kern_resource.c revision 1.163 1 1.163 rmind /* $NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $ */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.163 rmind __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.132 yamt #include <sys/kmem.h>
48 1.100 yamt #include <sys/namei.h>
49 1.49 thorpej #include <sys/pool.h>
50 1.17 cgd #include <sys/proc.h>
51 1.74 atatat #include <sys/sysctl.h>
52 1.129 yamt #include <sys/timevar.h>
53 1.101 elad #include <sys/kauth.h>
54 1.125 ad #include <sys/atomic.h>
55 1.22 cgd #include <sys/mount.h>
56 1.22 cgd #include <sys/syscallargs.h>
57 1.136 ad #include <sys/atomic.h>
58 1.17 cgd
59 1.43 mrg #include <uvm/uvm_extern.h>
60 1.43 mrg
61 1.17 cgd /*
62 1.60 eeh * Maximum process data and stack limits.
63 1.60 eeh * They are variables so they are patchable.
64 1.60 eeh */
65 1.60 eeh rlim_t maxdmap = MAXDSIZ;
66 1.60 eeh rlim_t maxsmap = MAXSSIZ;
67 1.60 eeh
68 1.134 rmind static pool_cache_t plimit_cache;
69 1.134 rmind static pool_cache_t pstats_cache;
70 1.130 ad
71 1.154 elad static kauth_listener_t resource_listener;
72 1.153 elad
73 1.156 pooka static void sysctl_proc_setup(void);
74 1.156 pooka
75 1.153 elad static int
76 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
77 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
78 1.153 elad {
79 1.153 elad struct proc *p;
80 1.153 elad int result;
81 1.153 elad
82 1.153 elad result = KAUTH_RESULT_DEFER;
83 1.153 elad p = arg0;
84 1.153 elad
85 1.154 elad switch (action) {
86 1.154 elad case KAUTH_PROCESS_NICE:
87 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
88 1.154 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
89 1.154 elad break;
90 1.154 elad }
91 1.153 elad
92 1.154 elad if ((u_long)arg1 >= p->p_nice)
93 1.154 elad result = KAUTH_RESULT_ALLOW;
94 1.153 elad
95 1.154 elad break;
96 1.154 elad
97 1.154 elad case KAUTH_PROCESS_RLIMIT: {
98 1.154 elad enum kauth_process_req req;
99 1.153 elad
100 1.154 elad req = (enum kauth_process_req)(unsigned long)arg1;
101 1.153 elad
102 1.154 elad switch (req) {
103 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET:
104 1.153 elad result = KAUTH_RESULT_ALLOW;
105 1.154 elad break;
106 1.154 elad
107 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: {
108 1.154 elad struct rlimit *new_rlimit;
109 1.154 elad u_long which;
110 1.154 elad
111 1.154 elad if ((p != curlwp->l_proc) &&
112 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0))
113 1.154 elad break;
114 1.154 elad
115 1.154 elad new_rlimit = arg2;
116 1.154 elad which = (u_long)arg3;
117 1.154 elad
118 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
119 1.154 elad result = KAUTH_RESULT_ALLOW;
120 1.154 elad
121 1.154 elad break;
122 1.154 elad }
123 1.154 elad
124 1.154 elad default:
125 1.154 elad break;
126 1.154 elad }
127 1.154 elad
128 1.154 elad break;
129 1.154 elad }
130 1.154 elad
131 1.154 elad default:
132 1.154 elad break;
133 1.153 elad }
134 1.153 elad
135 1.153 elad return result;
136 1.153 elad }
137 1.153 elad
138 1.130 ad void
139 1.130 ad resource_init(void)
140 1.130 ad {
141 1.130 ad
142 1.130 ad plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
143 1.130 ad "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
144 1.130 ad pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
145 1.130 ad "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
146 1.153 elad
147 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
148 1.154 elad resource_listener_cb, NULL);
149 1.156 pooka
150 1.156 pooka sysctl_proc_setup();
151 1.130 ad }
152 1.130 ad
153 1.60 eeh /*
154 1.17 cgd * Resource controls and accounting.
155 1.17 cgd */
156 1.17 cgd
157 1.25 cgd int
158 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
159 1.134 rmind register_t *retval)
160 1.30 thorpej {
161 1.128 dsl /* {
162 1.22 cgd syscallarg(int) which;
163 1.81 kleink syscallarg(id_t) who;
164 1.128 dsl } */
165 1.68 thorpej struct proc *curp = l->l_proc, *p;
166 1.54 augustss int low = NZERO + PRIO_MAX + 1;
167 1.113 ad int who = SCARG(uap, who);
168 1.17 cgd
169 1.138 ad mutex_enter(proc_lock);
170 1.22 cgd switch (SCARG(uap, which)) {
171 1.17 cgd case PRIO_PROCESS:
172 1.157 rmind p = who ? proc_find(who) : curp;;
173 1.113 ad if (p != NULL)
174 1.113 ad low = p->p_nice;
175 1.17 cgd break;
176 1.17 cgd
177 1.17 cgd case PRIO_PGRP: {
178 1.54 augustss struct pgrp *pg;
179 1.17 cgd
180 1.113 ad if (who == 0)
181 1.17 cgd pg = curp->p_pgrp;
182 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
183 1.17 cgd break;
184 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
185 1.17 cgd if (p->p_nice < low)
186 1.17 cgd low = p->p_nice;
187 1.17 cgd }
188 1.17 cgd break;
189 1.17 cgd }
190 1.17 cgd
191 1.17 cgd case PRIO_USER:
192 1.113 ad if (who == 0)
193 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
194 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
195 1.139 ad mutex_enter(p->p_lock);
196 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
197 1.113 ad (uid_t)who && p->p_nice < low)
198 1.17 cgd low = p->p_nice;
199 1.139 ad mutex_exit(p->p_lock);
200 1.64 matt }
201 1.17 cgd break;
202 1.17 cgd
203 1.17 cgd default:
204 1.138 ad mutex_exit(proc_lock);
205 1.17 cgd return (EINVAL);
206 1.17 cgd }
207 1.138 ad mutex_exit(proc_lock);
208 1.113 ad
209 1.37 ws if (low == NZERO + PRIO_MAX + 1)
210 1.17 cgd return (ESRCH);
211 1.37 ws *retval = low - NZERO;
212 1.17 cgd return (0);
213 1.17 cgd }
214 1.17 cgd
215 1.17 cgd /* ARGSUSED */
216 1.25 cgd int
217 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
218 1.134 rmind register_t *retval)
219 1.30 thorpej {
220 1.128 dsl /* {
221 1.22 cgd syscallarg(int) which;
222 1.81 kleink syscallarg(id_t) who;
223 1.22 cgd syscallarg(int) prio;
224 1.128 dsl } */
225 1.68 thorpej struct proc *curp = l->l_proc, *p;
226 1.17 cgd int found = 0, error = 0;
227 1.113 ad int who = SCARG(uap, who);
228 1.17 cgd
229 1.138 ad mutex_enter(proc_lock);
230 1.22 cgd switch (SCARG(uap, which)) {
231 1.17 cgd case PRIO_PROCESS:
232 1.157 rmind p = who ? proc_find(who) : curp;
233 1.157 rmind if (p != NULL) {
234 1.139 ad mutex_enter(p->p_lock);
235 1.162 christos found++;
236 1.113 ad error = donice(l, p, SCARG(uap, prio));
237 1.139 ad mutex_exit(p->p_lock);
238 1.113 ad }
239 1.17 cgd break;
240 1.17 cgd
241 1.17 cgd case PRIO_PGRP: {
242 1.54 augustss struct pgrp *pg;
243 1.87 perry
244 1.113 ad if (who == 0)
245 1.17 cgd pg = curp->p_pgrp;
246 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
247 1.17 cgd break;
248 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
249 1.139 ad mutex_enter(p->p_lock);
250 1.162 christos found++;
251 1.102 ad error = donice(l, p, SCARG(uap, prio));
252 1.139 ad mutex_exit(p->p_lock);
253 1.162 christos if (error)
254 1.162 christos break;
255 1.17 cgd }
256 1.17 cgd break;
257 1.17 cgd }
258 1.17 cgd
259 1.17 cgd case PRIO_USER:
260 1.113 ad if (who == 0)
261 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
262 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
263 1.139 ad mutex_enter(p->p_lock);
264 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
265 1.102 ad (uid_t)SCARG(uap, who)) {
266 1.162 christos found++;
267 1.102 ad error = donice(l, p, SCARG(uap, prio));
268 1.17 cgd }
269 1.139 ad mutex_exit(p->p_lock);
270 1.162 christos if (error)
271 1.162 christos break;
272 1.64 matt }
273 1.17 cgd break;
274 1.17 cgd
275 1.17 cgd default:
276 1.144 njoly mutex_exit(proc_lock);
277 1.144 njoly return EINVAL;
278 1.17 cgd }
279 1.138 ad mutex_exit(proc_lock);
280 1.17 cgd if (found == 0)
281 1.162 christos return ESRCH;
282 1.162 christos return error;
283 1.17 cgd }
284 1.17 cgd
285 1.113 ad /*
286 1.113 ad * Renice a process.
287 1.113 ad *
288 1.113 ad * Call with the target process' credentials locked.
289 1.113 ad */
290 1.25 cgd int
291 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
292 1.17 cgd {
293 1.102 ad kauth_cred_t cred = l->l_cred;
294 1.113 ad
295 1.139 ad KASSERT(mutex_owned(chgp->p_lock));
296 1.17 cgd
297 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
298 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
299 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
300 1.152 elad return (EPERM);
301 1.152 elad
302 1.17 cgd if (n > PRIO_MAX)
303 1.17 cgd n = PRIO_MAX;
304 1.17 cgd if (n < PRIO_MIN)
305 1.17 cgd n = PRIO_MIN;
306 1.37 ws n += NZERO;
307 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
308 1.112 elad KAUTH_ARG(n), NULL, NULL))
309 1.17 cgd return (EACCES);
310 1.117 yamt sched_nice(chgp, n);
311 1.17 cgd return (0);
312 1.17 cgd }
313 1.17 cgd
314 1.17 cgd /* ARGSUSED */
315 1.25 cgd int
316 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
317 1.134 rmind register_t *retval)
318 1.30 thorpej {
319 1.128 dsl /* {
320 1.42 mycroft syscallarg(int) which;
321 1.39 cgd syscallarg(const struct rlimit *) rlp;
322 1.128 dsl } */
323 1.42 mycroft int which = SCARG(uap, which);
324 1.19 cgd struct rlimit alim;
325 1.17 cgd int error;
326 1.17 cgd
327 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
328 1.33 christos if (error)
329 1.17 cgd return (error);
330 1.102 ad return (dosetrlimit(l, l->l_proc, which, &alim));
331 1.17 cgd }
332 1.17 cgd
333 1.17 cgd int
334 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
335 1.17 cgd {
336 1.54 augustss struct rlimit *alimp;
337 1.17 cgd int error;
338 1.17 cgd
339 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
340 1.17 cgd return (EINVAL);
341 1.38 matthias
342 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
343 1.62 jdolecek /*
344 1.62 jdolecek * This is programming error. According to SUSv2, we should
345 1.62 jdolecek * return error in this case.
346 1.62 jdolecek */
347 1.62 jdolecek return (EINVAL);
348 1.62 jdolecek }
349 1.122 dsl
350 1.122 dsl alimp = &p->p_rlimit[which];
351 1.122 dsl /* if we don't change the value, no need to limcopy() */
352 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur &&
353 1.122 dsl limp->rlim_max == alimp->rlim_max)
354 1.122 dsl return 0;
355 1.122 dsl
356 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
357 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
358 1.111 elad if (error)
359 1.122 dsl return (error);
360 1.62 jdolecek
361 1.161 rmind lim_privatise(p);
362 1.122 dsl /* p->p_limit is now unchangeable */
363 1.122 dsl alimp = &p->p_rlimit[which];
364 1.17 cgd
365 1.17 cgd switch (which) {
366 1.17 cgd
367 1.17 cgd case RLIMIT_DATA:
368 1.19 cgd if (limp->rlim_cur > maxdmap)
369 1.19 cgd limp->rlim_cur = maxdmap;
370 1.19 cgd if (limp->rlim_max > maxdmap)
371 1.19 cgd limp->rlim_max = maxdmap;
372 1.17 cgd break;
373 1.17 cgd
374 1.17 cgd case RLIMIT_STACK:
375 1.19 cgd if (limp->rlim_cur > maxsmap)
376 1.19 cgd limp->rlim_cur = maxsmap;
377 1.19 cgd if (limp->rlim_max > maxsmap)
378 1.19 cgd limp->rlim_max = maxsmap;
379 1.62 jdolecek
380 1.62 jdolecek /*
381 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
382 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
383 1.62 jdolecek * moment it would try to access anything on it's current stack.
384 1.62 jdolecek * This conforms to SUSv2.
385 1.62 jdolecek */
386 1.62 jdolecek if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
387 1.113 ad || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
388 1.62 jdolecek return (EINVAL);
389 1.113 ad }
390 1.40 enami
391 1.17 cgd /*
392 1.40 enami * Stack is allocated to the max at exec time with
393 1.40 enami * only "rlim_cur" bytes accessible (In other words,
394 1.40 enami * allocates stack dividing two contiguous regions at
395 1.40 enami * "rlim_cur" bytes boundary).
396 1.40 enami *
397 1.40 enami * Since allocation is done in terms of page, roundup
398 1.40 enami * "rlim_cur" (otherwise, contiguous regions
399 1.40 enami * overlap). If stack limit is going up make more
400 1.40 enami * accessible, if going down make inaccessible.
401 1.17 cgd */
402 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
403 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
404 1.48 eeh vaddr_t addr;
405 1.48 eeh vsize_t size;
406 1.17 cgd vm_prot_t prot;
407 1.17 cgd
408 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
409 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
410 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
411 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
412 1.91 fvdl limp->rlim_cur;
413 1.17 cgd } else {
414 1.17 cgd prot = VM_PROT_NONE;
415 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
416 1.91 fvdl addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 1.91 fvdl alimp->rlim_cur;
418 1.17 cgd }
419 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
420 1.114 thorpej addr, addr+size, prot, false);
421 1.17 cgd }
422 1.17 cgd break;
423 1.19 cgd
424 1.19 cgd case RLIMIT_NOFILE:
425 1.19 cgd if (limp->rlim_cur > maxfiles)
426 1.19 cgd limp->rlim_cur = maxfiles;
427 1.19 cgd if (limp->rlim_max > maxfiles)
428 1.19 cgd limp->rlim_max = maxfiles;
429 1.19 cgd break;
430 1.19 cgd
431 1.19 cgd case RLIMIT_NPROC:
432 1.19 cgd if (limp->rlim_cur > maxproc)
433 1.19 cgd limp->rlim_cur = maxproc;
434 1.19 cgd if (limp->rlim_max > maxproc)
435 1.19 cgd limp->rlim_max = maxproc;
436 1.19 cgd break;
437 1.17 cgd }
438 1.122 dsl
439 1.122 dsl mutex_enter(&p->p_limit->pl_lock);
440 1.17 cgd *alimp = *limp;
441 1.122 dsl mutex_exit(&p->p_limit->pl_lock);
442 1.17 cgd return (0);
443 1.17 cgd }
444 1.17 cgd
445 1.17 cgd /* ARGSUSED */
446 1.25 cgd int
447 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
448 1.134 rmind register_t *retval)
449 1.30 thorpej {
450 1.128 dsl /* {
451 1.42 mycroft syscallarg(int) which;
452 1.22 cgd syscallarg(struct rlimit *) rlp;
453 1.128 dsl } */
454 1.68 thorpej struct proc *p = l->l_proc;
455 1.42 mycroft int which = SCARG(uap, which);
456 1.119 ad struct rlimit rl;
457 1.17 cgd
458 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
459 1.17 cgd return (EINVAL);
460 1.119 ad
461 1.139 ad mutex_enter(p->p_lock);
462 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
463 1.139 ad mutex_exit(p->p_lock);
464 1.119 ad
465 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
466 1.17 cgd }
467 1.17 cgd
468 1.17 cgd /*
469 1.17 cgd * Transform the running time and tick information in proc p into user,
470 1.17 cgd * system, and interrupt time usage.
471 1.113 ad *
472 1.139 ad * Should be called with p->p_lock held unless called from exit1().
473 1.17 cgd */
474 1.25 cgd void
475 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
476 1.113 ad struct timeval *ip, struct timeval *rp)
477 1.17 cgd {
478 1.129 yamt uint64_t u, st, ut, it, tot;
479 1.68 thorpej struct lwp *l;
480 1.129 yamt struct bintime tm;
481 1.129 yamt struct timeval tv;
482 1.17 cgd
483 1.113 ad mutex_spin_enter(&p->p_stmutex);
484 1.17 cgd st = p->p_sticks;
485 1.17 cgd ut = p->p_uticks;
486 1.17 cgd it = p->p_iticks;
487 1.113 ad mutex_spin_exit(&p->p_stmutex);
488 1.17 cgd
489 1.129 yamt tm = p->p_rtime;
490 1.113 ad
491 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
492 1.113 ad lwp_lock(l);
493 1.129 yamt bintime_add(&tm, &l->l_rtime);
494 1.142 ad if ((l->l_pflag & LP_RUNNING) != 0) {
495 1.129 yamt struct bintime diff;
496 1.68 thorpej /*
497 1.68 thorpej * Adjust for the current time slice. This is
498 1.68 thorpej * actually fairly important since the error
499 1.68 thorpej * here is on the order of a time quantum,
500 1.68 thorpej * which is much greater than the sampling
501 1.87 perry * error.
502 1.68 thorpej */
503 1.129 yamt binuptime(&diff);
504 1.129 yamt bintime_sub(&diff, &l->l_stime);
505 1.129 yamt bintime_add(&tm, &diff);
506 1.68 thorpej }
507 1.113 ad lwp_unlock(l);
508 1.17 cgd }
509 1.69 dsl
510 1.69 dsl tot = st + ut + it;
511 1.129 yamt bintime2timeval(&tm, &tv);
512 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
513 1.70 dsl
514 1.69 dsl if (tot == 0) {
515 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
516 1.70 dsl st = ut = u / 2;
517 1.70 dsl } else {
518 1.70 dsl st = (u * st) / tot;
519 1.70 dsl ut = (u * ut) / tot;
520 1.69 dsl }
521 1.113 ad if (sp != NULL) {
522 1.113 ad sp->tv_sec = st / 1000000;
523 1.113 ad sp->tv_usec = st % 1000000;
524 1.113 ad }
525 1.113 ad if (up != NULL) {
526 1.113 ad up->tv_sec = ut / 1000000;
527 1.113 ad up->tv_usec = ut % 1000000;
528 1.113 ad }
529 1.17 cgd if (ip != NULL) {
530 1.70 dsl if (it != 0)
531 1.70 dsl it = (u * it) / tot;
532 1.17 cgd ip->tv_sec = it / 1000000;
533 1.17 cgd ip->tv_usec = it % 1000000;
534 1.17 cgd }
535 1.113 ad if (rp != NULL) {
536 1.129 yamt *rp = tv;
537 1.113 ad }
538 1.17 cgd }
539 1.17 cgd
540 1.17 cgd /* ARGSUSED */
541 1.25 cgd int
542 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
543 1.134 rmind register_t *retval)
544 1.30 thorpej {
545 1.128 dsl /* {
546 1.22 cgd syscallarg(int) who;
547 1.22 cgd syscallarg(struct rusage *) rusage;
548 1.128 dsl } */
549 1.119 ad struct rusage ru;
550 1.68 thorpej struct proc *p = l->l_proc;
551 1.17 cgd
552 1.22 cgd switch (SCARG(uap, who)) {
553 1.19 cgd case RUSAGE_SELF:
554 1.139 ad mutex_enter(p->p_lock);
555 1.119 ad memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
556 1.119 ad calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
557 1.137 ad rulwps(p, &ru);
558 1.139 ad mutex_exit(p->p_lock);
559 1.17 cgd break;
560 1.17 cgd
561 1.17 cgd case RUSAGE_CHILDREN:
562 1.139 ad mutex_enter(p->p_lock);
563 1.119 ad memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
564 1.139 ad mutex_exit(p->p_lock);
565 1.17 cgd break;
566 1.17 cgd
567 1.17 cgd default:
568 1.119 ad return EINVAL;
569 1.17 cgd }
570 1.119 ad
571 1.119 ad return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
572 1.17 cgd }
573 1.17 cgd
574 1.25 cgd void
575 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
576 1.17 cgd {
577 1.54 augustss long *ip, *ip2;
578 1.54 augustss int i;
579 1.17 cgd
580 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
581 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
582 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
583 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
584 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
585 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
586 1.17 cgd *ip++ += *ip2++;
587 1.17 cgd }
588 1.17 cgd
589 1.137 ad void
590 1.137 ad rulwps(proc_t *p, struct rusage *ru)
591 1.137 ad {
592 1.137 ad lwp_t *l;
593 1.137 ad
594 1.139 ad KASSERT(mutex_owned(p->p_lock));
595 1.137 ad
596 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
597 1.137 ad ruadd(ru, &l->l_ru);
598 1.137 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
599 1.137 ad ru->ru_nivcsw += l->l_nivcsw;
600 1.137 ad }
601 1.137 ad }
602 1.137 ad
603 1.17 cgd /*
604 1.161 rmind * lim_copy: make a copy of the plimit structure.
605 1.113 ad *
606 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed.
607 1.17 cgd */
608 1.17 cgd struct plimit *
609 1.122 dsl lim_copy(struct plimit *lim)
610 1.17 cgd {
611 1.122 dsl struct plimit *newlim;
612 1.113 ad char *corename;
613 1.122 dsl size_t alen, len;
614 1.17 cgd
615 1.130 ad newlim = pool_cache_get(plimit_cache, PR_WAITOK);
616 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
617 1.161 rmind newlim->pl_writeable = false;
618 1.121 dsl newlim->pl_refcnt = 1;
619 1.122 dsl newlim->pl_sv_limit = NULL;
620 1.122 dsl
621 1.122 dsl mutex_enter(&lim->pl_lock);
622 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit,
623 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS);
624 1.83 pk
625 1.161 rmind /*
626 1.161 rmind * Note: the common case is a use of default core name.
627 1.161 rmind */
628 1.122 dsl alen = 0;
629 1.122 dsl corename = NULL;
630 1.113 ad for (;;) {
631 1.122 dsl if (lim->pl_corename == defcorename) {
632 1.122 dsl newlim->pl_corename = defcorename;
633 1.161 rmind newlim->pl_cnlen = 0;
634 1.122 dsl break;
635 1.122 dsl }
636 1.161 rmind len = lim->pl_cnlen;
637 1.161 rmind if (len == alen) {
638 1.122 dsl newlim->pl_corename = corename;
639 1.161 rmind newlim->pl_cnlen = len;
640 1.122 dsl memcpy(corename, lim->pl_corename, len);
641 1.122 dsl corename = NULL;
642 1.122 dsl break;
643 1.122 dsl }
644 1.122 dsl mutex_exit(&lim->pl_lock);
645 1.161 rmind if (corename) {
646 1.161 rmind kmem_free(corename, alen);
647 1.161 rmind }
648 1.122 dsl alen = len;
649 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP);
650 1.121 dsl mutex_enter(&lim->pl_lock);
651 1.122 dsl }
652 1.122 dsl mutex_exit(&lim->pl_lock);
653 1.161 rmind
654 1.161 rmind if (corename) {
655 1.161 rmind kmem_free(corename, alen);
656 1.161 rmind }
657 1.122 dsl return newlim;
658 1.122 dsl }
659 1.122 dsl
660 1.122 dsl void
661 1.122 dsl lim_addref(struct plimit *lim)
662 1.122 dsl {
663 1.125 ad atomic_inc_uint(&lim->pl_refcnt);
664 1.122 dsl }
665 1.113 ad
666 1.122 dsl /*
667 1.161 rmind * lim_privatise: give a process its own private plimit structure.
668 1.122 dsl */
669 1.122 dsl void
670 1.161 rmind lim_privatise(proc_t *p)
671 1.122 dsl {
672 1.161 rmind struct plimit *lim = p->p_limit, *newlim;
673 1.122 dsl
674 1.161 rmind if (lim->pl_writeable) {
675 1.122 dsl return;
676 1.122 dsl }
677 1.122 dsl
678 1.122 dsl newlim = lim_copy(lim);
679 1.113 ad
680 1.139 ad mutex_enter(p->p_lock);
681 1.161 rmind if (p->p_limit->pl_writeable) {
682 1.161 rmind /* Other thread won the race. */
683 1.139 ad mutex_exit(p->p_lock);
684 1.159 rmind lim_free(newlim);
685 1.122 dsl return;
686 1.113 ad }
687 1.83 pk
688 1.122 dsl /*
689 1.161 rmind * Since p->p_limit can be accessed without locked held,
690 1.161 rmind * old limit structure must not be deleted yet.
691 1.122 dsl */
692 1.122 dsl newlim->pl_sv_limit = p->p_limit;
693 1.161 rmind newlim->pl_writeable = true;
694 1.122 dsl p->p_limit = newlim;
695 1.139 ad mutex_exit(p->p_lock);
696 1.32 mycroft }
697 1.32 mycroft
698 1.32 mycroft void
699 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len)
700 1.160 rmind {
701 1.160 rmind struct plimit *lim;
702 1.160 rmind char *oname;
703 1.161 rmind size_t olen;
704 1.160 rmind
705 1.161 rmind lim_privatise(p);
706 1.160 rmind lim = p->p_limit;
707 1.160 rmind
708 1.160 rmind mutex_enter(&lim->pl_lock);
709 1.160 rmind oname = lim->pl_corename;
710 1.161 rmind olen = lim->pl_cnlen;
711 1.160 rmind lim->pl_corename = name;
712 1.161 rmind lim->pl_cnlen = len;
713 1.160 rmind mutex_exit(&lim->pl_lock);
714 1.160 rmind
715 1.160 rmind if (oname != defcorename) {
716 1.161 rmind kmem_free(oname, olen);
717 1.160 rmind }
718 1.160 rmind }
719 1.160 rmind
720 1.160 rmind void
721 1.159 rmind lim_free(struct plimit *lim)
722 1.32 mycroft {
723 1.122 dsl struct plimit *sv_lim;
724 1.85 kleink
725 1.122 dsl do {
726 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
727 1.122 dsl return;
728 1.159 rmind }
729 1.159 rmind if (lim->pl_corename != defcorename) {
730 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen);
731 1.159 rmind }
732 1.122 dsl sv_lim = lim->pl_sv_limit;
733 1.122 dsl mutex_destroy(&lim->pl_lock);
734 1.130 ad pool_cache_put(plimit_cache, lim);
735 1.122 dsl } while ((lim = sv_lim) != NULL);
736 1.68 thorpej }
737 1.68 thorpej
738 1.68 thorpej struct pstats *
739 1.98 thorpej pstatscopy(struct pstats *ps)
740 1.68 thorpej {
741 1.87 perry
742 1.68 thorpej struct pstats *newps;
743 1.68 thorpej
744 1.130 ad newps = pool_cache_get(pstats_cache, PR_WAITOK);
745 1.68 thorpej
746 1.68 thorpej memset(&newps->pstat_startzero, 0,
747 1.115 christos (unsigned) ((char *)&newps->pstat_endzero -
748 1.115 christos (char *)&newps->pstat_startzero));
749 1.68 thorpej memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
750 1.115 christos ((char *)&newps->pstat_endcopy -
751 1.115 christos (char *)&newps->pstat_startcopy));
752 1.68 thorpej
753 1.68 thorpej return (newps);
754 1.68 thorpej
755 1.68 thorpej }
756 1.68 thorpej
757 1.68 thorpej void
758 1.98 thorpej pstatsfree(struct pstats *ps)
759 1.68 thorpej {
760 1.68 thorpej
761 1.130 ad pool_cache_put(pstats_cache, ps);
762 1.74 atatat }
763 1.74 atatat
764 1.74 atatat /*
765 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
766 1.157 rmind * need to pick a valid process by PID.
767 1.157 rmind *
768 1.157 rmind * => Hold a reference on the process, on success.
769 1.74 atatat */
770 1.74 atatat static int
771 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
772 1.74 atatat {
773 1.157 rmind proc_t *p;
774 1.157 rmind int error;
775 1.74 atatat
776 1.157 rmind if (pid == PROC_CURPROC) {
777 1.157 rmind p = l->l_proc;
778 1.157 rmind } else {
779 1.157 rmind mutex_enter(proc_lock);
780 1.157 rmind p = proc_find(pid);
781 1.157 rmind if (p == NULL) {
782 1.157 rmind mutex_exit(proc_lock);
783 1.157 rmind return ESRCH;
784 1.157 rmind }
785 1.157 rmind }
786 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
787 1.157 rmind if (pid != PROC_CURPROC) {
788 1.157 rmind mutex_exit(proc_lock);
789 1.157 rmind }
790 1.157 rmind *p2 = p;
791 1.157 rmind return error;
792 1.74 atatat }
793 1.74 atatat
794 1.74 atatat /*
795 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name
796 1.158 rmind * for a process specified by PID.
797 1.74 atatat */
798 1.74 atatat static int
799 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
800 1.74 atatat {
801 1.158 rmind struct proc *p;
802 1.83 pk struct plimit *lim;
803 1.158 rmind char *cnbuf, *cname;
804 1.157 rmind struct sysctlnode node;
805 1.158 rmind size_t len;
806 1.158 rmind int error;
807 1.74 atatat
808 1.158 rmind /* First, validate the request. */
809 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
810 1.158 rmind return EINVAL;
811 1.74 atatat
812 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
813 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
814 1.74 atatat if (error)
815 1.157 rmind return error;
816 1.74 atatat
817 1.131 elad /* XXX-elad */
818 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
819 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
820 1.157 rmind if (error) {
821 1.158 rmind rw_exit(&p->p_reflock);
822 1.157 rmind return error;
823 1.157 rmind }
824 1.111 elad
825 1.158 rmind cnbuf = PNBUF_GET();
826 1.158 rmind
827 1.131 elad if (newp == NULL) {
828 1.158 rmind /* Get case: copy the core name into the buffer. */
829 1.131 elad error = kauth_authorize_process(l->l_cred,
830 1.158 rmind KAUTH_PROCESS_CORENAME, p,
831 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
832 1.157 rmind if (error) {
833 1.158 rmind goto done;
834 1.158 rmind }
835 1.158 rmind lim = p->p_limit;
836 1.158 rmind mutex_enter(&lim->pl_lock);
837 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
838 1.158 rmind mutex_exit(&lim->pl_lock);
839 1.158 rmind } else {
840 1.158 rmind /* Set case: just use the temporary buffer. */
841 1.158 rmind error = kauth_authorize_process(l->l_cred,
842 1.158 rmind KAUTH_PROCESS_CORENAME, p,
843 1.158 rmind KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
844 1.158 rmind if (error) {
845 1.158 rmind goto done;
846 1.157 rmind }
847 1.131 elad }
848 1.131 elad
849 1.74 atatat node = *rnode;
850 1.158 rmind node.sysctl_data = cnbuf;
851 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
852 1.74 atatat
853 1.163 rmind /* Return if error, or if caller is only getting the core name. */
854 1.158 rmind if (error || newp == NULL) {
855 1.100 yamt goto done;
856 1.157 rmind }
857 1.103 elad
858 1.74 atatat /*
859 1.158 rmind * Validate new core name. It must be either "core", "/core",
860 1.158 rmind * or end in ".core".
861 1.74 atatat */
862 1.158 rmind len = strlen(cnbuf);
863 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
864 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
865 1.100 yamt error = EINVAL;
866 1.100 yamt goto done;
867 1.100 yamt }
868 1.74 atatat
869 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */
870 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP);
871 1.158 rmind if (cname == NULL) {
872 1.100 yamt error = ENOMEM;
873 1.100 yamt goto done;
874 1.100 yamt }
875 1.158 rmind memcpy(cname, cnbuf, len);
876 1.160 rmind lim_setcorename(p, cname, len);
877 1.100 yamt done:
878 1.158 rmind rw_exit(&p->p_reflock);
879 1.158 rmind PNBUF_PUT(cnbuf);
880 1.100 yamt return error;
881 1.74 atatat }
882 1.74 atatat
883 1.74 atatat /*
884 1.163 rmind * sysctl_proc_stop: helper routine for checking/setting the stop flags.
885 1.74 atatat */
886 1.74 atatat static int
887 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
888 1.74 atatat {
889 1.163 rmind struct proc *p;
890 1.163 rmind int isset, flag, error = 0;
891 1.74 atatat struct sysctlnode node;
892 1.74 atatat
893 1.74 atatat if (namelen != 0)
894 1.163 rmind return EINVAL;
895 1.74 atatat
896 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
897 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
898 1.74 atatat if (error)
899 1.157 rmind return error;
900 1.74 atatat
901 1.131 elad /* XXX-elad */
902 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
903 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
904 1.163 rmind if (error) {
905 1.157 rmind goto out;
906 1.163 rmind }
907 1.111 elad
908 1.163 rmind /* Determine the flag. */
909 1.74 atatat switch (rnode->sysctl_num) {
910 1.74 atatat case PROC_PID_STOPFORK:
911 1.163 rmind flag = PS_STOPFORK;
912 1.74 atatat break;
913 1.74 atatat case PROC_PID_STOPEXEC:
914 1.163 rmind flag = PS_STOPEXEC;
915 1.74 atatat break;
916 1.74 atatat case PROC_PID_STOPEXIT:
917 1.163 rmind flag = PS_STOPEXIT;
918 1.74 atatat break;
919 1.74 atatat default:
920 1.157 rmind error = EINVAL;
921 1.157 rmind goto out;
922 1.74 atatat }
923 1.163 rmind isset = (p->p_flag & flag) ? 1 : 0;
924 1.74 atatat node = *rnode;
925 1.163 rmind node.sysctl_data = &isset;
926 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
927 1.163 rmind
928 1.163 rmind /* Return if error, or if callers is only getting the flag. */
929 1.163 rmind if (error || newp == NULL) {
930 1.157 rmind goto out;
931 1.163 rmind }
932 1.74 atatat
933 1.163 rmind /* Check if caller can set the flags. */
934 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
935 1.163 rmind p, KAUTH_ARG(flag), NULL, NULL);
936 1.163 rmind if (error) {
937 1.163 rmind goto out;
938 1.163 rmind }
939 1.163 rmind mutex_enter(p->p_lock);
940 1.163 rmind if (isset) {
941 1.163 rmind p->p_sflag |= flag;
942 1.163 rmind } else {
943 1.163 rmind p->p_sflag &= ~flag;
944 1.143 rmind }
945 1.163 rmind mutex_exit(p->p_lock);
946 1.157 rmind out:
947 1.163 rmind rw_exit(&p->p_reflock);
948 1.143 rmind return error;
949 1.74 atatat }
950 1.74 atatat
951 1.74 atatat /*
952 1.163 rmind * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
953 1.74 atatat */
954 1.74 atatat static int
955 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
956 1.74 atatat {
957 1.163 rmind struct proc *p;
958 1.74 atatat u_int limitno;
959 1.74 atatat int which, error = 0;
960 1.74 atatat struct rlimit alim;
961 1.74 atatat struct sysctlnode node;
962 1.74 atatat
963 1.74 atatat if (namelen != 0)
964 1.163 rmind return EINVAL;
965 1.74 atatat
966 1.74 atatat which = name[-1];
967 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
968 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
969 1.163 rmind return EINVAL;
970 1.74 atatat
971 1.74 atatat limitno = name[-2] - 1;
972 1.74 atatat if (limitno >= RLIM_NLIMITS)
973 1.163 rmind return EINVAL;
974 1.74 atatat
975 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
976 1.163 rmind return EINVAL;
977 1.74 atatat
978 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
979 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
980 1.74 atatat if (error)
981 1.157 rmind return error;
982 1.74 atatat
983 1.131 elad /* XXX-elad */
984 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
985 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
986 1.111 elad if (error)
987 1.157 rmind goto out;
988 1.111 elad
989 1.163 rmind /* Check if caller can retrieve the limits. */
990 1.131 elad if (newp == NULL) {
991 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
992 1.163 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
993 1.131 elad KAUTH_ARG(which));
994 1.131 elad if (error)
995 1.157 rmind goto out;
996 1.131 elad }
997 1.131 elad
998 1.163 rmind /* Retrieve the limits. */
999 1.74 atatat node = *rnode;
1000 1.163 rmind memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1001 1.163 rmind if (which == PROC_PID_LIMIT_TYPE_HARD) {
1002 1.74 atatat node.sysctl_data = &alim.rlim_max;
1003 1.163 rmind } else {
1004 1.74 atatat node.sysctl_data = &alim.rlim_cur;
1005 1.163 rmind }
1006 1.163 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
1007 1.74 atatat
1008 1.163 rmind /* Return if error, or if we are only retrieving the limits. */
1009 1.157 rmind if (error || newp == NULL) {
1010 1.157 rmind goto out;
1011 1.157 rmind }
1012 1.163 rmind error = dosetrlimit(l, p, limitno, &alim);
1013 1.157 rmind out:
1014 1.163 rmind rw_exit(&p->p_reflock);
1015 1.157 rmind return error;
1016 1.74 atatat }
1017 1.74 atatat
1018 1.156 pooka static struct sysctllog *proc_sysctllog;
1019 1.156 pooka
1020 1.74 atatat /*
1021 1.74 atatat * and finally, the actually glue that sticks it to the tree
1022 1.74 atatat */
1023 1.156 pooka static void
1024 1.156 pooka sysctl_proc_setup()
1025 1.74 atatat {
1026 1.74 atatat
1027 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1028 1.76 atatat CTLFLAG_PERMANENT,
1029 1.74 atatat CTLTYPE_NODE, "proc", NULL,
1030 1.74 atatat NULL, 0, NULL, 0,
1031 1.74 atatat CTL_PROC, CTL_EOL);
1032 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1033 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1034 1.78 atatat CTLTYPE_NODE, "curproc",
1035 1.78 atatat SYSCTL_DESCR("Per-process settings"),
1036 1.74 atatat NULL, 0, NULL, 0,
1037 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
1038 1.74 atatat
1039 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1040 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1041 1.78 atatat CTLTYPE_STRING, "corename",
1042 1.78 atatat SYSCTL_DESCR("Core file name"),
1043 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1044 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1045 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1046 1.76 atatat CTLFLAG_PERMANENT,
1047 1.78 atatat CTLTYPE_NODE, "rlimit",
1048 1.78 atatat SYSCTL_DESCR("Process limits"),
1049 1.74 atatat NULL, 0, NULL, 0,
1050 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1051 1.74 atatat
1052 1.74 atatat #define create_proc_plimit(s, n) do { \
1053 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1054 1.76 atatat CTLFLAG_PERMANENT, \
1055 1.78 atatat CTLTYPE_NODE, s, \
1056 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
1057 1.74 atatat NULL, 0, NULL, 0, \
1058 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1059 1.74 atatat CTL_EOL); \
1060 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1061 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1062 1.78 atatat CTLTYPE_QUAD, "soft", \
1063 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
1064 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1065 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1066 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1067 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1068 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1069 1.78 atatat CTLTYPE_QUAD, "hard", \
1070 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
1071 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1072 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1073 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1074 1.74 atatat } while (0/*CONSTCOND*/)
1075 1.74 atatat
1076 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1077 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1078 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1079 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1080 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1081 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1082 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1083 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1084 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1085 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1086 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1087 1.74 atatat
1088 1.74 atatat #undef create_proc_plimit
1089 1.74 atatat
1090 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1091 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1092 1.78 atatat CTLTYPE_INT, "stopfork",
1093 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1094 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1095 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1096 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1097 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1098 1.78 atatat CTLTYPE_INT, "stopexec",
1099 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1100 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1101 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1102 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1103 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1104 1.78 atatat CTLTYPE_INT, "stopexit",
1105 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1106 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1107 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1108 1.17 cgd }
1109