename, alen);
    647  1.161     rmind 		}
    648  1.122       dsl 		alen = len;
    649  1.161     rmind 		corename = kmem_alloc(alen, KM_SLEEP);
    650  1.121       dsl 		mutex_enter(&lim->pl_lock);
    651  1.122       dsl 	}
    652  1.122       dsl 	mutex_exit(&lim->pl_lock);
    653  1.161     rmind 
    654  1.161     rmind 	if (corename) {
    655  1.161     rmind 		kmem_free(corename, alen);
    656  1.161     rmind 	}
    657  1.122       dsl 	return newlim;
    658  1.122       dsl }
    659  1.122       dsl 
    660  1.122       dsl void
    661  1.122       dsl lim_addref(struct plimit *lim)
    662  1.122       dsl {
    663  1.125        ad 	atomic_inc_uint(&lim->pl_refcnt);
    664  1.122       dsl }
    665  1.113        ad 
    666  1.122       dsl /*
    667  1.161     rmind  * lim_privatise: give a process its own private plimit structure.
    668  1.122       dsl  */
    669  1.122       dsl void
    670  1.161     rmind lim_privatise(proc_t *p)
    671  1.122       dsl {
    672  1.161     rmind 	struct plimit *lim = p->p_limit, *newlim;
    673  1.122       dsl 
    674  1.161     rmind 	if (lim->pl_writeable) {
    675  1.122       dsl 		return;
    676  1.122       dsl 	}
    677  1.122       dsl 
    678  1.122       dsl 	newlim = lim_copy(lim);
    679  1.113        ad 
    680  1.139        ad 	mutex_enter(p->p_lock);
    681  1.161     rmind 	if (p->p_limit->pl_writeable) {
    682  1.161     rmind 		/* Other thread won the race. */
    683  1.139        ad 		mutex_exit(p->p_lock);
    684  1.159     rmind 		lim_free(newlim);
    685  1.122       dsl 		return;
    686  1.113        ad 	}
    687   1.83        pk 
    688  1.122       dsl 	/*
    689  1.161     rmind 	 * Since p->p_limit can be accessed without locked held,
    690  1.161     rmind 	 * old limit structure must not be deleted yet.
    691  1.122       dsl 	 */
    692  1.122       dsl 	newlim->pl_sv_limit = p->p_limit;
    693  1.161     rmind 	newlim->pl_writeable = true;
    694  1.122       dsl 	p->p_limit = newlim;
    695  1.139        ad 	mutex_exit(p->p_lock);
    696   1.32   mycroft }
    697   1.32   mycroft 
    698   1.32   mycroft void
    699  1.160     rmind lim_setcorename(proc_t *p, char *name, size_t len)
    700  1.160     rmind {
    701  1.160     rmind 	struct plimit *lim;
    702  1.160     rmind 	char *oname;
    703  1.161     rmind 	size_t olen;
    704  1.160     rmind 
    705  1.161     rmind 	lim_privatise(p);
    706  1.160     rmind 	lim = p->p_limit;
    707  1.160     rmind 
    708  1.160     rmind 	mutex_enter(&lim->pl_lock);
    709  1.160     rmind 	oname = lim->pl_corename;
    710  1.161     rmind 	olen = lim->pl_cnlen;
    711  1.160     rmind 	lim->pl_corename = name;
    712  1.161     rmind 	lim->pl_cnlen = len;
    713  1.160     rmind 	mutex_exit(&lim->pl_lock);
    714  1.160     rmind 
    715  1.160     rmind 	if (oname != defcorename) {
    716  1.161     rmind 		kmem_free(oname, olen);
    717  1.160     rmind 	}
    718  1.160     rmind }
    719  1.160     rmind 
    720  1.160     rmind void
    721  1.159     rmind lim_free(struct plimit *lim)
    722   1.32   mycroft {
    723  1.122       dsl 	struct plimit *sv_lim;
    724   1.85    kleink 
    725  1.122       dsl 	do {
    726  1.159     rmind 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    727  1.122       dsl 			return;
    728  1.159     rmind 		}
    729  1.159     rmind 		if (lim->pl_corename != defcorename) {
    730  1.161     rmind 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    731  1.159     rmind 		}
    732  1.122       dsl 		sv_lim = lim->pl_sv_limit;
    733  1.122       dsl 		mutex_destroy(&lim->pl_lock);
    734  1.130        ad 		pool_cache_put(plimit_cache, lim);
    735  1.122       dsl 	} while ((lim = sv_lim) != NULL);
    736   1.68   thorpej }
    737   1.68   thorpej 
    738   1.68   thorpej struct pstats *
    739   1.98   thorpej pstatscopy(struct pstats *ps)
    740   1.68   thorpej {
    741   1.87     perry 
    742   1.68   thorpej 	struct pstats *newps;
    743   1.68   thorpej 
    744  1.130        ad 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    745   1.68   thorpej 
    746   1.68   thorpej 	memset(&newps->pstat_startzero, 0,
    747  1.115  christos 	(unsigned) ((char *)&newps->pstat_endzero -
    748  1.115  christos 		    (char *)&newps->pstat_startzero));
    749   1.68   thorpej 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    750  1.115  christos 	((char *)&newps->pstat_endcopy -
    751  1.115  christos 	 (char *)&newps->pstat_startcopy));
    752   1.68   thorpej 
    753   1.68   thorpej 	return (newps);
    754   1.68   thorpej 
    755   1.68   thorpej }
    756   1.68   thorpej 
    757   1.68   thorpej void
    758   1.98   thorpej pstatsfree(struct pstats *ps)
    759   1.68   thorpej {
    760   1.68   thorpej 
    761  1.130        ad 	pool_cache_put(pstats_cache, ps);
    762   1.74    atatat }
    763   1.74    atatat 
    764   1.74    atatat /*
    765  1.157     rmind  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    766  1.157     rmind  * need to pick a valid process by PID.
    767  1.157     rmind  *
    768  1.157     rmind  * => Hold a reference on the process, on success.
    769   1.74    atatat  */
    770   1.74    atatat static int
    771  1.157     rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    772   1.74    atatat {
    773  1.157     rmind 	proc_t *p;
    774  1.157     rmind 	int error;
    775   1.74    atatat 
    776  1.157     rmind 	if (pid == PROC_CURPROC) {
    777  1.157     rmind 		p = l->l_proc;
    778  1.157     rmind 	} else {
    779  1.157     rmind 		mutex_enter(proc_lock);
    780  1.157     rmind 		p = proc_find(pid);
    781  1.157     rmind 		if (p == NULL) {
    782  1.157     rmind 			mutex_exit(proc_lock);
    783  1.157     rmind 			return ESRCH;
    784  1.157     rmind 		}
    785  1.157     rmind 	}
    786  1.157     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    787  1.157     rmind 	if (pid != PROC_CURPROC) {
    788  1.157     rmind 		mutex_exit(proc_lock);
    789  1.157     rmind 	}
    790  1.157     rmind 	*p2 = p;
    791  1.157     rmind 	return error;
    792   1.74    atatat }
    793   1.74    atatat 
    794   1.74    atatat /*
    795  1.158     rmind  * sysctl_proc_corename: helper routine to get or set the core file name
    796  1.158     rmind  * for a process specified by PID.
    797   1.74    atatat  */
    798   1.74    atatat static int
    799   1.74    atatat sysctl_proc_corename(SYSCTLFN_ARGS)
    800   1.74    atatat {
    801  1.158     rmind 	struct proc *p;
    802   1.83        pk 	struct plimit *lim;
    803  1.158     rmind 	char *cnbuf, *cname;
    804  1.157     rmind 	struct sysctlnode node;
    805  1.158     rmind 	size_t len;
    806  1.158     rmind 	int error;
    807   1.74    atatat 
    808  1.158     rmind 	/* First, validate the request. */
    809  1.158     rmind 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    810  1.158     rmind 		return EINVAL;
    811   1.74    atatat 
    812  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    813  1.158     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    814   1.74    atatat 	if (error)
    815  1.157     rmind 		return error;
    816   1.74    atatat 
    817  1.131      elad 	/* XXX-elad */
    818  1.158     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    819  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    820  1.157     rmind 	if (error) {
    821  1.158     rmind 		rw_exit(&p->p_reflock);
    822  1.157     rmind 		return error;
    823  1.157     rmind 	}
    824  1.111      elad 
    825  1.158     rmind 	cnbuf = PNBUF_GET();
    826  1.158     rmind 
    827  1.131      elad 	if (newp == NULL) {
    828  1.158     rmind 		/* Get case: copy the core name into the buffer. */
    829  1.131      elad 		error = kauth_authorize_process(l->l_cred,
    830  1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    831  1.131      elad 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    832  1.157     rmind 		if (error) {
    833  1.158     rmind 			goto done;
    834  1.158     rmind 		}
    835  1.158     rmind 		lim = p->p_limit;
    836  1.158     rmind 		mutex_enter(&lim->pl_lock);
    837  1.158     rmind 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    838  1.158     rmind 		mutex_exit(&lim->pl_lock);
    839  1.158     rmind 	} else {
    840  1.158     rmind 		/* Set case: just use the temporary buffer. */
    841  1.158     rmind 		error = kauth_authorize_process(l->l_cred,
    842  1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    843  1.158     rmind 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    844  1.158     rmind 		if (error) {
    845  1.158     rmind 			goto done;
    846  1.157     rmind 		}
    847  1.131      elad 	}
    848  1.131      elad 
    849   1.74    atatat 	node = *rnode;
    850  1.158     rmind 	node.sysctl_data = cnbuf;
    851   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    852   1.74    atatat 
    853  1.163     rmind 	/* Return if error, or if caller is only getting the core name. */
    854  1.158     rmind 	if (error || newp == NULL) {
    855  1.100      yamt 		goto done;
    856  1.157     rmind 	}
    857  1.103      elad 
    858   1.74    atatat 	/*
    859  1.158     rmind 	 * Validate new core name.  It must be either "core", "/core",
    860  1.158     rmind 	 * or end in ".core".
    861   1.74    atatat 	 */
    862  1.158     rmind 	len = strlen(cnbuf);
    863  1.158     rmind 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    864  1.158     rmind 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    865  1.100      yamt 		error = EINVAL;
    866  1.100      yamt 		goto done;
    867  1.100      yamt 	}
    868   1.74    atatat 
    869  1.158     rmind 	/* Allocate, copy and set the new core name for plimit structure. */
    870  1.161     rmind 	cname = kmem_alloc(++len, KM_NOSLEEP);
    871  1.158     rmind 	if (cname == NULL) {
    872  1.100      yamt 		error = ENOMEM;
    873  1.100      yamt 		goto done;
    874  1.100      yamt 	}
    875  1.158     rmind 	memcpy(cname, cnbuf, len);
    876  1.160     rmind 	lim_setcorename(p, cname, len);
    877  1.100      yamt done:
    878  1.158     rmind 	rw_exit(&p->p_reflock);
    879  1.158     rmind 	PNBUF_PUT(cnbuf);
    880  1.100      yamt 	return error;
    881   1.74    atatat }
    882   1.74    atatat 
    883   1.74    atatat /*
    884  1.163     rmind  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    885   1.74    atatat  */
    886   1.74    atatat static int
    887   1.74    atatat sysctl_proc_stop(SYSCTLFN_ARGS)
    888   1.74    atatat {
    889  1.163     rmind 	struct proc *p;
    890  1.163     rmind 	int isset, flag, error = 0;
    891   1.74    atatat 	struct sysctlnode node;
    892   1.74    atatat 
    893   1.74    atatat 	if (namelen != 0)
    894  1.163     rmind 		return EINVAL;
    895   1.74    atatat 
    896  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    897  1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    898   1.74    atatat 	if (error)
    899  1.157     rmind 		return error;
    900   1.74    atatat 
    901  1.131      elad 	/* XXX-elad */
    902  1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    903  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    904  1.163     rmind 	if (error) {
    905  1.157     rmind 		goto out;
    906  1.163     rmind 	}
    907  1.111      elad 
    908  1.163     rmind 	/* Determine the flag. */
    909   1.74    atatat 	switch (rnode->sysctl_num) {
    910   1.74    atatat 	case PROC_PID_STOPFORK:
    911  1.163     rmind 		flag = PS_STOPFORK;
    912   1.74    atatat 		break;
    913   1.74    atatat 	case PROC_PID_STOPEXEC:
    914  1.163     rmind 		flag = PS_STOPEXEC;
    915   1.74    atatat 		break;
    916   1.74    atatat 	case PROC_PID_STOPEXIT:
    917  1.163     rmind 		flag = PS_STOPEXIT;
    918   1.74    atatat 		break;
    919   1.74    atatat 	default:
    920  1.157     rmind 		error = EINVAL;
    921  1.157     rmind 		goto out;
    922   1.74    atatat 	}
    923  1.163     rmind 	isset = (p->p_flag & flag) ? 1 : 0;
    924   1.74    atatat 	node = *rnode;
    925  1.163     rmind 	node.sysctl_data = &isset;
    926   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    927  1.163     rmind 
    928  1.163     rmind 	/* Return if error, or if callers is only getting the flag. */
    929  1.163     rmind 	if (error || newp == NULL) {
    930  1.157     rmind 		goto out;
    931  1.163     rmind 	}
    932   1.74    atatat 
    933  1.163     rmind 	/* Check if caller can set the flags. */
    934  1.111      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    935  1.163     rmind 	    p, KAUTH_ARG(flag), NULL, NULL);
    936  1.163     rmind 	if (error) {
    937  1.163     rmind 		goto out;
    938  1.163     rmind 	}
    939  1.163     rmind 	mutex_enter(p->p_lock);
    940  1.163     rmind 	if (isset) {
    941  1.163     rmind 		p->p_sflag |= flag;
    942  1.163     rmind 	} else {
    943  1.163     rmind 		p->p_sflag &= ~flag;
    944  1.143     rmind 	}
    945  1.163     rmind 	mutex_exit(p->p_lock);
    946  1.157     rmind out:
    947  1.163     rmind 	rw_exit(&p->p_reflock);
    948  1.143     rmind 	return error;
    949   1.74    atatat }
    950   1.74    atatat 
    951   1.74    atatat /*
    952  1.163     rmind  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
    953   1.74    atatat  */
    954   1.74    atatat static int
    955   1.74    atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
    956   1.74    atatat {
    957  1.163     rmind 	struct proc *p;
    958   1.74    atatat 	u_int limitno;
    959   1.74    atatat 	int which, error = 0;
    960   1.74    atatat         struct rlimit alim;
    961   1.74    atatat 	struct sysctlnode node;
    962   1.74    atatat 
    963   1.74    atatat 	if (namelen != 0)
    964  1.163     rmind 		return EINVAL;
    965   1.74    atatat 
    966   1.74    atatat 	which = name[-1];
    967   1.74    atatat 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    968   1.74    atatat 	    which != PROC_PID_LIMIT_TYPE_HARD)
    969  1.163     rmind 		return EINVAL;
    970   1.74    atatat 
    971   1.74    atatat 	limitno = name[-2] - 1;
    972   1.74    atatat 	if (limitno >= RLIM_NLIMITS)
    973  1.163     rmind 		return EINVAL;
    974   1.74    atatat 
    975   1.74    atatat 	if (name[-3] != PROC_PID_LIMIT)
    976  1.163     rmind 		return EINVAL;
    977   1.74    atatat 
    978  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    979  1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
    980   1.74    atatat 	if (error)
    981  1.157     rmind 		return error;
    982   1.74    atatat 
    983  1.131      elad 	/* XXX-elad */
    984  1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    985  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    986  1.111      elad 	if (error)
    987  1.157     rmind 		goto out;
    988  1.111      elad 
    989  1.163     rmind 	/* Check if caller can retrieve the limits. */
    990  1.131      elad 	if (newp == NULL) {
    991  1.131      elad 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    992  1.163     rmind 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    993  1.131      elad 		    KAUTH_ARG(which));
    994  1.131      elad 		if (error)
    995  1.157     rmind 			goto out;
    996  1.131      elad 	}
    997  1.131      elad 
    998  1.163     rmind 	/* Retrieve the limits. */
    999   1.74    atatat 	node = *rnode;
   1000  1.163     rmind 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1001  1.163     rmind 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1002   1.74    atatat 		node.sysctl_data = &alim.rlim_max;
   1003  1.163     rmind 	} else {
   1004   1.74    atatat 		node.sysctl_data = &alim.rlim_cur;
   1005  1.163     rmind 	}
   1006  1.163     rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1007   1.74    atatat 
   1008  1.163     rmind 	/* Return if error, or if we are only retrieving the limits. */
   1009  1.157     rmind 	if (error || newp == NULL) {
   1010  1.157     rmind 		goto out;
   1011  1.157     rmind 	}
   1012  1.163     rmind 	error = dosetrlimit(l, p, limitno, &alim);
   1013  1.157     rmind out:
   1014  1.163     rmind 	rw_exit(&p->p_reflock);
   1015  1.157     rmind 	return error;
   1016   1.74    atatat }
   1017   1.74    atatat 
   1018  1.156     pooka static struct sysctllog *proc_sysctllog;
   1019  1.156     pooka 
   1020   1.74    atatat /*
   1021   1.74    atatat  * and finally, the actually glue that sticks it to the tree
   1022   1.74    atatat  */
   1023  1.156     pooka static void
   1024  1.156     pooka sysctl_proc_setup()
   1025   1.74    atatat {
   1026   1.74    atatat 
   1027  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1028   1.76    atatat 		       CTLFLAG_PERMANENT,
   1029   1.74    atatat 		       CTLTYPE_NODE, "proc", NULL,
   1030   1.74    atatat 		       NULL, 0, NULL, 0,
   1031   1.74    atatat 		       CTL_PROC, CTL_EOL);
   1032  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1033   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1034   1.78    atatat 		       CTLTYPE_NODE, "curproc",
   1035   1.78    atatat 		       SYSCTL_DESCR("Per-process settings"),
   1036   1.74    atatat 		       NULL, 0, NULL, 0,
   1037   1.74    atatat 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1038   1.74    atatat 
   1039  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1040  1.103      elad 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1041   1.78    atatat 		       CTLTYPE_STRING, "corename",
   1042   1.78    atatat 		       SYSCTL_DESCR("Core file name"),
   1043   1.74    atatat 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1044   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1045  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1046   1.76    atatat 		       CTLFLAG_PERMANENT,
   1047   1.78    atatat 		       CTLTYPE_NODE, "rlimit",
   1048   1.78    atatat 		       SYSCTL_DESCR("Process limits"),
   1049   1.74    atatat 		       NULL, 0, NULL, 0,
   1050   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1051   1.74    atatat 
   1052   1.74    atatat #define create_proc_plimit(s, n) do {					\
   1053  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1054   1.76    atatat 		       CTLFLAG_PERMANENT,				\
   1055   1.78    atatat 		       CTLTYPE_NODE, s,					\
   1056   1.78    atatat 		       SYSCTL_DESCR("Process " s " limits"),		\
   1057   1.74    atatat 		       NULL, 0, NULL, 0,				\
   1058   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1059   1.74    atatat 		       CTL_EOL);					\
   1060  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1061   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1062   1.78    atatat 		       CTLTYPE_QUAD, "soft",				\
   1063   1.78    atatat 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1064   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1065   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1066   1.74    atatat 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1067  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1068   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1069   1.78    atatat 		       CTLTYPE_QUAD, "hard",				\
   1070   1.78    atatat 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1071   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1072   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1073   1.74    atatat 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1074   1.74    atatat 	} while (0/*CONSTCOND*/)
   1075   1.74    atatat 
   1076   1.74    atatat 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1077   1.74    atatat 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1078   1.74    atatat 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1079   1.74    atatat 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1080   1.74    atatat 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1081   1.74    atatat 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1082   1.74    atatat 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1083   1.74    atatat 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1084   1.74    atatat 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1085   1.79  christos 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1086  1.151       mrg 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1087   1.74    atatat 
   1088   1.74    atatat #undef create_proc_plimit
   1089   1.74    atatat 
   1090  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1091   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1092   1.78    atatat 		       CTLTYPE_INT, "stopfork",
   1093   1.78    atatat 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1094   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1095   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1096  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1097   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1098   1.78    atatat 		       CTLTYPE_INT, "stopexec",
   1099   1.78    atatat 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1100   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1101   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1102  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1103   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1104   1.78    atatat 		       CTLTYPE_INT, "stopexit",
   1105   1.78    atatat 		       SYSCTL_DESCR("Stop process before completing exit"),
   1106   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1107   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1108   1.17       cgd }
   1109