Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.182.4.1
      1  1.182.4.1    martin /*	$NetBSD: kern_resource.c,v 1.182.4.1 2019/12/12 20:43:08 martin Exp $	*/
      2       1.20       cgd 
      3       1.17       cgd /*-
      4       1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
      5       1.19       cgd  *	The Regents of the University of California.  All rights reserved.
      6       1.17       cgd  * (c) UNIX System Laboratories, Inc.
      7       1.17       cgd  * All or some portions of this file are derived from material licensed
      8       1.17       cgd  * to the University of California by American Telephone and Telegraph
      9       1.17       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10       1.17       cgd  * the permission of UNIX System Laboratories, Inc.
     11       1.17       cgd  *
     12       1.17       cgd  * Redistribution and use in source and binary forms, with or without
     13       1.17       cgd  * modification, are permitted provided that the following conditions
     14       1.17       cgd  * are met:
     15       1.17       cgd  * 1. Redistributions of source code must retain the above copyright
     16       1.17       cgd  *    notice, this list of conditions and the following disclaimer.
     17       1.17       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.17       cgd  *    notice, this list of conditions and the following disclaimer in the
     19       1.17       cgd  *    documentation and/or other materials provided with the distribution.
     20       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     21       1.17       cgd  *    may be used to endorse or promote products derived from this software
     22       1.17       cgd  *    without specific prior written permission.
     23       1.17       cgd  *
     24       1.17       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25       1.17       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26       1.17       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27       1.17       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28       1.17       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29       1.17       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30       1.17       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31       1.17       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32       1.17       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33       1.17       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34       1.17       cgd  * SUCH DAMAGE.
     35       1.17       cgd  *
     36       1.45      fvdl  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37       1.17       cgd  */
     38       1.61     lukem 
     39       1.61     lukem #include <sys/cdefs.h>
     40  1.182.4.1    martin __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.182.4.1 2019/12/12 20:43:08 martin Exp $");
     41       1.44       mrg 
     42       1.17       cgd #include <sys/param.h>
     43       1.22       cgd #include <sys/systm.h>
     44       1.17       cgd #include <sys/kernel.h>
     45       1.19       cgd #include <sys/file.h>
     46       1.17       cgd #include <sys/resourcevar.h>
     47      1.132      yamt #include <sys/kmem.h>
     48      1.100      yamt #include <sys/namei.h>
     49       1.49   thorpej #include <sys/pool.h>
     50       1.17       cgd #include <sys/proc.h>
     51       1.74    atatat #include <sys/sysctl.h>
     52      1.129      yamt #include <sys/timevar.h>
     53      1.101      elad #include <sys/kauth.h>
     54      1.125        ad #include <sys/atomic.h>
     55       1.22       cgd #include <sys/mount.h>
     56       1.22       cgd #include <sys/syscallargs.h>
     57      1.136        ad #include <sys/atomic.h>
     58       1.17       cgd 
     59       1.43       mrg #include <uvm/uvm_extern.h>
     60       1.43       mrg 
     61       1.17       cgd /*
     62       1.60       eeh  * Maximum process data and stack limits.
     63       1.60       eeh  * They are variables so they are patchable.
     64       1.60       eeh  */
     65      1.167     rmind rlim_t			maxdmap = MAXDSIZ;
     66      1.167     rmind rlim_t			maxsmap = MAXSSIZ;
     67       1.60       eeh 
     68      1.164     rmind static pool_cache_t	plimit_cache	__read_mostly;
     69      1.164     rmind static pool_cache_t	pstats_cache	__read_mostly;
     70      1.130        ad 
     71      1.154      elad static kauth_listener_t	resource_listener;
     72      1.164     rmind static struct sysctllog	*proc_sysctllog;
     73      1.153      elad 
     74      1.164     rmind static int	donice(struct lwp *, struct proc *, int);
     75      1.164     rmind static void	sysctl_proc_setup(void);
     76      1.156     pooka 
     77      1.153      elad static int
     78      1.154      elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79      1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
     80      1.153      elad {
     81      1.153      elad 	struct proc *p;
     82      1.153      elad 	int result;
     83      1.153      elad 
     84      1.153      elad 	result = KAUTH_RESULT_DEFER;
     85      1.153      elad 	p = arg0;
     86      1.153      elad 
     87      1.154      elad 	switch (action) {
     88      1.154      elad 	case KAUTH_PROCESS_NICE:
     89      1.154      elad 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90      1.164     rmind 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91      1.164     rmind 			break;
     92      1.164     rmind 		}
     93      1.153      elad 
     94      1.164     rmind 		if ((u_long)arg1 >= p->p_nice)
     95      1.164     rmind 			result = KAUTH_RESULT_ALLOW;
     96      1.153      elad 
     97      1.154      elad 		break;
     98      1.154      elad 
     99      1.154      elad 	case KAUTH_PROCESS_RLIMIT: {
    100      1.154      elad 		enum kauth_process_req req;
    101      1.153      elad 
    102      1.154      elad 		req = (enum kauth_process_req)(unsigned long)arg1;
    103      1.153      elad 
    104      1.154      elad 		switch (req) {
    105      1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106      1.153      elad 			result = KAUTH_RESULT_ALLOW;
    107      1.154      elad 			break;
    108      1.154      elad 
    109      1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110      1.154      elad 			struct rlimit *new_rlimit;
    111      1.154      elad 			u_long which;
    112      1.154      elad 
    113      1.154      elad 			if ((p != curlwp->l_proc) &&
    114      1.154      elad 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115      1.154      elad 				break;
    116      1.154      elad 
    117      1.154      elad 			new_rlimit = arg2;
    118      1.154      elad 			which = (u_long)arg3;
    119      1.154      elad 
    120      1.154      elad 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121      1.154      elad 				result = KAUTH_RESULT_ALLOW;
    122      1.154      elad 
    123      1.154      elad 			break;
    124      1.154      elad 			}
    125      1.154      elad 
    126      1.154      elad 		default:
    127      1.154      elad 			break;
    128      1.154      elad 		}
    129      1.154      elad 
    130      1.154      elad 		break;
    131      1.154      elad 	}
    132      1.154      elad 
    133      1.154      elad 	default:
    134      1.154      elad 		break;
    135      1.153      elad 	}
    136      1.153      elad 
    137      1.153      elad 	return result;
    138      1.153      elad }
    139      1.153      elad 
    140      1.130        ad void
    141      1.130        ad resource_init(void)
    142      1.130        ad {
    143      1.130        ad 
    144      1.130        ad 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145      1.130        ad 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146      1.130        ad 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147      1.130        ad 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148      1.153      elad 
    149      1.154      elad 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150      1.154      elad 	    resource_listener_cb, NULL);
    151      1.156     pooka 
    152      1.156     pooka 	sysctl_proc_setup();
    153      1.130        ad }
    154      1.130        ad 
    155       1.60       eeh /*
    156       1.17       cgd  * Resource controls and accounting.
    157       1.17       cgd  */
    158       1.17       cgd 
    159       1.25       cgd int
    160      1.134     rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161      1.134     rmind     register_t *retval)
    162       1.30   thorpej {
    163      1.128       dsl 	/* {
    164       1.22       cgd 		syscallarg(int) which;
    165       1.81    kleink 		syscallarg(id_t) who;
    166      1.128       dsl 	} */
    167       1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    168      1.164     rmind 	id_t who = SCARG(uap, who);
    169       1.54  augustss 	int low = NZERO + PRIO_MAX + 1;
    170       1.17       cgd 
    171      1.138        ad 	mutex_enter(proc_lock);
    172       1.22       cgd 	switch (SCARG(uap, which)) {
    173       1.17       cgd 	case PRIO_PROCESS:
    174      1.171     njoly 		p = who ? proc_find(who) : curp;
    175      1.113        ad 		if (p != NULL)
    176      1.113        ad 			low = p->p_nice;
    177       1.17       cgd 		break;
    178       1.17       cgd 
    179       1.17       cgd 	case PRIO_PGRP: {
    180       1.54  augustss 		struct pgrp *pg;
    181       1.17       cgd 
    182      1.113        ad 		if (who == 0)
    183       1.17       cgd 			pg = curp->p_pgrp;
    184      1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    185       1.17       cgd 			break;
    186       1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187       1.17       cgd 			if (p->p_nice < low)
    188       1.17       cgd 				low = p->p_nice;
    189       1.17       cgd 		}
    190       1.17       cgd 		break;
    191       1.17       cgd 	}
    192       1.17       cgd 
    193       1.17       cgd 	case PRIO_USER:
    194      1.113        ad 		if (who == 0)
    195      1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    196       1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    197      1.139        ad 			mutex_enter(p->p_lock);
    198      1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    199      1.113        ad 			    (uid_t)who && p->p_nice < low)
    200       1.17       cgd 				low = p->p_nice;
    201      1.139        ad 			mutex_exit(p->p_lock);
    202       1.64      matt 		}
    203       1.17       cgd 		break;
    204       1.17       cgd 
    205       1.17       cgd 	default:
    206      1.138        ad 		mutex_exit(proc_lock);
    207      1.164     rmind 		return EINVAL;
    208       1.17       cgd 	}
    209      1.138        ad 	mutex_exit(proc_lock);
    210      1.113        ad 
    211      1.164     rmind 	if (low == NZERO + PRIO_MAX + 1) {
    212      1.164     rmind 		return ESRCH;
    213      1.164     rmind 	}
    214       1.37        ws 	*retval = low - NZERO;
    215      1.164     rmind 	return 0;
    216       1.17       cgd }
    217       1.17       cgd 
    218       1.25       cgd int
    219      1.134     rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220      1.134     rmind     register_t *retval)
    221       1.30   thorpej {
    222      1.128       dsl 	/* {
    223       1.22       cgd 		syscallarg(int) which;
    224       1.81    kleink 		syscallarg(id_t) who;
    225       1.22       cgd 		syscallarg(int) prio;
    226      1.128       dsl 	} */
    227       1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    228      1.164     rmind 	id_t who = SCARG(uap, who);
    229       1.17       cgd 	int found = 0, error = 0;
    230       1.17       cgd 
    231      1.138        ad 	mutex_enter(proc_lock);
    232       1.22       cgd 	switch (SCARG(uap, which)) {
    233       1.17       cgd 	case PRIO_PROCESS:
    234      1.157     rmind 		p = who ? proc_find(who) : curp;
    235      1.157     rmind 		if (p != NULL) {
    236      1.139        ad 			mutex_enter(p->p_lock);
    237      1.162  christos 			found++;
    238      1.113        ad 			error = donice(l, p, SCARG(uap, prio));
    239      1.139        ad 			mutex_exit(p->p_lock);
    240      1.113        ad 		}
    241       1.17       cgd 		break;
    242       1.17       cgd 
    243       1.17       cgd 	case PRIO_PGRP: {
    244       1.54  augustss 		struct pgrp *pg;
    245       1.87     perry 
    246      1.113        ad 		if (who == 0)
    247       1.17       cgd 			pg = curp->p_pgrp;
    248      1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    249       1.17       cgd 			break;
    250       1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251      1.139        ad 			mutex_enter(p->p_lock);
    252      1.162  christos 			found++;
    253      1.102        ad 			error = donice(l, p, SCARG(uap, prio));
    254      1.139        ad 			mutex_exit(p->p_lock);
    255      1.162  christos 			if (error)
    256      1.162  christos 				break;
    257       1.17       cgd 		}
    258       1.17       cgd 		break;
    259       1.17       cgd 	}
    260       1.17       cgd 
    261       1.17       cgd 	case PRIO_USER:
    262      1.113        ad 		if (who == 0)
    263      1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    264       1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    265      1.139        ad 			mutex_enter(p->p_lock);
    266      1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    267      1.102        ad 			    (uid_t)SCARG(uap, who)) {
    268      1.162  christos 				found++;
    269      1.102        ad 				error = donice(l, p, SCARG(uap, prio));
    270       1.17       cgd 			}
    271      1.139        ad 			mutex_exit(p->p_lock);
    272      1.162  christos 			if (error)
    273      1.162  christos 				break;
    274       1.64      matt 		}
    275       1.17       cgd 		break;
    276       1.17       cgd 
    277       1.17       cgd 	default:
    278      1.144     njoly 		mutex_exit(proc_lock);
    279      1.144     njoly 		return EINVAL;
    280       1.17       cgd 	}
    281      1.138        ad 	mutex_exit(proc_lock);
    282      1.164     rmind 
    283      1.164     rmind 	return (found == 0) ? ESRCH : error;
    284       1.17       cgd }
    285       1.17       cgd 
    286      1.113        ad /*
    287      1.113        ad  * Renice a process.
    288      1.113        ad  *
    289      1.113        ad  * Call with the target process' credentials locked.
    290      1.113        ad  */
    291      1.164     rmind static int
    292      1.102        ad donice(struct lwp *l, struct proc *chgp, int n)
    293       1.17       cgd {
    294      1.102        ad 	kauth_cred_t cred = l->l_cred;
    295      1.113        ad 
    296      1.139        ad 	KASSERT(mutex_owned(chgp->p_lock));
    297       1.17       cgd 
    298      1.152      elad 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299      1.152      elad 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300      1.152      elad 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301      1.164     rmind 		return EPERM;
    302      1.152      elad 
    303      1.164     rmind 	if (n > PRIO_MAX) {
    304       1.17       cgd 		n = PRIO_MAX;
    305      1.164     rmind 	}
    306      1.164     rmind 	if (n < PRIO_MIN) {
    307       1.17       cgd 		n = PRIO_MIN;
    308      1.164     rmind 	}
    309       1.37        ws 	n += NZERO;
    310      1.164     rmind 
    311      1.112      elad 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312      1.164     rmind 	    KAUTH_ARG(n), NULL, NULL)) {
    313      1.164     rmind 		return EACCES;
    314      1.164     rmind 	}
    315      1.164     rmind 
    316      1.117      yamt 	sched_nice(chgp, n);
    317      1.164     rmind 	return 0;
    318       1.17       cgd }
    319       1.17       cgd 
    320       1.25       cgd int
    321      1.134     rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322      1.134     rmind     register_t *retval)
    323       1.30   thorpej {
    324      1.128       dsl 	/* {
    325       1.42   mycroft 		syscallarg(int) which;
    326       1.39       cgd 		syscallarg(const struct rlimit *) rlp;
    327      1.128       dsl 	} */
    328      1.164     rmind 	int error, which = SCARG(uap, which);
    329       1.19       cgd 	struct rlimit alim;
    330       1.17       cgd 
    331       1.46     perry 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332      1.164     rmind 	if (error) {
    333      1.164     rmind 		return error;
    334      1.164     rmind 	}
    335      1.164     rmind 	return dosetrlimit(l, l->l_proc, which, &alim);
    336       1.17       cgd }
    337       1.17       cgd 
    338       1.17       cgd int
    339      1.102        ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340       1.17       cgd {
    341       1.54  augustss 	struct rlimit *alimp;
    342       1.17       cgd 	int error;
    343       1.17       cgd 
    344       1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    345      1.164     rmind 		return EINVAL;
    346       1.38  matthias 
    347       1.62  jdolecek 	if (limp->rlim_cur > limp->rlim_max) {
    348       1.62  jdolecek 		/*
    349       1.62  jdolecek 		 * This is programming error. According to SUSv2, we should
    350       1.62  jdolecek 		 * return error in this case.
    351       1.62  jdolecek 		 */
    352      1.164     rmind 		return EINVAL;
    353       1.62  jdolecek 	}
    354      1.122       dsl 
    355      1.122       dsl 	alimp = &p->p_rlimit[which];
    356      1.122       dsl 	/* if we don't change the value, no need to limcopy() */
    357      1.122       dsl 	if (limp->rlim_cur == alimp->rlim_cur &&
    358      1.122       dsl 	    limp->rlim_max == alimp->rlim_max)
    359      1.122       dsl 		return 0;
    360      1.122       dsl 
    361      1.112      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362      1.131      elad 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363      1.111      elad 	if (error)
    364      1.164     rmind 		return error;
    365       1.62  jdolecek 
    366      1.161     rmind 	lim_privatise(p);
    367      1.122       dsl 	/* p->p_limit is now unchangeable */
    368      1.122       dsl 	alimp = &p->p_rlimit[which];
    369       1.17       cgd 
    370       1.17       cgd 	switch (which) {
    371       1.17       cgd 
    372       1.17       cgd 	case RLIMIT_DATA:
    373       1.19       cgd 		if (limp->rlim_cur > maxdmap)
    374       1.19       cgd 			limp->rlim_cur = maxdmap;
    375       1.19       cgd 		if (limp->rlim_max > maxdmap)
    376       1.19       cgd 			limp->rlim_max = maxdmap;
    377       1.17       cgd 		break;
    378       1.17       cgd 
    379       1.17       cgd 	case RLIMIT_STACK:
    380       1.19       cgd 		if (limp->rlim_cur > maxsmap)
    381       1.19       cgd 			limp->rlim_cur = maxsmap;
    382       1.19       cgd 		if (limp->rlim_max > maxsmap)
    383       1.19       cgd 			limp->rlim_max = maxsmap;
    384       1.62  jdolecek 
    385       1.62  jdolecek 		/*
    386       1.62  jdolecek 		 * Return EINVAL if the new stack size limit is lower than
    387       1.62  jdolecek 		 * current usage. Otherwise, the process would get SIGSEGV the
    388      1.174       snj 		 * moment it would try to access anything on its current stack.
    389       1.62  jdolecek 		 * This conforms to SUSv2.
    390       1.62  jdolecek 		 */
    391      1.177   mlelstv 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    392      1.177   mlelstv 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    393      1.164     rmind 			return EINVAL;
    394      1.113        ad 		}
    395       1.40     enami 
    396       1.17       cgd 		/*
    397       1.40     enami 		 * Stack is allocated to the max at exec time with
    398       1.40     enami 		 * only "rlim_cur" bytes accessible (In other words,
    399       1.40     enami 		 * allocates stack dividing two contiguous regions at
    400       1.40     enami 		 * "rlim_cur" bytes boundary).
    401       1.40     enami 		 *
    402       1.40     enami 		 * Since allocation is done in terms of page, roundup
    403       1.40     enami 		 * "rlim_cur" (otherwise, contiguous regions
    404       1.40     enami 		 * overlap).  If stack limit is going up make more
    405       1.40     enami 		 * accessible, if going down make inaccessible.
    406       1.17       cgd 		 */
    407      1.175     njoly 		limp->rlim_max = round_page(limp->rlim_max);
    408       1.40     enami 		limp->rlim_cur = round_page(limp->rlim_cur);
    409       1.17       cgd 		if (limp->rlim_cur != alimp->rlim_cur) {
    410       1.48       eeh 			vaddr_t addr;
    411       1.48       eeh 			vsize_t size;
    412       1.17       cgd 			vm_prot_t prot;
    413      1.172       chs 			char *base, *tmp;
    414       1.17       cgd 
    415      1.172       chs 			base = p->p_vmspace->vm_minsaddr;
    416       1.17       cgd 			if (limp->rlim_cur > alimp->rlim_cur) {
    417       1.73       chs 				prot = VM_PROT_READ | VM_PROT_WRITE;
    418       1.17       cgd 				size = limp->rlim_cur - alimp->rlim_cur;
    419      1.172       chs 				tmp = STACK_GROW(base, alimp->rlim_cur);
    420       1.17       cgd 			} else {
    421       1.17       cgd 				prot = VM_PROT_NONE;
    422       1.17       cgd 				size = alimp->rlim_cur - limp->rlim_cur;
    423      1.172       chs 				tmp = STACK_GROW(base, limp->rlim_cur);
    424       1.17       cgd 			}
    425      1.172       chs 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    426       1.43       mrg 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    427      1.172       chs 			    addr, addr + size, prot, false);
    428       1.17       cgd 		}
    429       1.17       cgd 		break;
    430       1.19       cgd 
    431       1.19       cgd 	case RLIMIT_NOFILE:
    432       1.19       cgd 		if (limp->rlim_cur > maxfiles)
    433       1.19       cgd 			limp->rlim_cur = maxfiles;
    434       1.19       cgd 		if (limp->rlim_max > maxfiles)
    435       1.19       cgd 			limp->rlim_max = maxfiles;
    436       1.19       cgd 		break;
    437       1.19       cgd 
    438       1.19       cgd 	case RLIMIT_NPROC:
    439       1.19       cgd 		if (limp->rlim_cur > maxproc)
    440       1.19       cgd 			limp->rlim_cur = maxproc;
    441       1.19       cgd 		if (limp->rlim_max > maxproc)
    442       1.19       cgd 			limp->rlim_max = maxproc;
    443       1.19       cgd 		break;
    444      1.169  christos 
    445      1.169  christos 	case RLIMIT_NTHR:
    446      1.169  christos 		if (limp->rlim_cur > maxlwp)
    447      1.169  christos 			limp->rlim_cur = maxlwp;
    448      1.169  christos 		if (limp->rlim_max > maxlwp)
    449      1.169  christos 			limp->rlim_max = maxlwp;
    450      1.169  christos 		break;
    451       1.17       cgd 	}
    452      1.122       dsl 
    453      1.122       dsl 	mutex_enter(&p->p_limit->pl_lock);
    454       1.17       cgd 	*alimp = *limp;
    455      1.122       dsl 	mutex_exit(&p->p_limit->pl_lock);
    456      1.164     rmind 	return 0;
    457       1.17       cgd }
    458       1.17       cgd 
    459       1.25       cgd int
    460      1.134     rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    461      1.134     rmind     register_t *retval)
    462       1.30   thorpej {
    463      1.128       dsl 	/* {
    464       1.42   mycroft 		syscallarg(int) which;
    465       1.22       cgd 		syscallarg(struct rlimit *) rlp;
    466      1.128       dsl 	} */
    467       1.68   thorpej 	struct proc *p = l->l_proc;
    468       1.42   mycroft 	int which = SCARG(uap, which);
    469      1.119        ad 	struct rlimit rl;
    470       1.17       cgd 
    471       1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    472      1.164     rmind 		return EINVAL;
    473      1.119        ad 
    474      1.139        ad 	mutex_enter(p->p_lock);
    475      1.119        ad 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    476      1.139        ad 	mutex_exit(p->p_lock);
    477      1.119        ad 
    478      1.119        ad 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    479       1.17       cgd }
    480       1.17       cgd 
    481       1.17       cgd /*
    482       1.17       cgd  * Transform the running time and tick information in proc p into user,
    483       1.17       cgd  * system, and interrupt time usage.
    484      1.113        ad  *
    485      1.139        ad  * Should be called with p->p_lock held unless called from exit1().
    486       1.17       cgd  */
    487       1.25       cgd void
    488       1.98   thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    489      1.113        ad     struct timeval *ip, struct timeval *rp)
    490       1.17       cgd {
    491      1.182   mlelstv 	uint64_t u, st, ut, it, tot, dt;
    492       1.68   thorpej 	struct lwp *l;
    493      1.129      yamt 	struct bintime tm;
    494      1.129      yamt 	struct timeval tv;
    495       1.17       cgd 
    496      1.168      yamt 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    497      1.168      yamt 
    498      1.113        ad 	mutex_spin_enter(&p->p_stmutex);
    499       1.17       cgd 	st = p->p_sticks;
    500       1.17       cgd 	ut = p->p_uticks;
    501       1.17       cgd 	it = p->p_iticks;
    502      1.113        ad 	mutex_spin_exit(&p->p_stmutex);
    503       1.17       cgd 
    504      1.129      yamt 	tm = p->p_rtime;
    505      1.113        ad 
    506       1.70       dsl 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    507      1.113        ad 		lwp_lock(l);
    508      1.129      yamt 		bintime_add(&tm, &l->l_rtime);
    509  1.182.4.1    martin 		if ((l->l_pflag & LP_RUNNING) != 0 &&
    510  1.182.4.1    martin 		    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
    511      1.129      yamt 			struct bintime diff;
    512       1.68   thorpej 			/*
    513       1.68   thorpej 			 * Adjust for the current time slice.  This is
    514       1.68   thorpej 			 * actually fairly important since the error
    515       1.68   thorpej 			 * here is on the order of a time quantum,
    516       1.68   thorpej 			 * which is much greater than the sampling
    517       1.87     perry 			 * error.
    518       1.68   thorpej 			 */
    519      1.129      yamt 			binuptime(&diff);
    520  1.182.4.1    martin 			membar_consumer(); /* for softint_dispatch() */
    521      1.129      yamt 			bintime_sub(&diff, &l->l_stime);
    522      1.129      yamt 			bintime_add(&tm, &diff);
    523       1.68   thorpej 		}
    524      1.113        ad 		lwp_unlock(l);
    525       1.17       cgd 	}
    526       1.69       dsl 
    527       1.69       dsl 	tot = st + ut + it;
    528      1.129      yamt 	bintime2timeval(&tm, &tv);
    529      1.129      yamt 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    530       1.70       dsl 
    531       1.69       dsl 	if (tot == 0) {
    532       1.69       dsl 		/* No ticks, so can't use to share time out, split 50-50 */
    533       1.70       dsl 		st = ut = u / 2;
    534       1.70       dsl 	} else {
    535       1.70       dsl 		st = (u * st) / tot;
    536       1.70       dsl 		ut = (u * ut) / tot;
    537       1.69       dsl 	}
    538      1.180       kre 
    539      1.180       kre 	/*
    540      1.180       kre 	 * Try to avoid lying to the users (too much)
    541      1.180       kre 	 *
    542      1.180       kre 	 * Of course, user/sys time are based on sampling (ie: statistics)
    543      1.180       kre 	 * so that would be impossible, but convincing the mark
    544      1.180       kre 	 * that we have used less ?time this call than we had
    545      1.180       kre 	 * last time, is beyond reasonable...  (the con fails!)
    546      1.180       kre 	 *
    547      1.180       kre 	 * Note that since actual used time cannot decrease, either
    548      1.180       kre 	 * utime or stime (or both) must be greater now than last time
    549      1.180       kre 	 * (or both the same) - if one seems to have decreased, hold
    550      1.180       kre 	 * it constant and steal the necessary bump from the other
    551      1.180       kre 	 * which must have increased.
    552      1.180       kre 	 */
    553      1.180       kre 	if (p->p_xutime > ut) {
    554      1.182   mlelstv 		dt = p->p_xutime - ut;
    555      1.182   mlelstv 		st -= uimin(dt, st);
    556      1.180       kre 		ut = p->p_xutime;
    557      1.180       kre 	} else if (p->p_xstime > st) {
    558      1.182   mlelstv 		dt = p->p_xstime - st;
    559      1.182   mlelstv 		ut -= uimin(dt, ut);
    560      1.180       kre 		st = p->p_xstime;
    561      1.180       kre 	}
    562      1.180       kre 
    563      1.113        ad 	if (sp != NULL) {
    564      1.180       kre 		p->p_xstime = st;
    565      1.113        ad 		sp->tv_sec = st / 1000000;
    566      1.113        ad 		sp->tv_usec = st % 1000000;
    567      1.113        ad 	}
    568      1.113        ad 	if (up != NULL) {
    569      1.180       kre 		p->p_xutime = ut;
    570      1.113        ad 		up->tv_sec = ut / 1000000;
    571      1.113        ad 		up->tv_usec = ut % 1000000;
    572      1.113        ad 	}
    573       1.17       cgd 	if (ip != NULL) {
    574      1.180       kre 		if (it != 0)		/* it != 0 --> tot != 0 */
    575       1.70       dsl 			it = (u * it) / tot;
    576       1.17       cgd 		ip->tv_sec = it / 1000000;
    577       1.17       cgd 		ip->tv_usec = it % 1000000;
    578       1.17       cgd 	}
    579      1.113        ad 	if (rp != NULL) {
    580      1.129      yamt 		*rp = tv;
    581      1.113        ad 	}
    582       1.17       cgd }
    583       1.17       cgd 
    584       1.25       cgd int
    585      1.148  christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    586      1.134     rmind     register_t *retval)
    587       1.30   thorpej {
    588      1.128       dsl 	/* {
    589       1.22       cgd 		syscallarg(int) who;
    590       1.22       cgd 		syscallarg(struct rusage *) rusage;
    591      1.128       dsl 	} */
    592      1.170     njoly 	int error;
    593      1.119        ad 	struct rusage ru;
    594       1.68   thorpej 	struct proc *p = l->l_proc;
    595       1.17       cgd 
    596      1.170     njoly 	error = getrusage1(p, SCARG(uap, who), &ru);
    597      1.170     njoly 	if (error != 0)
    598      1.170     njoly 		return error;
    599      1.170     njoly 
    600      1.170     njoly 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    601      1.170     njoly }
    602      1.170     njoly 
    603      1.170     njoly int
    604      1.170     njoly getrusage1(struct proc *p, int who, struct rusage *ru) {
    605      1.170     njoly 
    606      1.170     njoly 	switch (who) {
    607       1.19       cgd 	case RUSAGE_SELF:
    608      1.139        ad 		mutex_enter(p->p_lock);
    609      1.178  christos 		ruspace(p);
    610      1.170     njoly 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    611      1.170     njoly 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    612      1.170     njoly 		rulwps(p, ru);
    613      1.139        ad 		mutex_exit(p->p_lock);
    614       1.17       cgd 		break;
    615       1.17       cgd 	case RUSAGE_CHILDREN:
    616      1.139        ad 		mutex_enter(p->p_lock);
    617      1.170     njoly 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    618      1.139        ad 		mutex_exit(p->p_lock);
    619       1.17       cgd 		break;
    620       1.17       cgd 	default:
    621      1.119        ad 		return EINVAL;
    622       1.17       cgd 	}
    623      1.119        ad 
    624      1.170     njoly 	return 0;
    625       1.17       cgd }
    626       1.17       cgd 
    627       1.25       cgd void
    628      1.178  christos ruspace(struct proc *p)
    629      1.178  christos {
    630      1.178  christos 	struct vmspace *vm = p->p_vmspace;
    631      1.178  christos 	struct rusage *ru = &p->p_stats->p_ru;
    632      1.178  christos 
    633      1.178  christos 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    634      1.178  christos 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    635      1.178  christos 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    636      1.179  christos #ifdef __HAVE_NO_PMAP_STATS
    637      1.179  christos 	/* We don't keep track of the max so we get the current */
    638      1.181  christos 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    639      1.179  christos #else
    640      1.179  christos 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    641      1.179  christos #endif
    642      1.178  christos }
    643      1.178  christos 
    644      1.178  christos void
    645       1.98   thorpej ruadd(struct rusage *ru, struct rusage *ru2)
    646       1.17       cgd {
    647       1.54  augustss 	long *ip, *ip2;
    648       1.54  augustss 	int i;
    649       1.17       cgd 
    650       1.27   mycroft 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    651       1.27   mycroft 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    652       1.17       cgd 	if (ru->ru_maxrss < ru2->ru_maxrss)
    653       1.17       cgd 		ru->ru_maxrss = ru2->ru_maxrss;
    654       1.17       cgd 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    655       1.17       cgd 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    656       1.17       cgd 		*ip++ += *ip2++;
    657       1.17       cgd }
    658       1.17       cgd 
    659      1.137        ad void
    660      1.137        ad rulwps(proc_t *p, struct rusage *ru)
    661      1.137        ad {
    662      1.137        ad 	lwp_t *l;
    663      1.137        ad 
    664      1.139        ad 	KASSERT(mutex_owned(p->p_lock));
    665      1.137        ad 
    666      1.137        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    667      1.137        ad 		ruadd(ru, &l->l_ru);
    668      1.137        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    669      1.137        ad 		ru->ru_nivcsw += l->l_nivcsw;
    670      1.137        ad 	}
    671      1.137        ad }
    672      1.137        ad 
    673       1.17       cgd /*
    674      1.161     rmind  * lim_copy: make a copy of the plimit structure.
    675      1.113        ad  *
    676      1.161     rmind  * We use copy-on-write after fork, and copy when a limit is changed.
    677       1.17       cgd  */
    678       1.17       cgd struct plimit *
    679      1.122       dsl lim_copy(struct plimit *lim)
    680       1.17       cgd {
    681      1.122       dsl 	struct plimit *newlim;
    682      1.113        ad 	char *corename;
    683      1.122       dsl 	size_t alen, len;
    684       1.17       cgd 
    685      1.130        ad 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    686      1.121       dsl 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    687      1.161     rmind 	newlim->pl_writeable = false;
    688      1.121       dsl 	newlim->pl_refcnt = 1;
    689      1.122       dsl 	newlim->pl_sv_limit = NULL;
    690      1.122       dsl 
    691      1.122       dsl 	mutex_enter(&lim->pl_lock);
    692      1.122       dsl 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    693      1.122       dsl 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    694       1.83        pk 
    695      1.161     rmind 	/*
    696      1.161     rmind 	 * Note: the common case is a use of default core name.
    697      1.161     rmind 	 */
    698      1.122       dsl 	alen = 0;
    699      1.122       dsl 	corename = NULL;
    700      1.113        ad 	for (;;) {
    701      1.122       dsl 		if (lim->pl_corename == defcorename) {
    702      1.122       dsl 			newlim->pl_corename = defcorename;
    703      1.161     rmind 			newlim->pl_cnlen = 0;
    704      1.122       dsl 			break;
    705      1.122       dsl 		}
    706      1.161     rmind 		len = lim->pl_cnlen;
    707      1.161     rmind 		if (len == alen) {
    708      1.122       dsl 			newlim->pl_corename = corename;
    709      1.161     rmind 			newlim->pl_cnlen = len;
    710      1.122       dsl 			memcpy(corename, lim->pl_corename, len);
    711      1.122       dsl 			corename = NULL;
    712      1.122       dsl 			break;
    713      1.122       dsl 		}
    714      1.122       dsl 		mutex_exit(&lim->pl_lock);
    715      1.161     rmind 		if (corename) {
    716      1.161     rmind 			kmem_free(corename, alen);
    717      1.161     rmind 		}
    718      1.122       dsl 		alen = len;
    719      1.161     rmind 		corename = kmem_alloc(alen, KM_SLEEP);
    720      1.121       dsl 		mutex_enter(&lim->pl_lock);
    721      1.122       dsl 	}
    722      1.122       dsl 	mutex_exit(&lim->pl_lock);
    723      1.161     rmind 
    724      1.161     rmind 	if (corename) {
    725      1.161     rmind 		kmem_free(corename, alen);
    726      1.161     rmind 	}
    727      1.122       dsl 	return newlim;
    728      1.122       dsl }
    729      1.122       dsl 
    730      1.122       dsl void
    731      1.122       dsl lim_addref(struct plimit *lim)
    732      1.122       dsl {
    733      1.125        ad 	atomic_inc_uint(&lim->pl_refcnt);
    734      1.122       dsl }
    735      1.113        ad 
    736      1.122       dsl /*
    737      1.161     rmind  * lim_privatise: give a process its own private plimit structure.
    738      1.122       dsl  */
    739      1.122       dsl void
    740      1.161     rmind lim_privatise(proc_t *p)
    741      1.122       dsl {
    742      1.161     rmind 	struct plimit *lim = p->p_limit, *newlim;
    743      1.122       dsl 
    744      1.161     rmind 	if (lim->pl_writeable) {
    745      1.122       dsl 		return;
    746      1.122       dsl 	}
    747      1.122       dsl 
    748      1.122       dsl 	newlim = lim_copy(lim);
    749      1.113        ad 
    750      1.139        ad 	mutex_enter(p->p_lock);
    751      1.161     rmind 	if (p->p_limit->pl_writeable) {
    752      1.161     rmind 		/* Other thread won the race. */
    753      1.139        ad 		mutex_exit(p->p_lock);
    754      1.159     rmind 		lim_free(newlim);
    755      1.122       dsl 		return;
    756      1.113        ad 	}
    757       1.83        pk 
    758      1.122       dsl 	/*
    759      1.161     rmind 	 * Since p->p_limit can be accessed without locked held,
    760      1.161     rmind 	 * old limit structure must not be deleted yet.
    761      1.122       dsl 	 */
    762      1.122       dsl 	newlim->pl_sv_limit = p->p_limit;
    763      1.161     rmind 	newlim->pl_writeable = true;
    764      1.122       dsl 	p->p_limit = newlim;
    765      1.139        ad 	mutex_exit(p->p_lock);
    766       1.32   mycroft }
    767       1.32   mycroft 
    768       1.32   mycroft void
    769      1.160     rmind lim_setcorename(proc_t *p, char *name, size_t len)
    770      1.160     rmind {
    771      1.160     rmind 	struct plimit *lim;
    772      1.160     rmind 	char *oname;
    773      1.161     rmind 	size_t olen;
    774      1.160     rmind 
    775      1.161     rmind 	lim_privatise(p);
    776      1.160     rmind 	lim = p->p_limit;
    777      1.160     rmind 
    778      1.160     rmind 	mutex_enter(&lim->pl_lock);
    779      1.160     rmind 	oname = lim->pl_corename;
    780      1.161     rmind 	olen = lim->pl_cnlen;
    781      1.160     rmind 	lim->pl_corename = name;
    782      1.161     rmind 	lim->pl_cnlen = len;
    783      1.160     rmind 	mutex_exit(&lim->pl_lock);
    784      1.160     rmind 
    785      1.160     rmind 	if (oname != defcorename) {
    786      1.161     rmind 		kmem_free(oname, olen);
    787      1.160     rmind 	}
    788      1.160     rmind }
    789      1.160     rmind 
    790      1.160     rmind void
    791      1.159     rmind lim_free(struct plimit *lim)
    792       1.32   mycroft {
    793      1.122       dsl 	struct plimit *sv_lim;
    794       1.85    kleink 
    795      1.122       dsl 	do {
    796      1.159     rmind 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    797      1.122       dsl 			return;
    798      1.159     rmind 		}
    799      1.159     rmind 		if (lim->pl_corename != defcorename) {
    800      1.161     rmind 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    801      1.159     rmind 		}
    802      1.122       dsl 		sv_lim = lim->pl_sv_limit;
    803      1.122       dsl 		mutex_destroy(&lim->pl_lock);
    804      1.130        ad 		pool_cache_put(plimit_cache, lim);
    805      1.122       dsl 	} while ((lim = sv_lim) != NULL);
    806       1.68   thorpej }
    807       1.68   thorpej 
    808       1.68   thorpej struct pstats *
    809       1.98   thorpej pstatscopy(struct pstats *ps)
    810       1.68   thorpej {
    811      1.164     rmind 	struct pstats *nps;
    812      1.164     rmind 	size_t len;
    813       1.87     perry 
    814      1.164     rmind 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    815       1.68   thorpej 
    816      1.164     rmind 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    817      1.164     rmind 	memset(&nps->pstat_startzero, 0, len);
    818       1.68   thorpej 
    819      1.164     rmind 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    820      1.164     rmind 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    821       1.68   thorpej 
    822      1.164     rmind 	return nps;
    823       1.68   thorpej }
    824       1.68   thorpej 
    825       1.68   thorpej void
    826       1.98   thorpej pstatsfree(struct pstats *ps)
    827       1.68   thorpej {
    828       1.68   thorpej 
    829      1.130        ad 	pool_cache_put(pstats_cache, ps);
    830       1.74    atatat }
    831       1.74    atatat 
    832       1.74    atatat /*
    833      1.157     rmind  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    834      1.157     rmind  * need to pick a valid process by PID.
    835      1.157     rmind  *
    836      1.157     rmind  * => Hold a reference on the process, on success.
    837       1.74    atatat  */
    838       1.74    atatat static int
    839      1.157     rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    840       1.74    atatat {
    841      1.157     rmind 	proc_t *p;
    842      1.157     rmind 	int error;
    843       1.74    atatat 
    844      1.157     rmind 	if (pid == PROC_CURPROC) {
    845      1.157     rmind 		p = l->l_proc;
    846      1.157     rmind 	} else {
    847      1.157     rmind 		mutex_enter(proc_lock);
    848      1.157     rmind 		p = proc_find(pid);
    849      1.157     rmind 		if (p == NULL) {
    850      1.157     rmind 			mutex_exit(proc_lock);
    851      1.157     rmind 			return ESRCH;
    852      1.157     rmind 		}
    853      1.157     rmind 	}
    854      1.157     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    855      1.157     rmind 	if (pid != PROC_CURPROC) {
    856      1.157     rmind 		mutex_exit(proc_lock);
    857      1.157     rmind 	}
    858      1.157     rmind 	*p2 = p;
    859      1.157     rmind 	return error;
    860       1.74    atatat }
    861       1.74    atatat 
    862       1.74    atatat /*
    863      1.176  pgoyette  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    864      1.176  pgoyette  */
    865      1.176  pgoyette static int
    866      1.176  pgoyette sysctl_proc_paxflags(SYSCTLFN_ARGS)
    867      1.176  pgoyette {
    868      1.176  pgoyette 	struct proc *p;
    869      1.176  pgoyette 	struct sysctlnode node;
    870      1.176  pgoyette 	int paxflags;
    871      1.176  pgoyette 	int error;
    872      1.176  pgoyette 
    873      1.176  pgoyette 	/* First, validate the request. */
    874      1.176  pgoyette 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    875      1.176  pgoyette 		return EINVAL;
    876      1.176  pgoyette 
    877      1.176  pgoyette 	/* Find the process.  Hold a reference (p_reflock), if found. */
    878      1.176  pgoyette 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    879      1.176  pgoyette 	if (error)
    880      1.176  pgoyette 		return error;
    881      1.176  pgoyette 
    882      1.176  pgoyette 	/* XXX-elad */
    883      1.176  pgoyette 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    884      1.176  pgoyette 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    885      1.176  pgoyette 	if (error) {
    886      1.176  pgoyette 		rw_exit(&p->p_reflock);
    887      1.176  pgoyette 		return error;
    888      1.176  pgoyette 	}
    889      1.176  pgoyette 
    890      1.176  pgoyette 	/* Retrieve the limits. */
    891      1.176  pgoyette 	node = *rnode;
    892      1.176  pgoyette 	paxflags = p->p_pax;
    893      1.176  pgoyette 	node.sysctl_data = &paxflags;
    894      1.176  pgoyette 
    895      1.176  pgoyette 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    896      1.176  pgoyette 
    897      1.176  pgoyette 	/* If attempting to write new value, it's an error */
    898      1.176  pgoyette 	if (error == 0 && newp != NULL)
    899      1.176  pgoyette 		error = EACCES;
    900      1.176  pgoyette 
    901      1.176  pgoyette 	rw_exit(&p->p_reflock);
    902      1.176  pgoyette 	return error;
    903      1.176  pgoyette }
    904      1.176  pgoyette 
    905      1.176  pgoyette /*
    906      1.158     rmind  * sysctl_proc_corename: helper routine to get or set the core file name
    907      1.158     rmind  * for a process specified by PID.
    908       1.74    atatat  */
    909       1.74    atatat static int
    910       1.74    atatat sysctl_proc_corename(SYSCTLFN_ARGS)
    911       1.74    atatat {
    912      1.158     rmind 	struct proc *p;
    913       1.83        pk 	struct plimit *lim;
    914      1.158     rmind 	char *cnbuf, *cname;
    915      1.157     rmind 	struct sysctlnode node;
    916      1.158     rmind 	size_t len;
    917      1.158     rmind 	int error;
    918       1.74    atatat 
    919      1.158     rmind 	/* First, validate the request. */
    920      1.158     rmind 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    921      1.158     rmind 		return EINVAL;
    922       1.74    atatat 
    923      1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    924      1.158     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    925       1.74    atatat 	if (error)
    926      1.157     rmind 		return error;
    927       1.74    atatat 
    928      1.131      elad 	/* XXX-elad */
    929      1.158     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    930      1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    931      1.157     rmind 	if (error) {
    932      1.158     rmind 		rw_exit(&p->p_reflock);
    933      1.157     rmind 		return error;
    934      1.157     rmind 	}
    935      1.111      elad 
    936      1.158     rmind 	cnbuf = PNBUF_GET();
    937      1.158     rmind 
    938      1.165       mrg 	if (oldp) {
    939      1.158     rmind 		/* Get case: copy the core name into the buffer. */
    940      1.131      elad 		error = kauth_authorize_process(l->l_cred,
    941      1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    942      1.131      elad 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    943      1.157     rmind 		if (error) {
    944      1.158     rmind 			goto done;
    945      1.158     rmind 		}
    946      1.158     rmind 		lim = p->p_limit;
    947      1.158     rmind 		mutex_enter(&lim->pl_lock);
    948      1.158     rmind 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    949      1.158     rmind 		mutex_exit(&lim->pl_lock);
    950      1.165       mrg 	}
    951      1.131      elad 
    952       1.74    atatat 	node = *rnode;
    953      1.158     rmind 	node.sysctl_data = cnbuf;
    954       1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    955       1.74    atatat 
    956      1.163     rmind 	/* Return if error, or if caller is only getting the core name. */
    957      1.158     rmind 	if (error || newp == NULL) {
    958      1.100      yamt 		goto done;
    959      1.157     rmind 	}
    960      1.103      elad 
    961       1.74    atatat 	/*
    962      1.166     rmind 	 * Set case.  Check permission and then validate new core name.
    963      1.166     rmind 	 * It must be either "core", "/core", or end in ".core".
    964       1.74    atatat 	 */
    965      1.166     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    966      1.166     rmind 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    967      1.166     rmind 	if (error) {
    968      1.166     rmind 		goto done;
    969      1.166     rmind 	}
    970      1.158     rmind 	len = strlen(cnbuf);
    971      1.158     rmind 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    972      1.158     rmind 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    973      1.100      yamt 		error = EINVAL;
    974      1.100      yamt 		goto done;
    975      1.100      yamt 	}
    976       1.74    atatat 
    977      1.158     rmind 	/* Allocate, copy and set the new core name for plimit structure. */
    978      1.161     rmind 	cname = kmem_alloc(++len, KM_NOSLEEP);
    979      1.158     rmind 	if (cname == NULL) {
    980      1.100      yamt 		error = ENOMEM;
    981      1.100      yamt 		goto done;
    982      1.100      yamt 	}
    983      1.158     rmind 	memcpy(cname, cnbuf, len);
    984      1.160     rmind 	lim_setcorename(p, cname, len);
    985      1.100      yamt done:
    986      1.158     rmind 	rw_exit(&p->p_reflock);
    987      1.158     rmind 	PNBUF_PUT(cnbuf);
    988      1.100      yamt 	return error;
    989       1.74    atatat }
    990       1.74    atatat 
    991       1.74    atatat /*
    992      1.163     rmind  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    993       1.74    atatat  */
    994       1.74    atatat static int
    995       1.74    atatat sysctl_proc_stop(SYSCTLFN_ARGS)
    996       1.74    atatat {
    997      1.163     rmind 	struct proc *p;
    998      1.163     rmind 	int isset, flag, error = 0;
    999       1.74    atatat 	struct sysctlnode node;
   1000       1.74    atatat 
   1001       1.74    atatat 	if (namelen != 0)
   1002      1.163     rmind 		return EINVAL;
   1003       1.74    atatat 
   1004      1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1005      1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1006       1.74    atatat 	if (error)
   1007      1.157     rmind 		return error;
   1008       1.74    atatat 
   1009      1.131      elad 	/* XXX-elad */
   1010      1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1011      1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1012      1.163     rmind 	if (error) {
   1013      1.157     rmind 		goto out;
   1014      1.163     rmind 	}
   1015      1.111      elad 
   1016      1.163     rmind 	/* Determine the flag. */
   1017       1.74    atatat 	switch (rnode->sysctl_num) {
   1018       1.74    atatat 	case PROC_PID_STOPFORK:
   1019      1.163     rmind 		flag = PS_STOPFORK;
   1020       1.74    atatat 		break;
   1021       1.74    atatat 	case PROC_PID_STOPEXEC:
   1022      1.163     rmind 		flag = PS_STOPEXEC;
   1023       1.74    atatat 		break;
   1024       1.74    atatat 	case PROC_PID_STOPEXIT:
   1025      1.163     rmind 		flag = PS_STOPEXIT;
   1026       1.74    atatat 		break;
   1027       1.74    atatat 	default:
   1028      1.157     rmind 		error = EINVAL;
   1029      1.157     rmind 		goto out;
   1030       1.74    atatat 	}
   1031      1.163     rmind 	isset = (p->p_flag & flag) ? 1 : 0;
   1032       1.74    atatat 	node = *rnode;
   1033      1.163     rmind 	node.sysctl_data = &isset;
   1034       1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1035      1.163     rmind 
   1036      1.163     rmind 	/* Return if error, or if callers is only getting the flag. */
   1037      1.163     rmind 	if (error || newp == NULL) {
   1038      1.157     rmind 		goto out;
   1039      1.163     rmind 	}
   1040       1.74    atatat 
   1041      1.163     rmind 	/* Check if caller can set the flags. */
   1042      1.111      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1043      1.163     rmind 	    p, KAUTH_ARG(flag), NULL, NULL);
   1044      1.163     rmind 	if (error) {
   1045      1.163     rmind 		goto out;
   1046      1.163     rmind 	}
   1047      1.163     rmind 	mutex_enter(p->p_lock);
   1048      1.163     rmind 	if (isset) {
   1049      1.163     rmind 		p->p_sflag |= flag;
   1050      1.163     rmind 	} else {
   1051      1.163     rmind 		p->p_sflag &= ~flag;
   1052      1.143     rmind 	}
   1053      1.163     rmind 	mutex_exit(p->p_lock);
   1054      1.157     rmind out:
   1055      1.163     rmind 	rw_exit(&p->p_reflock);
   1056      1.143     rmind 	return error;
   1057       1.74    atatat }
   1058       1.74    atatat 
   1059       1.74    atatat /*
   1060      1.163     rmind  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1061       1.74    atatat  */
   1062       1.74    atatat static int
   1063       1.74    atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
   1064       1.74    atatat {
   1065      1.163     rmind 	struct proc *p;
   1066       1.74    atatat 	u_int limitno;
   1067       1.74    atatat 	int which, error = 0;
   1068       1.74    atatat         struct rlimit alim;
   1069       1.74    atatat 	struct sysctlnode node;
   1070       1.74    atatat 
   1071       1.74    atatat 	if (namelen != 0)
   1072      1.163     rmind 		return EINVAL;
   1073       1.74    atatat 
   1074       1.74    atatat 	which = name[-1];
   1075       1.74    atatat 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1076       1.74    atatat 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1077      1.163     rmind 		return EINVAL;
   1078       1.74    atatat 
   1079       1.74    atatat 	limitno = name[-2] - 1;
   1080       1.74    atatat 	if (limitno >= RLIM_NLIMITS)
   1081      1.163     rmind 		return EINVAL;
   1082       1.74    atatat 
   1083       1.74    atatat 	if (name[-3] != PROC_PID_LIMIT)
   1084      1.163     rmind 		return EINVAL;
   1085       1.74    atatat 
   1086      1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1087      1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1088       1.74    atatat 	if (error)
   1089      1.157     rmind 		return error;
   1090       1.74    atatat 
   1091      1.131      elad 	/* XXX-elad */
   1092      1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1093      1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1094      1.111      elad 	if (error)
   1095      1.157     rmind 		goto out;
   1096      1.111      elad 
   1097      1.163     rmind 	/* Check if caller can retrieve the limits. */
   1098      1.131      elad 	if (newp == NULL) {
   1099      1.131      elad 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1100      1.163     rmind 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1101      1.131      elad 		    KAUTH_ARG(which));
   1102      1.131      elad 		if (error)
   1103      1.157     rmind 			goto out;
   1104      1.131      elad 	}
   1105      1.131      elad 
   1106      1.163     rmind 	/* Retrieve the limits. */
   1107       1.74    atatat 	node = *rnode;
   1108      1.163     rmind 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1109      1.163     rmind 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1110       1.74    atatat 		node.sysctl_data = &alim.rlim_max;
   1111      1.163     rmind 	} else {
   1112       1.74    atatat 		node.sysctl_data = &alim.rlim_cur;
   1113      1.163     rmind 	}
   1114      1.163     rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1115       1.74    atatat 
   1116      1.163     rmind 	/* Return if error, or if we are only retrieving the limits. */
   1117      1.157     rmind 	if (error || newp == NULL) {
   1118      1.157     rmind 		goto out;
   1119      1.157     rmind 	}
   1120      1.163     rmind 	error = dosetrlimit(l, p, limitno, &alim);
   1121      1.157     rmind out:
   1122      1.163     rmind 	rw_exit(&p->p_reflock);
   1123      1.157     rmind 	return error;
   1124       1.74    atatat }
   1125       1.74    atatat 
   1126       1.74    atatat /*
   1127      1.164     rmind  * Setup sysctl nodes.
   1128       1.74    atatat  */
   1129      1.156     pooka static void
   1130      1.164     rmind sysctl_proc_setup(void)
   1131       1.74    atatat {
   1132       1.74    atatat 
   1133      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1134       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1135       1.78    atatat 		       CTLTYPE_NODE, "curproc",
   1136       1.78    atatat 		       SYSCTL_DESCR("Per-process settings"),
   1137       1.74    atatat 		       NULL, 0, NULL, 0,
   1138       1.74    atatat 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1139       1.74    atatat 
   1140      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1141      1.176  pgoyette 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1142      1.176  pgoyette 		       CTLTYPE_INT, "paxflags",
   1143      1.176  pgoyette 		       SYSCTL_DESCR("Process PAX control flags"),
   1144      1.176  pgoyette 		       sysctl_proc_paxflags, 0, NULL, 0,
   1145      1.176  pgoyette 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1146      1.176  pgoyette 
   1147      1.176  pgoyette 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1148      1.103      elad 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1149       1.78    atatat 		       CTLTYPE_STRING, "corename",
   1150       1.78    atatat 		       SYSCTL_DESCR("Core file name"),
   1151       1.74    atatat 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1152       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1153      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1154       1.76    atatat 		       CTLFLAG_PERMANENT,
   1155       1.78    atatat 		       CTLTYPE_NODE, "rlimit",
   1156       1.78    atatat 		       SYSCTL_DESCR("Process limits"),
   1157       1.74    atatat 		       NULL, 0, NULL, 0,
   1158       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1159       1.74    atatat 
   1160       1.74    atatat #define create_proc_plimit(s, n) do {					\
   1161      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1162       1.76    atatat 		       CTLFLAG_PERMANENT,				\
   1163       1.78    atatat 		       CTLTYPE_NODE, s,					\
   1164       1.78    atatat 		       SYSCTL_DESCR("Process " s " limits"),		\
   1165       1.74    atatat 		       NULL, 0, NULL, 0,				\
   1166       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1167       1.74    atatat 		       CTL_EOL);					\
   1168      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1169       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1170       1.78    atatat 		       CTLTYPE_QUAD, "soft",				\
   1171       1.78    atatat 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1172       1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1173       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1174       1.74    atatat 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1175      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1176       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1177       1.78    atatat 		       CTLTYPE_QUAD, "hard",				\
   1178       1.78    atatat 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1179       1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1180       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1181       1.74    atatat 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1182       1.74    atatat 	} while (0/*CONSTCOND*/)
   1183       1.74    atatat 
   1184       1.74    atatat 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1185       1.74    atatat 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1186       1.74    atatat 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1187       1.74    atatat 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1188       1.74    atatat 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1189       1.74    atatat 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1190       1.74    atatat 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1191       1.74    atatat 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1192       1.74    atatat 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1193       1.79  christos 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1194      1.151       mrg 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1195      1.169  christos 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1196       1.74    atatat 
   1197       1.74    atatat #undef create_proc_plimit
   1198       1.74    atatat 
   1199      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1200       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1201       1.78    atatat 		       CTLTYPE_INT, "stopfork",
   1202       1.78    atatat 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1203       1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1204       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1205      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1206       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1207       1.78    atatat 		       CTLTYPE_INT, "stopexec",
   1208       1.78    atatat 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1209       1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1210       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1211      1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1212       1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1213       1.78    atatat 		       CTLTYPE_INT, "stopexit",
   1214       1.78    atatat 		       SYSCTL_DESCR("Stop process before completing exit"),
   1215       1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1216       1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1217       1.17       cgd }
   1218