kern_resource.c revision 1.193 1 1.193 ad /* $NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $ */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.193 ad __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.132 yamt #include <sys/kmem.h>
48 1.100 yamt #include <sys/namei.h>
49 1.49 thorpej #include <sys/pool.h>
50 1.17 cgd #include <sys/proc.h>
51 1.74 atatat #include <sys/sysctl.h>
52 1.129 yamt #include <sys/timevar.h>
53 1.101 elad #include <sys/kauth.h>
54 1.125 ad #include <sys/atomic.h>
55 1.22 cgd #include <sys/mount.h>
56 1.22 cgd #include <sys/syscallargs.h>
57 1.136 ad #include <sys/atomic.h>
58 1.17 cgd
59 1.43 mrg #include <uvm/uvm_extern.h>
60 1.43 mrg
61 1.17 cgd /*
62 1.60 eeh * Maximum process data and stack limits.
63 1.60 eeh * They are variables so they are patchable.
64 1.60 eeh */
65 1.167 rmind rlim_t maxdmap = MAXDSIZ;
66 1.167 rmind rlim_t maxsmap = MAXSSIZ;
67 1.60 eeh
68 1.193 ad static pool_cache_t plimit_cache __read_mostly;
69 1.193 ad static pool_cache_t pstats_cache __read_mostly;
70 1.193 ad
71 1.154 elad static kauth_listener_t resource_listener;
72 1.164 rmind static struct sysctllog *proc_sysctllog;
73 1.153 elad
74 1.164 rmind static int donice(struct lwp *, struct proc *, int);
75 1.164 rmind static void sysctl_proc_setup(void);
76 1.156 pooka
77 1.153 elad static int
78 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
80 1.153 elad {
81 1.153 elad struct proc *p;
82 1.153 elad int result;
83 1.153 elad
84 1.153 elad result = KAUTH_RESULT_DEFER;
85 1.153 elad p = arg0;
86 1.153 elad
87 1.154 elad switch (action) {
88 1.154 elad case KAUTH_PROCESS_NICE:
89 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 1.164 rmind kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 1.164 rmind break;
92 1.164 rmind }
93 1.153 elad
94 1.164 rmind if ((u_long)arg1 >= p->p_nice)
95 1.164 rmind result = KAUTH_RESULT_ALLOW;
96 1.153 elad
97 1.154 elad break;
98 1.154 elad
99 1.154 elad case KAUTH_PROCESS_RLIMIT: {
100 1.154 elad enum kauth_process_req req;
101 1.153 elad
102 1.186 joerg req = (enum kauth_process_req)(uintptr_t)arg1;
103 1.153 elad
104 1.154 elad switch (req) {
105 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 1.153 elad result = KAUTH_RESULT_ALLOW;
107 1.154 elad break;
108 1.154 elad
109 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 1.154 elad struct rlimit *new_rlimit;
111 1.154 elad u_long which;
112 1.154 elad
113 1.154 elad if ((p != curlwp->l_proc) &&
114 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0))
115 1.154 elad break;
116 1.154 elad
117 1.154 elad new_rlimit = arg2;
118 1.154 elad which = (u_long)arg3;
119 1.154 elad
120 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 1.154 elad result = KAUTH_RESULT_ALLOW;
122 1.154 elad
123 1.154 elad break;
124 1.154 elad }
125 1.154 elad
126 1.154 elad default:
127 1.154 elad break;
128 1.154 elad }
129 1.154 elad
130 1.154 elad break;
131 1.154 elad }
132 1.154 elad
133 1.154 elad default:
134 1.154 elad break;
135 1.153 elad }
136 1.153 elad
137 1.153 elad return result;
138 1.153 elad }
139 1.153 elad
140 1.130 ad void
141 1.130 ad resource_init(void)
142 1.130 ad {
143 1.130 ad
144 1.193 ad plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 1.193 ad "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 1.193 ad pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 1.193 ad "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148 1.193 ad
149 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 1.154 elad resource_listener_cb, NULL);
151 1.156 pooka
152 1.156 pooka sysctl_proc_setup();
153 1.130 ad }
154 1.130 ad
155 1.60 eeh /*
156 1.17 cgd * Resource controls and accounting.
157 1.17 cgd */
158 1.17 cgd
159 1.25 cgd int
160 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 1.134 rmind register_t *retval)
162 1.30 thorpej {
163 1.128 dsl /* {
164 1.22 cgd syscallarg(int) which;
165 1.81 kleink syscallarg(id_t) who;
166 1.128 dsl } */
167 1.68 thorpej struct proc *curp = l->l_proc, *p;
168 1.164 rmind id_t who = SCARG(uap, who);
169 1.54 augustss int low = NZERO + PRIO_MAX + 1;
170 1.17 cgd
171 1.187 ad mutex_enter(&proc_lock);
172 1.22 cgd switch (SCARG(uap, which)) {
173 1.17 cgd case PRIO_PROCESS:
174 1.171 njoly p = who ? proc_find(who) : curp;
175 1.113 ad if (p != NULL)
176 1.113 ad low = p->p_nice;
177 1.17 cgd break;
178 1.17 cgd
179 1.17 cgd case PRIO_PGRP: {
180 1.54 augustss struct pgrp *pg;
181 1.17 cgd
182 1.113 ad if (who == 0)
183 1.17 cgd pg = curp->p_pgrp;
184 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
185 1.17 cgd break;
186 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 1.17 cgd if (p->p_nice < low)
188 1.17 cgd low = p->p_nice;
189 1.17 cgd }
190 1.17 cgd break;
191 1.17 cgd }
192 1.17 cgd
193 1.17 cgd case PRIO_USER:
194 1.113 ad if (who == 0)
195 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
196 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
197 1.139 ad mutex_enter(p->p_lock);
198 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
199 1.113 ad (uid_t)who && p->p_nice < low)
200 1.17 cgd low = p->p_nice;
201 1.139 ad mutex_exit(p->p_lock);
202 1.64 matt }
203 1.17 cgd break;
204 1.17 cgd
205 1.17 cgd default:
206 1.187 ad mutex_exit(&proc_lock);
207 1.164 rmind return EINVAL;
208 1.17 cgd }
209 1.187 ad mutex_exit(&proc_lock);
210 1.113 ad
211 1.164 rmind if (low == NZERO + PRIO_MAX + 1) {
212 1.164 rmind return ESRCH;
213 1.164 rmind }
214 1.37 ws *retval = low - NZERO;
215 1.164 rmind return 0;
216 1.17 cgd }
217 1.17 cgd
218 1.25 cgd int
219 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 1.134 rmind register_t *retval)
221 1.30 thorpej {
222 1.128 dsl /* {
223 1.22 cgd syscallarg(int) which;
224 1.81 kleink syscallarg(id_t) who;
225 1.22 cgd syscallarg(int) prio;
226 1.128 dsl } */
227 1.68 thorpej struct proc *curp = l->l_proc, *p;
228 1.164 rmind id_t who = SCARG(uap, who);
229 1.17 cgd int found = 0, error = 0;
230 1.17 cgd
231 1.187 ad mutex_enter(&proc_lock);
232 1.22 cgd switch (SCARG(uap, which)) {
233 1.17 cgd case PRIO_PROCESS:
234 1.157 rmind p = who ? proc_find(who) : curp;
235 1.157 rmind if (p != NULL) {
236 1.139 ad mutex_enter(p->p_lock);
237 1.162 christos found++;
238 1.113 ad error = donice(l, p, SCARG(uap, prio));
239 1.139 ad mutex_exit(p->p_lock);
240 1.113 ad }
241 1.17 cgd break;
242 1.17 cgd
243 1.17 cgd case PRIO_PGRP: {
244 1.54 augustss struct pgrp *pg;
245 1.87 perry
246 1.113 ad if (who == 0)
247 1.17 cgd pg = curp->p_pgrp;
248 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
249 1.17 cgd break;
250 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 1.139 ad mutex_enter(p->p_lock);
252 1.162 christos found++;
253 1.102 ad error = donice(l, p, SCARG(uap, prio));
254 1.139 ad mutex_exit(p->p_lock);
255 1.162 christos if (error)
256 1.162 christos break;
257 1.17 cgd }
258 1.17 cgd break;
259 1.17 cgd }
260 1.17 cgd
261 1.17 cgd case PRIO_USER:
262 1.113 ad if (who == 0)
263 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
264 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
265 1.139 ad mutex_enter(p->p_lock);
266 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
267 1.102 ad (uid_t)SCARG(uap, who)) {
268 1.162 christos found++;
269 1.102 ad error = donice(l, p, SCARG(uap, prio));
270 1.17 cgd }
271 1.139 ad mutex_exit(p->p_lock);
272 1.162 christos if (error)
273 1.162 christos break;
274 1.64 matt }
275 1.17 cgd break;
276 1.17 cgd
277 1.17 cgd default:
278 1.187 ad mutex_exit(&proc_lock);
279 1.144 njoly return EINVAL;
280 1.17 cgd }
281 1.187 ad mutex_exit(&proc_lock);
282 1.164 rmind
283 1.164 rmind return (found == 0) ? ESRCH : error;
284 1.17 cgd }
285 1.17 cgd
286 1.113 ad /*
287 1.113 ad * Renice a process.
288 1.113 ad *
289 1.113 ad * Call with the target process' credentials locked.
290 1.113 ad */
291 1.164 rmind static int
292 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
293 1.17 cgd {
294 1.102 ad kauth_cred_t cred = l->l_cred;
295 1.113 ad
296 1.139 ad KASSERT(mutex_owned(chgp->p_lock));
297 1.17 cgd
298 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 1.164 rmind return EPERM;
302 1.152 elad
303 1.164 rmind if (n > PRIO_MAX) {
304 1.17 cgd n = PRIO_MAX;
305 1.164 rmind }
306 1.164 rmind if (n < PRIO_MIN) {
307 1.17 cgd n = PRIO_MIN;
308 1.164 rmind }
309 1.37 ws n += NZERO;
310 1.164 rmind
311 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 1.164 rmind KAUTH_ARG(n), NULL, NULL)) {
313 1.164 rmind return EACCES;
314 1.164 rmind }
315 1.164 rmind
316 1.117 yamt sched_nice(chgp, n);
317 1.164 rmind return 0;
318 1.17 cgd }
319 1.17 cgd
320 1.25 cgd int
321 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 1.134 rmind register_t *retval)
323 1.30 thorpej {
324 1.128 dsl /* {
325 1.42 mycroft syscallarg(int) which;
326 1.39 cgd syscallarg(const struct rlimit *) rlp;
327 1.128 dsl } */
328 1.164 rmind int error, which = SCARG(uap, which);
329 1.19 cgd struct rlimit alim;
330 1.17 cgd
331 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 1.164 rmind if (error) {
333 1.164 rmind return error;
334 1.164 rmind }
335 1.164 rmind return dosetrlimit(l, l->l_proc, which, &alim);
336 1.17 cgd }
337 1.17 cgd
338 1.17 cgd int
339 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 1.17 cgd {
341 1.54 augustss struct rlimit *alimp;
342 1.17 cgd int error;
343 1.17 cgd
344 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
345 1.164 rmind return EINVAL;
346 1.38 matthias
347 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
348 1.62 jdolecek /*
349 1.62 jdolecek * This is programming error. According to SUSv2, we should
350 1.62 jdolecek * return error in this case.
351 1.62 jdolecek */
352 1.164 rmind return EINVAL;
353 1.62 jdolecek }
354 1.122 dsl
355 1.122 dsl alimp = &p->p_rlimit[which];
356 1.122 dsl /* if we don't change the value, no need to limcopy() */
357 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur &&
358 1.122 dsl limp->rlim_max == alimp->rlim_max)
359 1.122 dsl return 0;
360 1.122 dsl
361 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 1.111 elad if (error)
364 1.164 rmind return error;
365 1.62 jdolecek
366 1.161 rmind lim_privatise(p);
367 1.122 dsl /* p->p_limit is now unchangeable */
368 1.122 dsl alimp = &p->p_rlimit[which];
369 1.17 cgd
370 1.17 cgd switch (which) {
371 1.17 cgd
372 1.17 cgd case RLIMIT_DATA:
373 1.19 cgd if (limp->rlim_cur > maxdmap)
374 1.19 cgd limp->rlim_cur = maxdmap;
375 1.19 cgd if (limp->rlim_max > maxdmap)
376 1.19 cgd limp->rlim_max = maxdmap;
377 1.17 cgd break;
378 1.17 cgd
379 1.17 cgd case RLIMIT_STACK:
380 1.19 cgd if (limp->rlim_cur > maxsmap)
381 1.19 cgd limp->rlim_cur = maxsmap;
382 1.19 cgd if (limp->rlim_max > maxsmap)
383 1.19 cgd limp->rlim_max = maxsmap;
384 1.62 jdolecek
385 1.62 jdolecek /*
386 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
387 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
388 1.174 snj * moment it would try to access anything on its current stack.
389 1.62 jdolecek * This conforms to SUSv2.
390 1.62 jdolecek */
391 1.177 mlelstv if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
392 1.177 mlelstv btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
393 1.164 rmind return EINVAL;
394 1.113 ad }
395 1.40 enami
396 1.17 cgd /*
397 1.40 enami * Stack is allocated to the max at exec time with
398 1.40 enami * only "rlim_cur" bytes accessible (In other words,
399 1.40 enami * allocates stack dividing two contiguous regions at
400 1.40 enami * "rlim_cur" bytes boundary).
401 1.40 enami *
402 1.40 enami * Since allocation is done in terms of page, roundup
403 1.40 enami * "rlim_cur" (otherwise, contiguous regions
404 1.40 enami * overlap). If stack limit is going up make more
405 1.40 enami * accessible, if going down make inaccessible.
406 1.17 cgd */
407 1.175 njoly limp->rlim_max = round_page(limp->rlim_max);
408 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
409 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
410 1.48 eeh vaddr_t addr;
411 1.48 eeh vsize_t size;
412 1.17 cgd vm_prot_t prot;
413 1.172 chs char *base, *tmp;
414 1.17 cgd
415 1.172 chs base = p->p_vmspace->vm_minsaddr;
416 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
417 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
418 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
419 1.172 chs tmp = STACK_GROW(base, alimp->rlim_cur);
420 1.17 cgd } else {
421 1.17 cgd prot = VM_PROT_NONE;
422 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
423 1.172 chs tmp = STACK_GROW(base, limp->rlim_cur);
424 1.17 cgd }
425 1.172 chs addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
427 1.172 chs addr, addr + size, prot, false);
428 1.17 cgd }
429 1.17 cgd break;
430 1.19 cgd
431 1.19 cgd case RLIMIT_NOFILE:
432 1.19 cgd if (limp->rlim_cur > maxfiles)
433 1.19 cgd limp->rlim_cur = maxfiles;
434 1.19 cgd if (limp->rlim_max > maxfiles)
435 1.19 cgd limp->rlim_max = maxfiles;
436 1.19 cgd break;
437 1.19 cgd
438 1.19 cgd case RLIMIT_NPROC:
439 1.19 cgd if (limp->rlim_cur > maxproc)
440 1.19 cgd limp->rlim_cur = maxproc;
441 1.19 cgd if (limp->rlim_max > maxproc)
442 1.19 cgd limp->rlim_max = maxproc;
443 1.19 cgd break;
444 1.169 christos
445 1.169 christos case RLIMIT_NTHR:
446 1.169 christos if (limp->rlim_cur > maxlwp)
447 1.169 christos limp->rlim_cur = maxlwp;
448 1.169 christos if (limp->rlim_max > maxlwp)
449 1.169 christos limp->rlim_max = maxlwp;
450 1.169 christos break;
451 1.17 cgd }
452 1.122 dsl
453 1.122 dsl mutex_enter(&p->p_limit->pl_lock);
454 1.17 cgd *alimp = *limp;
455 1.122 dsl mutex_exit(&p->p_limit->pl_lock);
456 1.164 rmind return 0;
457 1.17 cgd }
458 1.17 cgd
459 1.25 cgd int
460 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461 1.134 rmind register_t *retval)
462 1.30 thorpej {
463 1.128 dsl /* {
464 1.42 mycroft syscallarg(int) which;
465 1.22 cgd syscallarg(struct rlimit *) rlp;
466 1.128 dsl } */
467 1.68 thorpej struct proc *p = l->l_proc;
468 1.42 mycroft int which = SCARG(uap, which);
469 1.119 ad struct rlimit rl;
470 1.17 cgd
471 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
472 1.164 rmind return EINVAL;
473 1.119 ad
474 1.139 ad mutex_enter(p->p_lock);
475 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 1.139 ad mutex_exit(p->p_lock);
477 1.119 ad
478 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 1.17 cgd }
480 1.17 cgd
481 1.191 riastrad void
482 1.191 riastrad addrulwp(struct lwp *l, struct bintime *tm)
483 1.191 riastrad {
484 1.191 riastrad
485 1.191 riastrad lwp_lock(l);
486 1.191 riastrad bintime_add(tm, &l->l_rtime);
487 1.191 riastrad if ((l->l_pflag & LP_RUNNING) != 0 &&
488 1.191 riastrad (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
489 1.191 riastrad struct bintime diff;
490 1.191 riastrad /*
491 1.191 riastrad * Adjust for the current time slice. This is
492 1.191 riastrad * actually fairly important since the error
493 1.191 riastrad * here is on the order of a time quantum,
494 1.191 riastrad * which is much greater than the sampling
495 1.191 riastrad * error.
496 1.191 riastrad */
497 1.191 riastrad binuptime(&diff);
498 1.191 riastrad membar_consumer(); /* for softint_dispatch() */
499 1.191 riastrad bintime_sub(&diff, &l->l_stime);
500 1.191 riastrad bintime_add(tm, &diff);
501 1.191 riastrad }
502 1.191 riastrad lwp_unlock(l);
503 1.191 riastrad }
504 1.191 riastrad
505 1.17 cgd /*
506 1.17 cgd * Transform the running time and tick information in proc p into user,
507 1.17 cgd * system, and interrupt time usage.
508 1.113 ad *
509 1.139 ad * Should be called with p->p_lock held unless called from exit1().
510 1.17 cgd */
511 1.25 cgd void
512 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
513 1.113 ad struct timeval *ip, struct timeval *rp)
514 1.17 cgd {
515 1.182 mlelstv uint64_t u, st, ut, it, tot, dt;
516 1.68 thorpej struct lwp *l;
517 1.129 yamt struct bintime tm;
518 1.129 yamt struct timeval tv;
519 1.17 cgd
520 1.168 yamt KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
521 1.168 yamt
522 1.113 ad mutex_spin_enter(&p->p_stmutex);
523 1.17 cgd st = p->p_sticks;
524 1.17 cgd ut = p->p_uticks;
525 1.17 cgd it = p->p_iticks;
526 1.113 ad mutex_spin_exit(&p->p_stmutex);
527 1.17 cgd
528 1.129 yamt tm = p->p_rtime;
529 1.113 ad
530 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
531 1.191 riastrad addrulwp(l, &tm);
532 1.17 cgd }
533 1.69 dsl
534 1.69 dsl tot = st + ut + it;
535 1.129 yamt bintime2timeval(&tm, &tv);
536 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
537 1.70 dsl
538 1.69 dsl if (tot == 0) {
539 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
540 1.70 dsl st = ut = u / 2;
541 1.70 dsl } else {
542 1.70 dsl st = (u * st) / tot;
543 1.70 dsl ut = (u * ut) / tot;
544 1.69 dsl }
545 1.180 kre
546 1.180 kre /*
547 1.180 kre * Try to avoid lying to the users (too much)
548 1.180 kre *
549 1.180 kre * Of course, user/sys time are based on sampling (ie: statistics)
550 1.180 kre * so that would be impossible, but convincing the mark
551 1.180 kre * that we have used less ?time this call than we had
552 1.180 kre * last time, is beyond reasonable... (the con fails!)
553 1.180 kre *
554 1.180 kre * Note that since actual used time cannot decrease, either
555 1.180 kre * utime or stime (or both) must be greater now than last time
556 1.180 kre * (or both the same) - if one seems to have decreased, hold
557 1.180 kre * it constant and steal the necessary bump from the other
558 1.180 kre * which must have increased.
559 1.180 kre */
560 1.180 kre if (p->p_xutime > ut) {
561 1.182 mlelstv dt = p->p_xutime - ut;
562 1.182 mlelstv st -= uimin(dt, st);
563 1.180 kre ut = p->p_xutime;
564 1.180 kre } else if (p->p_xstime > st) {
565 1.182 mlelstv dt = p->p_xstime - st;
566 1.182 mlelstv ut -= uimin(dt, ut);
567 1.180 kre st = p->p_xstime;
568 1.180 kre }
569 1.180 kre
570 1.113 ad if (sp != NULL) {
571 1.180 kre p->p_xstime = st;
572 1.113 ad sp->tv_sec = st / 1000000;
573 1.113 ad sp->tv_usec = st % 1000000;
574 1.113 ad }
575 1.113 ad if (up != NULL) {
576 1.180 kre p->p_xutime = ut;
577 1.113 ad up->tv_sec = ut / 1000000;
578 1.113 ad up->tv_usec = ut % 1000000;
579 1.113 ad }
580 1.17 cgd if (ip != NULL) {
581 1.180 kre if (it != 0) /* it != 0 --> tot != 0 */
582 1.70 dsl it = (u * it) / tot;
583 1.17 cgd ip->tv_sec = it / 1000000;
584 1.17 cgd ip->tv_usec = it % 1000000;
585 1.17 cgd }
586 1.113 ad if (rp != NULL) {
587 1.129 yamt *rp = tv;
588 1.113 ad }
589 1.17 cgd }
590 1.17 cgd
591 1.25 cgd int
592 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
593 1.134 rmind register_t *retval)
594 1.30 thorpej {
595 1.128 dsl /* {
596 1.22 cgd syscallarg(int) who;
597 1.22 cgd syscallarg(struct rusage *) rusage;
598 1.128 dsl } */
599 1.170 njoly int error;
600 1.119 ad struct rusage ru;
601 1.68 thorpej struct proc *p = l->l_proc;
602 1.17 cgd
603 1.170 njoly error = getrusage1(p, SCARG(uap, who), &ru);
604 1.170 njoly if (error != 0)
605 1.170 njoly return error;
606 1.170 njoly
607 1.170 njoly return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
608 1.170 njoly }
609 1.170 njoly
610 1.170 njoly int
611 1.190 riastrad getrusage1(struct proc *p, int who, struct rusage *ru)
612 1.190 riastrad {
613 1.170 njoly
614 1.170 njoly switch (who) {
615 1.19 cgd case RUSAGE_SELF:
616 1.139 ad mutex_enter(p->p_lock);
617 1.178 christos ruspace(p);
618 1.170 njoly memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
619 1.170 njoly calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
620 1.170 njoly rulwps(p, ru);
621 1.139 ad mutex_exit(p->p_lock);
622 1.17 cgd break;
623 1.17 cgd case RUSAGE_CHILDREN:
624 1.139 ad mutex_enter(p->p_lock);
625 1.170 njoly memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
626 1.139 ad mutex_exit(p->p_lock);
627 1.17 cgd break;
628 1.17 cgd default:
629 1.119 ad return EINVAL;
630 1.17 cgd }
631 1.119 ad
632 1.170 njoly return 0;
633 1.17 cgd }
634 1.17 cgd
635 1.25 cgd void
636 1.178 christos ruspace(struct proc *p)
637 1.178 christos {
638 1.178 christos struct vmspace *vm = p->p_vmspace;
639 1.178 christos struct rusage *ru = &p->p_stats->p_ru;
640 1.178 christos
641 1.178 christos ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
642 1.178 christos ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
643 1.178 christos ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
644 1.179 christos #ifdef __HAVE_NO_PMAP_STATS
645 1.179 christos /* We don't keep track of the max so we get the current */
646 1.181 christos ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
647 1.179 christos #else
648 1.179 christos ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
649 1.179 christos #endif
650 1.178 christos }
651 1.178 christos
652 1.178 christos void
653 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
654 1.17 cgd {
655 1.54 augustss long *ip, *ip2;
656 1.54 augustss int i;
657 1.17 cgd
658 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
659 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
660 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
661 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
662 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
663 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
664 1.17 cgd *ip++ += *ip2++;
665 1.17 cgd }
666 1.17 cgd
667 1.137 ad void
668 1.137 ad rulwps(proc_t *p, struct rusage *ru)
669 1.137 ad {
670 1.137 ad lwp_t *l;
671 1.137 ad
672 1.139 ad KASSERT(mutex_owned(p->p_lock));
673 1.137 ad
674 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
675 1.137 ad ruadd(ru, &l->l_ru);
676 1.137 ad ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
677 1.137 ad ru->ru_nivcsw += l->l_nivcsw;
678 1.137 ad }
679 1.137 ad }
680 1.137 ad
681 1.17 cgd /*
682 1.161 rmind * lim_copy: make a copy of the plimit structure.
683 1.113 ad *
684 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed.
685 1.17 cgd */
686 1.17 cgd struct plimit *
687 1.122 dsl lim_copy(struct plimit *lim)
688 1.17 cgd {
689 1.122 dsl struct plimit *newlim;
690 1.113 ad char *corename;
691 1.122 dsl size_t alen, len;
692 1.17 cgd
693 1.193 ad newlim = pool_cache_get(plimit_cache, PR_WAITOK);
694 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
695 1.161 rmind newlim->pl_writeable = false;
696 1.121 dsl newlim->pl_refcnt = 1;
697 1.122 dsl newlim->pl_sv_limit = NULL;
698 1.122 dsl
699 1.122 dsl mutex_enter(&lim->pl_lock);
700 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit,
701 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS);
702 1.83 pk
703 1.161 rmind /*
704 1.161 rmind * Note: the common case is a use of default core name.
705 1.161 rmind */
706 1.122 dsl alen = 0;
707 1.122 dsl corename = NULL;
708 1.113 ad for (;;) {
709 1.122 dsl if (lim->pl_corename == defcorename) {
710 1.122 dsl newlim->pl_corename = defcorename;
711 1.161 rmind newlim->pl_cnlen = 0;
712 1.122 dsl break;
713 1.122 dsl }
714 1.161 rmind len = lim->pl_cnlen;
715 1.161 rmind if (len == alen) {
716 1.122 dsl newlim->pl_corename = corename;
717 1.161 rmind newlim->pl_cnlen = len;
718 1.122 dsl memcpy(corename, lim->pl_corename, len);
719 1.122 dsl corename = NULL;
720 1.122 dsl break;
721 1.122 dsl }
722 1.122 dsl mutex_exit(&lim->pl_lock);
723 1.161 rmind if (corename) {
724 1.161 rmind kmem_free(corename, alen);
725 1.161 rmind }
726 1.122 dsl alen = len;
727 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP);
728 1.121 dsl mutex_enter(&lim->pl_lock);
729 1.122 dsl }
730 1.122 dsl mutex_exit(&lim->pl_lock);
731 1.161 rmind
732 1.161 rmind if (corename) {
733 1.161 rmind kmem_free(corename, alen);
734 1.161 rmind }
735 1.122 dsl return newlim;
736 1.122 dsl }
737 1.122 dsl
738 1.122 dsl void
739 1.122 dsl lim_addref(struct plimit *lim)
740 1.122 dsl {
741 1.125 ad atomic_inc_uint(&lim->pl_refcnt);
742 1.122 dsl }
743 1.113 ad
744 1.122 dsl /*
745 1.161 rmind * lim_privatise: give a process its own private plimit structure.
746 1.122 dsl */
747 1.122 dsl void
748 1.161 rmind lim_privatise(proc_t *p)
749 1.122 dsl {
750 1.161 rmind struct plimit *lim = p->p_limit, *newlim;
751 1.122 dsl
752 1.161 rmind if (lim->pl_writeable) {
753 1.122 dsl return;
754 1.122 dsl }
755 1.122 dsl
756 1.122 dsl newlim = lim_copy(lim);
757 1.113 ad
758 1.139 ad mutex_enter(p->p_lock);
759 1.161 rmind if (p->p_limit->pl_writeable) {
760 1.161 rmind /* Other thread won the race. */
761 1.139 ad mutex_exit(p->p_lock);
762 1.159 rmind lim_free(newlim);
763 1.122 dsl return;
764 1.113 ad }
765 1.83 pk
766 1.122 dsl /*
767 1.161 rmind * Since p->p_limit can be accessed without locked held,
768 1.161 rmind * old limit structure must not be deleted yet.
769 1.122 dsl */
770 1.122 dsl newlim->pl_sv_limit = p->p_limit;
771 1.161 rmind newlim->pl_writeable = true;
772 1.122 dsl p->p_limit = newlim;
773 1.139 ad mutex_exit(p->p_lock);
774 1.32 mycroft }
775 1.32 mycroft
776 1.32 mycroft void
777 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len)
778 1.160 rmind {
779 1.160 rmind struct plimit *lim;
780 1.160 rmind char *oname;
781 1.161 rmind size_t olen;
782 1.160 rmind
783 1.161 rmind lim_privatise(p);
784 1.160 rmind lim = p->p_limit;
785 1.160 rmind
786 1.160 rmind mutex_enter(&lim->pl_lock);
787 1.160 rmind oname = lim->pl_corename;
788 1.161 rmind olen = lim->pl_cnlen;
789 1.160 rmind lim->pl_corename = name;
790 1.161 rmind lim->pl_cnlen = len;
791 1.160 rmind mutex_exit(&lim->pl_lock);
792 1.160 rmind
793 1.160 rmind if (oname != defcorename) {
794 1.161 rmind kmem_free(oname, olen);
795 1.160 rmind }
796 1.160 rmind }
797 1.160 rmind
798 1.160 rmind void
799 1.159 rmind lim_free(struct plimit *lim)
800 1.32 mycroft {
801 1.122 dsl struct plimit *sv_lim;
802 1.85 kleink
803 1.122 dsl do {
804 1.189 riastrad membar_release();
805 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
806 1.122 dsl return;
807 1.159 rmind }
808 1.189 riastrad membar_acquire();
809 1.159 rmind if (lim->pl_corename != defcorename) {
810 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen);
811 1.159 rmind }
812 1.122 dsl sv_lim = lim->pl_sv_limit;
813 1.122 dsl mutex_destroy(&lim->pl_lock);
814 1.193 ad pool_cache_put(plimit_cache, lim);
815 1.122 dsl } while ((lim = sv_lim) != NULL);
816 1.68 thorpej }
817 1.68 thorpej
818 1.68 thorpej struct pstats *
819 1.98 thorpej pstatscopy(struct pstats *ps)
820 1.68 thorpej {
821 1.164 rmind struct pstats *nps;
822 1.164 rmind size_t len;
823 1.87 perry
824 1.193 ad nps = pool_cache_get(pstats_cache, PR_WAITOK);
825 1.68 thorpej
826 1.164 rmind len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
827 1.164 rmind memset(&nps->pstat_startzero, 0, len);
828 1.68 thorpej
829 1.164 rmind len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
830 1.164 rmind memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
831 1.68 thorpej
832 1.164 rmind return nps;
833 1.68 thorpej }
834 1.68 thorpej
835 1.68 thorpej void
836 1.98 thorpej pstatsfree(struct pstats *ps)
837 1.68 thorpej {
838 1.68 thorpej
839 1.193 ad pool_cache_put(pstats_cache, ps);
840 1.74 atatat }
841 1.74 atatat
842 1.74 atatat /*
843 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
844 1.157 rmind * need to pick a valid process by PID.
845 1.157 rmind *
846 1.157 rmind * => Hold a reference on the process, on success.
847 1.74 atatat */
848 1.74 atatat static int
849 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
850 1.74 atatat {
851 1.157 rmind proc_t *p;
852 1.157 rmind int error;
853 1.74 atatat
854 1.157 rmind if (pid == PROC_CURPROC) {
855 1.157 rmind p = l->l_proc;
856 1.157 rmind } else {
857 1.187 ad mutex_enter(&proc_lock);
858 1.157 rmind p = proc_find(pid);
859 1.157 rmind if (p == NULL) {
860 1.187 ad mutex_exit(&proc_lock);
861 1.157 rmind return ESRCH;
862 1.157 rmind }
863 1.157 rmind }
864 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
865 1.157 rmind if (pid != PROC_CURPROC) {
866 1.187 ad mutex_exit(&proc_lock);
867 1.157 rmind }
868 1.157 rmind *p2 = p;
869 1.157 rmind return error;
870 1.74 atatat }
871 1.74 atatat
872 1.74 atatat /*
873 1.176 pgoyette * sysctl_proc_paxflags: helper routine to get process's paxctl flags
874 1.176 pgoyette */
875 1.176 pgoyette static int
876 1.176 pgoyette sysctl_proc_paxflags(SYSCTLFN_ARGS)
877 1.176 pgoyette {
878 1.176 pgoyette struct proc *p;
879 1.176 pgoyette struct sysctlnode node;
880 1.176 pgoyette int paxflags;
881 1.176 pgoyette int error;
882 1.176 pgoyette
883 1.176 pgoyette /* First, validate the request. */
884 1.176 pgoyette if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
885 1.176 pgoyette return EINVAL;
886 1.176 pgoyette
887 1.176 pgoyette /* Find the process. Hold a reference (p_reflock), if found. */
888 1.176 pgoyette error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
889 1.176 pgoyette if (error)
890 1.176 pgoyette return error;
891 1.176 pgoyette
892 1.176 pgoyette /* XXX-elad */
893 1.176 pgoyette error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
894 1.176 pgoyette KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
895 1.176 pgoyette if (error) {
896 1.176 pgoyette rw_exit(&p->p_reflock);
897 1.176 pgoyette return error;
898 1.176 pgoyette }
899 1.176 pgoyette
900 1.176 pgoyette /* Retrieve the limits. */
901 1.176 pgoyette node = *rnode;
902 1.176 pgoyette paxflags = p->p_pax;
903 1.176 pgoyette node.sysctl_data = &paxflags;
904 1.176 pgoyette
905 1.176 pgoyette error = sysctl_lookup(SYSCTLFN_CALL(&node));
906 1.176 pgoyette
907 1.176 pgoyette /* If attempting to write new value, it's an error */
908 1.176 pgoyette if (error == 0 && newp != NULL)
909 1.176 pgoyette error = EACCES;
910 1.176 pgoyette
911 1.176 pgoyette rw_exit(&p->p_reflock);
912 1.176 pgoyette return error;
913 1.176 pgoyette }
914 1.176 pgoyette
915 1.176 pgoyette /*
916 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name
917 1.158 rmind * for a process specified by PID.
918 1.74 atatat */
919 1.74 atatat static int
920 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
921 1.74 atatat {
922 1.158 rmind struct proc *p;
923 1.83 pk struct plimit *lim;
924 1.158 rmind char *cnbuf, *cname;
925 1.157 rmind struct sysctlnode node;
926 1.158 rmind size_t len;
927 1.158 rmind int error;
928 1.74 atatat
929 1.158 rmind /* First, validate the request. */
930 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
931 1.158 rmind return EINVAL;
932 1.74 atatat
933 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
934 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
935 1.74 atatat if (error)
936 1.157 rmind return error;
937 1.74 atatat
938 1.131 elad /* XXX-elad */
939 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
940 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
941 1.157 rmind if (error) {
942 1.158 rmind rw_exit(&p->p_reflock);
943 1.157 rmind return error;
944 1.157 rmind }
945 1.111 elad
946 1.158 rmind cnbuf = PNBUF_GET();
947 1.158 rmind
948 1.165 mrg if (oldp) {
949 1.158 rmind /* Get case: copy the core name into the buffer. */
950 1.131 elad error = kauth_authorize_process(l->l_cred,
951 1.158 rmind KAUTH_PROCESS_CORENAME, p,
952 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
953 1.157 rmind if (error) {
954 1.158 rmind goto done;
955 1.158 rmind }
956 1.158 rmind lim = p->p_limit;
957 1.158 rmind mutex_enter(&lim->pl_lock);
958 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
959 1.158 rmind mutex_exit(&lim->pl_lock);
960 1.165 mrg }
961 1.131 elad
962 1.74 atatat node = *rnode;
963 1.158 rmind node.sysctl_data = cnbuf;
964 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
965 1.74 atatat
966 1.163 rmind /* Return if error, or if caller is only getting the core name. */
967 1.158 rmind if (error || newp == NULL) {
968 1.100 yamt goto done;
969 1.157 rmind }
970 1.103 elad
971 1.74 atatat /*
972 1.166 rmind * Set case. Check permission and then validate new core name.
973 1.166 rmind * It must be either "core", "/core", or end in ".core".
974 1.74 atatat */
975 1.166 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
976 1.166 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
977 1.166 rmind if (error) {
978 1.166 rmind goto done;
979 1.166 rmind }
980 1.158 rmind len = strlen(cnbuf);
981 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
982 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
983 1.100 yamt error = EINVAL;
984 1.100 yamt goto done;
985 1.100 yamt }
986 1.74 atatat
987 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */
988 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP);
989 1.158 rmind if (cname == NULL) {
990 1.100 yamt error = ENOMEM;
991 1.100 yamt goto done;
992 1.100 yamt }
993 1.158 rmind memcpy(cname, cnbuf, len);
994 1.160 rmind lim_setcorename(p, cname, len);
995 1.100 yamt done:
996 1.158 rmind rw_exit(&p->p_reflock);
997 1.158 rmind PNBUF_PUT(cnbuf);
998 1.100 yamt return error;
999 1.74 atatat }
1000 1.74 atatat
1001 1.74 atatat /*
1002 1.163 rmind * sysctl_proc_stop: helper routine for checking/setting the stop flags.
1003 1.74 atatat */
1004 1.74 atatat static int
1005 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
1006 1.74 atatat {
1007 1.163 rmind struct proc *p;
1008 1.163 rmind int isset, flag, error = 0;
1009 1.74 atatat struct sysctlnode node;
1010 1.74 atatat
1011 1.74 atatat if (namelen != 0)
1012 1.163 rmind return EINVAL;
1013 1.74 atatat
1014 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
1015 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1016 1.74 atatat if (error)
1017 1.157 rmind return error;
1018 1.74 atatat
1019 1.131 elad /* XXX-elad */
1020 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1021 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1022 1.163 rmind if (error) {
1023 1.157 rmind goto out;
1024 1.163 rmind }
1025 1.111 elad
1026 1.163 rmind /* Determine the flag. */
1027 1.74 atatat switch (rnode->sysctl_num) {
1028 1.74 atatat case PROC_PID_STOPFORK:
1029 1.163 rmind flag = PS_STOPFORK;
1030 1.74 atatat break;
1031 1.74 atatat case PROC_PID_STOPEXEC:
1032 1.163 rmind flag = PS_STOPEXEC;
1033 1.74 atatat break;
1034 1.74 atatat case PROC_PID_STOPEXIT:
1035 1.163 rmind flag = PS_STOPEXIT;
1036 1.74 atatat break;
1037 1.74 atatat default:
1038 1.157 rmind error = EINVAL;
1039 1.157 rmind goto out;
1040 1.74 atatat }
1041 1.163 rmind isset = (p->p_flag & flag) ? 1 : 0;
1042 1.74 atatat node = *rnode;
1043 1.163 rmind node.sysctl_data = &isset;
1044 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
1045 1.163 rmind
1046 1.163 rmind /* Return if error, or if callers is only getting the flag. */
1047 1.163 rmind if (error || newp == NULL) {
1048 1.157 rmind goto out;
1049 1.163 rmind }
1050 1.74 atatat
1051 1.163 rmind /* Check if caller can set the flags. */
1052 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1053 1.163 rmind p, KAUTH_ARG(flag), NULL, NULL);
1054 1.163 rmind if (error) {
1055 1.163 rmind goto out;
1056 1.163 rmind }
1057 1.163 rmind mutex_enter(p->p_lock);
1058 1.163 rmind if (isset) {
1059 1.163 rmind p->p_sflag |= flag;
1060 1.163 rmind } else {
1061 1.163 rmind p->p_sflag &= ~flag;
1062 1.143 rmind }
1063 1.163 rmind mutex_exit(p->p_lock);
1064 1.157 rmind out:
1065 1.163 rmind rw_exit(&p->p_reflock);
1066 1.143 rmind return error;
1067 1.74 atatat }
1068 1.74 atatat
1069 1.74 atatat /*
1070 1.163 rmind * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1071 1.74 atatat */
1072 1.74 atatat static int
1073 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
1074 1.74 atatat {
1075 1.163 rmind struct proc *p;
1076 1.74 atatat u_int limitno;
1077 1.74 atatat int which, error = 0;
1078 1.74 atatat struct rlimit alim;
1079 1.74 atatat struct sysctlnode node;
1080 1.74 atatat
1081 1.74 atatat if (namelen != 0)
1082 1.163 rmind return EINVAL;
1083 1.74 atatat
1084 1.74 atatat which = name[-1];
1085 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1086 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
1087 1.163 rmind return EINVAL;
1088 1.74 atatat
1089 1.74 atatat limitno = name[-2] - 1;
1090 1.74 atatat if (limitno >= RLIM_NLIMITS)
1091 1.163 rmind return EINVAL;
1092 1.74 atatat
1093 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
1094 1.163 rmind return EINVAL;
1095 1.74 atatat
1096 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
1097 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1098 1.74 atatat if (error)
1099 1.157 rmind return error;
1100 1.74 atatat
1101 1.131 elad /* XXX-elad */
1102 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1103 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1104 1.111 elad if (error)
1105 1.157 rmind goto out;
1106 1.111 elad
1107 1.163 rmind /* Check if caller can retrieve the limits. */
1108 1.131 elad if (newp == NULL) {
1109 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1110 1.163 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1111 1.131 elad KAUTH_ARG(which));
1112 1.131 elad if (error)
1113 1.157 rmind goto out;
1114 1.131 elad }
1115 1.131 elad
1116 1.163 rmind /* Retrieve the limits. */
1117 1.74 atatat node = *rnode;
1118 1.163 rmind memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1119 1.163 rmind if (which == PROC_PID_LIMIT_TYPE_HARD) {
1120 1.74 atatat node.sysctl_data = &alim.rlim_max;
1121 1.163 rmind } else {
1122 1.74 atatat node.sysctl_data = &alim.rlim_cur;
1123 1.163 rmind }
1124 1.163 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
1125 1.74 atatat
1126 1.163 rmind /* Return if error, or if we are only retrieving the limits. */
1127 1.157 rmind if (error || newp == NULL) {
1128 1.157 rmind goto out;
1129 1.157 rmind }
1130 1.163 rmind error = dosetrlimit(l, p, limitno, &alim);
1131 1.157 rmind out:
1132 1.163 rmind rw_exit(&p->p_reflock);
1133 1.157 rmind return error;
1134 1.74 atatat }
1135 1.74 atatat
1136 1.74 atatat /*
1137 1.164 rmind * Setup sysctl nodes.
1138 1.74 atatat */
1139 1.156 pooka static void
1140 1.164 rmind sysctl_proc_setup(void)
1141 1.74 atatat {
1142 1.74 atatat
1143 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1144 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1145 1.78 atatat CTLTYPE_NODE, "curproc",
1146 1.78 atatat SYSCTL_DESCR("Per-process settings"),
1147 1.74 atatat NULL, 0, NULL, 0,
1148 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
1149 1.74 atatat
1150 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1151 1.176 pgoyette CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1152 1.176 pgoyette CTLTYPE_INT, "paxflags",
1153 1.176 pgoyette SYSCTL_DESCR("Process PAX control flags"),
1154 1.176 pgoyette sysctl_proc_paxflags, 0, NULL, 0,
1155 1.176 pgoyette CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1156 1.176 pgoyette
1157 1.176 pgoyette sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1158 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1159 1.78 atatat CTLTYPE_STRING, "corename",
1160 1.78 atatat SYSCTL_DESCR("Core file name"),
1161 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1162 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1163 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1164 1.76 atatat CTLFLAG_PERMANENT,
1165 1.78 atatat CTLTYPE_NODE, "rlimit",
1166 1.78 atatat SYSCTL_DESCR("Process limits"),
1167 1.74 atatat NULL, 0, NULL, 0,
1168 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1169 1.74 atatat
1170 1.74 atatat #define create_proc_plimit(s, n) do { \
1171 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1172 1.76 atatat CTLFLAG_PERMANENT, \
1173 1.78 atatat CTLTYPE_NODE, s, \
1174 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
1175 1.74 atatat NULL, 0, NULL, 0, \
1176 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1177 1.74 atatat CTL_EOL); \
1178 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1179 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1180 1.78 atatat CTLTYPE_QUAD, "soft", \
1181 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
1182 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1183 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1184 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1185 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1186 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1187 1.78 atatat CTLTYPE_QUAD, "hard", \
1188 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
1189 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1190 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1191 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1192 1.74 atatat } while (0/*CONSTCOND*/)
1193 1.74 atatat
1194 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1195 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1196 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1197 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1198 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1199 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1200 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1201 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1202 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1203 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1204 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1205 1.169 christos create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1206 1.74 atatat
1207 1.74 atatat #undef create_proc_plimit
1208 1.74 atatat
1209 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1210 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1211 1.78 atatat CTLTYPE_INT, "stopfork",
1212 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1213 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1214 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1215 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1216 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1217 1.78 atatat CTLTYPE_INT, "stopexec",
1218 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1219 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1220 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1221 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1222 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1223 1.78 atatat CTLTYPE_INT, "stopexit",
1224 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1225 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1226 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1227 1.17 cgd }
1228