Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.193
      1  1.193        ad /*	$NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $	*/
      2   1.20       cgd 
      3   1.17       cgd /*-
      4   1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
      5   1.19       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.17       cgd  * (c) UNIX System Laboratories, Inc.
      7   1.17       cgd  * All or some portions of this file are derived from material licensed
      8   1.17       cgd  * to the University of California by American Telephone and Telegraph
      9   1.17       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10   1.17       cgd  * the permission of UNIX System Laboratories, Inc.
     11   1.17       cgd  *
     12   1.17       cgd  * Redistribution and use in source and binary forms, with or without
     13   1.17       cgd  * modification, are permitted provided that the following conditions
     14   1.17       cgd  * are met:
     15   1.17       cgd  * 1. Redistributions of source code must retain the above copyright
     16   1.17       cgd  *    notice, this list of conditions and the following disclaimer.
     17   1.17       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.17       cgd  *    notice, this list of conditions and the following disclaimer in the
     19   1.17       cgd  *    documentation and/or other materials provided with the distribution.
     20   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     21   1.17       cgd  *    may be used to endorse or promote products derived from this software
     22   1.17       cgd  *    without specific prior written permission.
     23   1.17       cgd  *
     24   1.17       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25   1.17       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26   1.17       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27   1.17       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28   1.17       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29   1.17       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30   1.17       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.17       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.17       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.17       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.17       cgd  * SUCH DAMAGE.
     35   1.17       cgd  *
     36   1.45      fvdl  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37   1.17       cgd  */
     38   1.61     lukem 
     39   1.61     lukem #include <sys/cdefs.h>
     40  1.193        ad __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.193 2023/09/12 16:17:21 ad Exp $");
     41   1.44       mrg 
     42   1.17       cgd #include <sys/param.h>
     43   1.22       cgd #include <sys/systm.h>
     44   1.17       cgd #include <sys/kernel.h>
     45   1.19       cgd #include <sys/file.h>
     46   1.17       cgd #include <sys/resourcevar.h>
     47  1.132      yamt #include <sys/kmem.h>
     48  1.100      yamt #include <sys/namei.h>
     49   1.49   thorpej #include <sys/pool.h>
     50   1.17       cgd #include <sys/proc.h>
     51   1.74    atatat #include <sys/sysctl.h>
     52  1.129      yamt #include <sys/timevar.h>
     53  1.101      elad #include <sys/kauth.h>
     54  1.125        ad #include <sys/atomic.h>
     55   1.22       cgd #include <sys/mount.h>
     56   1.22       cgd #include <sys/syscallargs.h>
     57  1.136        ad #include <sys/atomic.h>
     58   1.17       cgd 
     59   1.43       mrg #include <uvm/uvm_extern.h>
     60   1.43       mrg 
     61   1.17       cgd /*
     62   1.60       eeh  * Maximum process data and stack limits.
     63   1.60       eeh  * They are variables so they are patchable.
     64   1.60       eeh  */
     65  1.167     rmind rlim_t			maxdmap = MAXDSIZ;
     66  1.167     rmind rlim_t			maxsmap = MAXSSIZ;
     67   1.60       eeh 
     68  1.193        ad static pool_cache_t	plimit_cache	__read_mostly;
     69  1.193        ad static pool_cache_t	pstats_cache	__read_mostly;
     70  1.193        ad 
     71  1.154      elad static kauth_listener_t	resource_listener;
     72  1.164     rmind static struct sysctllog	*proc_sysctllog;
     73  1.153      elad 
     74  1.164     rmind static int	donice(struct lwp *, struct proc *, int);
     75  1.164     rmind static void	sysctl_proc_setup(void);
     76  1.156     pooka 
     77  1.153      elad static int
     78  1.154      elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79  1.153      elad     void *arg0, void *arg1, void *arg2, void *arg3)
     80  1.153      elad {
     81  1.153      elad 	struct proc *p;
     82  1.153      elad 	int result;
     83  1.153      elad 
     84  1.153      elad 	result = KAUTH_RESULT_DEFER;
     85  1.153      elad 	p = arg0;
     86  1.153      elad 
     87  1.154      elad 	switch (action) {
     88  1.154      elad 	case KAUTH_PROCESS_NICE:
     89  1.154      elad 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90  1.164     rmind 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91  1.164     rmind 			break;
     92  1.164     rmind 		}
     93  1.153      elad 
     94  1.164     rmind 		if ((u_long)arg1 >= p->p_nice)
     95  1.164     rmind 			result = KAUTH_RESULT_ALLOW;
     96  1.153      elad 
     97  1.154      elad 		break;
     98  1.154      elad 
     99  1.154      elad 	case KAUTH_PROCESS_RLIMIT: {
    100  1.154      elad 		enum kauth_process_req req;
    101  1.153      elad 
    102  1.186     joerg 		req = (enum kauth_process_req)(uintptr_t)arg1;
    103  1.153      elad 
    104  1.154      elad 		switch (req) {
    105  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106  1.153      elad 			result = KAUTH_RESULT_ALLOW;
    107  1.154      elad 			break;
    108  1.154      elad 
    109  1.154      elad 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110  1.154      elad 			struct rlimit *new_rlimit;
    111  1.154      elad 			u_long which;
    112  1.154      elad 
    113  1.154      elad 			if ((p != curlwp->l_proc) &&
    114  1.154      elad 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115  1.154      elad 				break;
    116  1.154      elad 
    117  1.154      elad 			new_rlimit = arg2;
    118  1.154      elad 			which = (u_long)arg3;
    119  1.154      elad 
    120  1.154      elad 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121  1.154      elad 				result = KAUTH_RESULT_ALLOW;
    122  1.154      elad 
    123  1.154      elad 			break;
    124  1.154      elad 			}
    125  1.154      elad 
    126  1.154      elad 		default:
    127  1.154      elad 			break;
    128  1.154      elad 		}
    129  1.154      elad 
    130  1.154      elad 		break;
    131  1.154      elad 	}
    132  1.154      elad 
    133  1.154      elad 	default:
    134  1.154      elad 		break;
    135  1.153      elad 	}
    136  1.153      elad 
    137  1.153      elad 	return result;
    138  1.153      elad }
    139  1.153      elad 
    140  1.130        ad void
    141  1.130        ad resource_init(void)
    142  1.130        ad {
    143  1.130        ad 
    144  1.193        ad 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145  1.193        ad 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146  1.193        ad 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147  1.193        ad 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148  1.193        ad 
    149  1.154      elad 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150  1.154      elad 	    resource_listener_cb, NULL);
    151  1.156     pooka 
    152  1.156     pooka 	sysctl_proc_setup();
    153  1.130        ad }
    154  1.130        ad 
    155   1.60       eeh /*
    156   1.17       cgd  * Resource controls and accounting.
    157   1.17       cgd  */
    158   1.17       cgd 
    159   1.25       cgd int
    160  1.134     rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161  1.134     rmind     register_t *retval)
    162   1.30   thorpej {
    163  1.128       dsl 	/* {
    164   1.22       cgd 		syscallarg(int) which;
    165   1.81    kleink 		syscallarg(id_t) who;
    166  1.128       dsl 	} */
    167   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    168  1.164     rmind 	id_t who = SCARG(uap, who);
    169   1.54  augustss 	int low = NZERO + PRIO_MAX + 1;
    170   1.17       cgd 
    171  1.187        ad 	mutex_enter(&proc_lock);
    172   1.22       cgd 	switch (SCARG(uap, which)) {
    173   1.17       cgd 	case PRIO_PROCESS:
    174  1.171     njoly 		p = who ? proc_find(who) : curp;
    175  1.113        ad 		if (p != NULL)
    176  1.113        ad 			low = p->p_nice;
    177   1.17       cgd 		break;
    178   1.17       cgd 
    179   1.17       cgd 	case PRIO_PGRP: {
    180   1.54  augustss 		struct pgrp *pg;
    181   1.17       cgd 
    182  1.113        ad 		if (who == 0)
    183   1.17       cgd 			pg = curp->p_pgrp;
    184  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    185   1.17       cgd 			break;
    186   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187   1.17       cgd 			if (p->p_nice < low)
    188   1.17       cgd 				low = p->p_nice;
    189   1.17       cgd 		}
    190   1.17       cgd 		break;
    191   1.17       cgd 	}
    192   1.17       cgd 
    193   1.17       cgd 	case PRIO_USER:
    194  1.113        ad 		if (who == 0)
    195  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    196   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    197  1.139        ad 			mutex_enter(p->p_lock);
    198  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    199  1.113        ad 			    (uid_t)who && p->p_nice < low)
    200   1.17       cgd 				low = p->p_nice;
    201  1.139        ad 			mutex_exit(p->p_lock);
    202   1.64      matt 		}
    203   1.17       cgd 		break;
    204   1.17       cgd 
    205   1.17       cgd 	default:
    206  1.187        ad 		mutex_exit(&proc_lock);
    207  1.164     rmind 		return EINVAL;
    208   1.17       cgd 	}
    209  1.187        ad 	mutex_exit(&proc_lock);
    210  1.113        ad 
    211  1.164     rmind 	if (low == NZERO + PRIO_MAX + 1) {
    212  1.164     rmind 		return ESRCH;
    213  1.164     rmind 	}
    214   1.37        ws 	*retval = low - NZERO;
    215  1.164     rmind 	return 0;
    216   1.17       cgd }
    217   1.17       cgd 
    218   1.25       cgd int
    219  1.134     rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220  1.134     rmind     register_t *retval)
    221   1.30   thorpej {
    222  1.128       dsl 	/* {
    223   1.22       cgd 		syscallarg(int) which;
    224   1.81    kleink 		syscallarg(id_t) who;
    225   1.22       cgd 		syscallarg(int) prio;
    226  1.128       dsl 	} */
    227   1.68   thorpej 	struct proc *curp = l->l_proc, *p;
    228  1.164     rmind 	id_t who = SCARG(uap, who);
    229   1.17       cgd 	int found = 0, error = 0;
    230   1.17       cgd 
    231  1.187        ad 	mutex_enter(&proc_lock);
    232   1.22       cgd 	switch (SCARG(uap, which)) {
    233   1.17       cgd 	case PRIO_PROCESS:
    234  1.157     rmind 		p = who ? proc_find(who) : curp;
    235  1.157     rmind 		if (p != NULL) {
    236  1.139        ad 			mutex_enter(p->p_lock);
    237  1.162  christos 			found++;
    238  1.113        ad 			error = donice(l, p, SCARG(uap, prio));
    239  1.139        ad 			mutex_exit(p->p_lock);
    240  1.113        ad 		}
    241   1.17       cgd 		break;
    242   1.17       cgd 
    243   1.17       cgd 	case PRIO_PGRP: {
    244   1.54  augustss 		struct pgrp *pg;
    245   1.87     perry 
    246  1.113        ad 		if (who == 0)
    247   1.17       cgd 			pg = curp->p_pgrp;
    248  1.157     rmind 		else if ((pg = pgrp_find(who)) == NULL)
    249   1.17       cgd 			break;
    250   1.64      matt 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251  1.139        ad 			mutex_enter(p->p_lock);
    252  1.162  christos 			found++;
    253  1.102        ad 			error = donice(l, p, SCARG(uap, prio));
    254  1.139        ad 			mutex_exit(p->p_lock);
    255  1.162  christos 			if (error)
    256  1.162  christos 				break;
    257   1.17       cgd 		}
    258   1.17       cgd 		break;
    259   1.17       cgd 	}
    260   1.17       cgd 
    261   1.17       cgd 	case PRIO_USER:
    262  1.113        ad 		if (who == 0)
    263  1.113        ad 			who = (int)kauth_cred_geteuid(l->l_cred);
    264   1.86      yamt 		PROCLIST_FOREACH(p, &allproc) {
    265  1.139        ad 			mutex_enter(p->p_lock);
    266  1.102        ad 			if (kauth_cred_geteuid(p->p_cred) ==
    267  1.102        ad 			    (uid_t)SCARG(uap, who)) {
    268  1.162  christos 				found++;
    269  1.102        ad 				error = donice(l, p, SCARG(uap, prio));
    270   1.17       cgd 			}
    271  1.139        ad 			mutex_exit(p->p_lock);
    272  1.162  christos 			if (error)
    273  1.162  christos 				break;
    274   1.64      matt 		}
    275   1.17       cgd 		break;
    276   1.17       cgd 
    277   1.17       cgd 	default:
    278  1.187        ad 		mutex_exit(&proc_lock);
    279  1.144     njoly 		return EINVAL;
    280   1.17       cgd 	}
    281  1.187        ad 	mutex_exit(&proc_lock);
    282  1.164     rmind 
    283  1.164     rmind 	return (found == 0) ? ESRCH : error;
    284   1.17       cgd }
    285   1.17       cgd 
    286  1.113        ad /*
    287  1.113        ad  * Renice a process.
    288  1.113        ad  *
    289  1.113        ad  * Call with the target process' credentials locked.
    290  1.113        ad  */
    291  1.164     rmind static int
    292  1.102        ad donice(struct lwp *l, struct proc *chgp, int n)
    293   1.17       cgd {
    294  1.102        ad 	kauth_cred_t cred = l->l_cred;
    295  1.113        ad 
    296  1.139        ad 	KASSERT(mutex_owned(chgp->p_lock));
    297   1.17       cgd 
    298  1.152      elad 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299  1.152      elad 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300  1.152      elad 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301  1.164     rmind 		return EPERM;
    302  1.152      elad 
    303  1.164     rmind 	if (n > PRIO_MAX) {
    304   1.17       cgd 		n = PRIO_MAX;
    305  1.164     rmind 	}
    306  1.164     rmind 	if (n < PRIO_MIN) {
    307   1.17       cgd 		n = PRIO_MIN;
    308  1.164     rmind 	}
    309   1.37        ws 	n += NZERO;
    310  1.164     rmind 
    311  1.112      elad 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312  1.164     rmind 	    KAUTH_ARG(n), NULL, NULL)) {
    313  1.164     rmind 		return EACCES;
    314  1.164     rmind 	}
    315  1.164     rmind 
    316  1.117      yamt 	sched_nice(chgp, n);
    317  1.164     rmind 	return 0;
    318   1.17       cgd }
    319   1.17       cgd 
    320   1.25       cgd int
    321  1.134     rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322  1.134     rmind     register_t *retval)
    323   1.30   thorpej {
    324  1.128       dsl 	/* {
    325   1.42   mycroft 		syscallarg(int) which;
    326   1.39       cgd 		syscallarg(const struct rlimit *) rlp;
    327  1.128       dsl 	} */
    328  1.164     rmind 	int error, which = SCARG(uap, which);
    329   1.19       cgd 	struct rlimit alim;
    330   1.17       cgd 
    331   1.46     perry 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332  1.164     rmind 	if (error) {
    333  1.164     rmind 		return error;
    334  1.164     rmind 	}
    335  1.164     rmind 	return dosetrlimit(l, l->l_proc, which, &alim);
    336   1.17       cgd }
    337   1.17       cgd 
    338   1.17       cgd int
    339  1.102        ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340   1.17       cgd {
    341   1.54  augustss 	struct rlimit *alimp;
    342   1.17       cgd 	int error;
    343   1.17       cgd 
    344   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    345  1.164     rmind 		return EINVAL;
    346   1.38  matthias 
    347   1.62  jdolecek 	if (limp->rlim_cur > limp->rlim_max) {
    348   1.62  jdolecek 		/*
    349   1.62  jdolecek 		 * This is programming error. According to SUSv2, we should
    350   1.62  jdolecek 		 * return error in this case.
    351   1.62  jdolecek 		 */
    352  1.164     rmind 		return EINVAL;
    353   1.62  jdolecek 	}
    354  1.122       dsl 
    355  1.122       dsl 	alimp = &p->p_rlimit[which];
    356  1.122       dsl 	/* if we don't change the value, no need to limcopy() */
    357  1.122       dsl 	if (limp->rlim_cur == alimp->rlim_cur &&
    358  1.122       dsl 	    limp->rlim_max == alimp->rlim_max)
    359  1.122       dsl 		return 0;
    360  1.122       dsl 
    361  1.112      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362  1.131      elad 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363  1.111      elad 	if (error)
    364  1.164     rmind 		return error;
    365   1.62  jdolecek 
    366  1.161     rmind 	lim_privatise(p);
    367  1.122       dsl 	/* p->p_limit is now unchangeable */
    368  1.122       dsl 	alimp = &p->p_rlimit[which];
    369   1.17       cgd 
    370   1.17       cgd 	switch (which) {
    371   1.17       cgd 
    372   1.17       cgd 	case RLIMIT_DATA:
    373   1.19       cgd 		if (limp->rlim_cur > maxdmap)
    374   1.19       cgd 			limp->rlim_cur = maxdmap;
    375   1.19       cgd 		if (limp->rlim_max > maxdmap)
    376   1.19       cgd 			limp->rlim_max = maxdmap;
    377   1.17       cgd 		break;
    378   1.17       cgd 
    379   1.17       cgd 	case RLIMIT_STACK:
    380   1.19       cgd 		if (limp->rlim_cur > maxsmap)
    381   1.19       cgd 			limp->rlim_cur = maxsmap;
    382   1.19       cgd 		if (limp->rlim_max > maxsmap)
    383   1.19       cgd 			limp->rlim_max = maxsmap;
    384   1.62  jdolecek 
    385   1.62  jdolecek 		/*
    386   1.62  jdolecek 		 * Return EINVAL if the new stack size limit is lower than
    387   1.62  jdolecek 		 * current usage. Otherwise, the process would get SIGSEGV the
    388  1.174       snj 		 * moment it would try to access anything on its current stack.
    389   1.62  jdolecek 		 * This conforms to SUSv2.
    390   1.62  jdolecek 		 */
    391  1.177   mlelstv 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    392  1.177   mlelstv 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    393  1.164     rmind 			return EINVAL;
    394  1.113        ad 		}
    395   1.40     enami 
    396   1.17       cgd 		/*
    397   1.40     enami 		 * Stack is allocated to the max at exec time with
    398   1.40     enami 		 * only "rlim_cur" bytes accessible (In other words,
    399   1.40     enami 		 * allocates stack dividing two contiguous regions at
    400   1.40     enami 		 * "rlim_cur" bytes boundary).
    401   1.40     enami 		 *
    402   1.40     enami 		 * Since allocation is done in terms of page, roundup
    403   1.40     enami 		 * "rlim_cur" (otherwise, contiguous regions
    404   1.40     enami 		 * overlap).  If stack limit is going up make more
    405   1.40     enami 		 * accessible, if going down make inaccessible.
    406   1.17       cgd 		 */
    407  1.175     njoly 		limp->rlim_max = round_page(limp->rlim_max);
    408   1.40     enami 		limp->rlim_cur = round_page(limp->rlim_cur);
    409   1.17       cgd 		if (limp->rlim_cur != alimp->rlim_cur) {
    410   1.48       eeh 			vaddr_t addr;
    411   1.48       eeh 			vsize_t size;
    412   1.17       cgd 			vm_prot_t prot;
    413  1.172       chs 			char *base, *tmp;
    414   1.17       cgd 
    415  1.172       chs 			base = p->p_vmspace->vm_minsaddr;
    416   1.17       cgd 			if (limp->rlim_cur > alimp->rlim_cur) {
    417   1.73       chs 				prot = VM_PROT_READ | VM_PROT_WRITE;
    418   1.17       cgd 				size = limp->rlim_cur - alimp->rlim_cur;
    419  1.172       chs 				tmp = STACK_GROW(base, alimp->rlim_cur);
    420   1.17       cgd 			} else {
    421   1.17       cgd 				prot = VM_PROT_NONE;
    422   1.17       cgd 				size = alimp->rlim_cur - limp->rlim_cur;
    423  1.172       chs 				tmp = STACK_GROW(base, limp->rlim_cur);
    424   1.17       cgd 			}
    425  1.172       chs 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    426   1.43       mrg 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    427  1.172       chs 			    addr, addr + size, prot, false);
    428   1.17       cgd 		}
    429   1.17       cgd 		break;
    430   1.19       cgd 
    431   1.19       cgd 	case RLIMIT_NOFILE:
    432   1.19       cgd 		if (limp->rlim_cur > maxfiles)
    433   1.19       cgd 			limp->rlim_cur = maxfiles;
    434   1.19       cgd 		if (limp->rlim_max > maxfiles)
    435   1.19       cgd 			limp->rlim_max = maxfiles;
    436   1.19       cgd 		break;
    437   1.19       cgd 
    438   1.19       cgd 	case RLIMIT_NPROC:
    439   1.19       cgd 		if (limp->rlim_cur > maxproc)
    440   1.19       cgd 			limp->rlim_cur = maxproc;
    441   1.19       cgd 		if (limp->rlim_max > maxproc)
    442   1.19       cgd 			limp->rlim_max = maxproc;
    443   1.19       cgd 		break;
    444  1.169  christos 
    445  1.169  christos 	case RLIMIT_NTHR:
    446  1.169  christos 		if (limp->rlim_cur > maxlwp)
    447  1.169  christos 			limp->rlim_cur = maxlwp;
    448  1.169  christos 		if (limp->rlim_max > maxlwp)
    449  1.169  christos 			limp->rlim_max = maxlwp;
    450  1.169  christos 		break;
    451   1.17       cgd 	}
    452  1.122       dsl 
    453  1.122       dsl 	mutex_enter(&p->p_limit->pl_lock);
    454   1.17       cgd 	*alimp = *limp;
    455  1.122       dsl 	mutex_exit(&p->p_limit->pl_lock);
    456  1.164     rmind 	return 0;
    457   1.17       cgd }
    458   1.17       cgd 
    459   1.25       cgd int
    460  1.134     rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    461  1.134     rmind     register_t *retval)
    462   1.30   thorpej {
    463  1.128       dsl 	/* {
    464   1.42   mycroft 		syscallarg(int) which;
    465   1.22       cgd 		syscallarg(struct rlimit *) rlp;
    466  1.128       dsl 	} */
    467   1.68   thorpej 	struct proc *p = l->l_proc;
    468   1.42   mycroft 	int which = SCARG(uap, which);
    469  1.119        ad 	struct rlimit rl;
    470   1.17       cgd 
    471   1.67    itojun 	if ((u_int)which >= RLIM_NLIMITS)
    472  1.164     rmind 		return EINVAL;
    473  1.119        ad 
    474  1.139        ad 	mutex_enter(p->p_lock);
    475  1.119        ad 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    476  1.139        ad 	mutex_exit(p->p_lock);
    477  1.119        ad 
    478  1.119        ad 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    479   1.17       cgd }
    480   1.17       cgd 
    481  1.191  riastrad void
    482  1.191  riastrad addrulwp(struct lwp *l, struct bintime *tm)
    483  1.191  riastrad {
    484  1.191  riastrad 
    485  1.191  riastrad 	lwp_lock(l);
    486  1.191  riastrad 	bintime_add(tm, &l->l_rtime);
    487  1.191  riastrad 	if ((l->l_pflag & LP_RUNNING) != 0 &&
    488  1.191  riastrad 	    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
    489  1.191  riastrad 		struct bintime diff;
    490  1.191  riastrad 		/*
    491  1.191  riastrad 		 * Adjust for the current time slice.  This is
    492  1.191  riastrad 		 * actually fairly important since the error
    493  1.191  riastrad 		 * here is on the order of a time quantum,
    494  1.191  riastrad 		 * which is much greater than the sampling
    495  1.191  riastrad 		 * error.
    496  1.191  riastrad 		 */
    497  1.191  riastrad 		binuptime(&diff);
    498  1.191  riastrad 		membar_consumer(); /* for softint_dispatch() */
    499  1.191  riastrad 		bintime_sub(&diff, &l->l_stime);
    500  1.191  riastrad 		bintime_add(tm, &diff);
    501  1.191  riastrad 	}
    502  1.191  riastrad 	lwp_unlock(l);
    503  1.191  riastrad }
    504  1.191  riastrad 
    505   1.17       cgd /*
    506   1.17       cgd  * Transform the running time and tick information in proc p into user,
    507   1.17       cgd  * system, and interrupt time usage.
    508  1.113        ad  *
    509  1.139        ad  * Should be called with p->p_lock held unless called from exit1().
    510   1.17       cgd  */
    511   1.25       cgd void
    512   1.98   thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    513  1.113        ad     struct timeval *ip, struct timeval *rp)
    514   1.17       cgd {
    515  1.182   mlelstv 	uint64_t u, st, ut, it, tot, dt;
    516   1.68   thorpej 	struct lwp *l;
    517  1.129      yamt 	struct bintime tm;
    518  1.129      yamt 	struct timeval tv;
    519   1.17       cgd 
    520  1.168      yamt 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    521  1.168      yamt 
    522  1.113        ad 	mutex_spin_enter(&p->p_stmutex);
    523   1.17       cgd 	st = p->p_sticks;
    524   1.17       cgd 	ut = p->p_uticks;
    525   1.17       cgd 	it = p->p_iticks;
    526  1.113        ad 	mutex_spin_exit(&p->p_stmutex);
    527   1.17       cgd 
    528  1.129      yamt 	tm = p->p_rtime;
    529  1.113        ad 
    530   1.70       dsl 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    531  1.191  riastrad 		addrulwp(l, &tm);
    532   1.17       cgd 	}
    533   1.69       dsl 
    534   1.69       dsl 	tot = st + ut + it;
    535  1.129      yamt 	bintime2timeval(&tm, &tv);
    536  1.129      yamt 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    537   1.70       dsl 
    538   1.69       dsl 	if (tot == 0) {
    539   1.69       dsl 		/* No ticks, so can't use to share time out, split 50-50 */
    540   1.70       dsl 		st = ut = u / 2;
    541   1.70       dsl 	} else {
    542   1.70       dsl 		st = (u * st) / tot;
    543   1.70       dsl 		ut = (u * ut) / tot;
    544   1.69       dsl 	}
    545  1.180       kre 
    546  1.180       kre 	/*
    547  1.180       kre 	 * Try to avoid lying to the users (too much)
    548  1.180       kre 	 *
    549  1.180       kre 	 * Of course, user/sys time are based on sampling (ie: statistics)
    550  1.180       kre 	 * so that would be impossible, but convincing the mark
    551  1.180       kre 	 * that we have used less ?time this call than we had
    552  1.180       kre 	 * last time, is beyond reasonable...  (the con fails!)
    553  1.180       kre 	 *
    554  1.180       kre 	 * Note that since actual used time cannot decrease, either
    555  1.180       kre 	 * utime or stime (or both) must be greater now than last time
    556  1.180       kre 	 * (or both the same) - if one seems to have decreased, hold
    557  1.180       kre 	 * it constant and steal the necessary bump from the other
    558  1.180       kre 	 * which must have increased.
    559  1.180       kre 	 */
    560  1.180       kre 	if (p->p_xutime > ut) {
    561  1.182   mlelstv 		dt = p->p_xutime - ut;
    562  1.182   mlelstv 		st -= uimin(dt, st);
    563  1.180       kre 		ut = p->p_xutime;
    564  1.180       kre 	} else if (p->p_xstime > st) {
    565  1.182   mlelstv 		dt = p->p_xstime - st;
    566  1.182   mlelstv 		ut -= uimin(dt, ut);
    567  1.180       kre 		st = p->p_xstime;
    568  1.180       kre 	}
    569  1.180       kre 
    570  1.113        ad 	if (sp != NULL) {
    571  1.180       kre 		p->p_xstime = st;
    572  1.113        ad 		sp->tv_sec = st / 1000000;
    573  1.113        ad 		sp->tv_usec = st % 1000000;
    574  1.113        ad 	}
    575  1.113        ad 	if (up != NULL) {
    576  1.180       kre 		p->p_xutime = ut;
    577  1.113        ad 		up->tv_sec = ut / 1000000;
    578  1.113        ad 		up->tv_usec = ut % 1000000;
    579  1.113        ad 	}
    580   1.17       cgd 	if (ip != NULL) {
    581  1.180       kre 		if (it != 0)		/* it != 0 --> tot != 0 */
    582   1.70       dsl 			it = (u * it) / tot;
    583   1.17       cgd 		ip->tv_sec = it / 1000000;
    584   1.17       cgd 		ip->tv_usec = it % 1000000;
    585   1.17       cgd 	}
    586  1.113        ad 	if (rp != NULL) {
    587  1.129      yamt 		*rp = tv;
    588  1.113        ad 	}
    589   1.17       cgd }
    590   1.17       cgd 
    591   1.25       cgd int
    592  1.148  christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    593  1.134     rmind     register_t *retval)
    594   1.30   thorpej {
    595  1.128       dsl 	/* {
    596   1.22       cgd 		syscallarg(int) who;
    597   1.22       cgd 		syscallarg(struct rusage *) rusage;
    598  1.128       dsl 	} */
    599  1.170     njoly 	int error;
    600  1.119        ad 	struct rusage ru;
    601   1.68   thorpej 	struct proc *p = l->l_proc;
    602   1.17       cgd 
    603  1.170     njoly 	error = getrusage1(p, SCARG(uap, who), &ru);
    604  1.170     njoly 	if (error != 0)
    605  1.170     njoly 		return error;
    606  1.170     njoly 
    607  1.170     njoly 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    608  1.170     njoly }
    609  1.170     njoly 
    610  1.170     njoly int
    611  1.190  riastrad getrusage1(struct proc *p, int who, struct rusage *ru)
    612  1.190  riastrad {
    613  1.170     njoly 
    614  1.170     njoly 	switch (who) {
    615   1.19       cgd 	case RUSAGE_SELF:
    616  1.139        ad 		mutex_enter(p->p_lock);
    617  1.178  christos 		ruspace(p);
    618  1.170     njoly 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    619  1.170     njoly 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    620  1.170     njoly 		rulwps(p, ru);
    621  1.139        ad 		mutex_exit(p->p_lock);
    622   1.17       cgd 		break;
    623   1.17       cgd 	case RUSAGE_CHILDREN:
    624  1.139        ad 		mutex_enter(p->p_lock);
    625  1.170     njoly 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    626  1.139        ad 		mutex_exit(p->p_lock);
    627   1.17       cgd 		break;
    628   1.17       cgd 	default:
    629  1.119        ad 		return EINVAL;
    630   1.17       cgd 	}
    631  1.119        ad 
    632  1.170     njoly 	return 0;
    633   1.17       cgd }
    634   1.17       cgd 
    635   1.25       cgd void
    636  1.178  christos ruspace(struct proc *p)
    637  1.178  christos {
    638  1.178  christos 	struct vmspace *vm = p->p_vmspace;
    639  1.178  christos 	struct rusage *ru = &p->p_stats->p_ru;
    640  1.178  christos 
    641  1.178  christos 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    642  1.178  christos 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    643  1.178  christos 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    644  1.179  christos #ifdef __HAVE_NO_PMAP_STATS
    645  1.179  christos 	/* We don't keep track of the max so we get the current */
    646  1.181  christos 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    647  1.179  christos #else
    648  1.179  christos 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    649  1.179  christos #endif
    650  1.178  christos }
    651  1.178  christos 
    652  1.178  christos void
    653   1.98   thorpej ruadd(struct rusage *ru, struct rusage *ru2)
    654   1.17       cgd {
    655   1.54  augustss 	long *ip, *ip2;
    656   1.54  augustss 	int i;
    657   1.17       cgd 
    658   1.27   mycroft 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    659   1.27   mycroft 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    660   1.17       cgd 	if (ru->ru_maxrss < ru2->ru_maxrss)
    661   1.17       cgd 		ru->ru_maxrss = ru2->ru_maxrss;
    662   1.17       cgd 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    663   1.17       cgd 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    664   1.17       cgd 		*ip++ += *ip2++;
    665   1.17       cgd }
    666   1.17       cgd 
    667  1.137        ad void
    668  1.137        ad rulwps(proc_t *p, struct rusage *ru)
    669  1.137        ad {
    670  1.137        ad 	lwp_t *l;
    671  1.137        ad 
    672  1.139        ad 	KASSERT(mutex_owned(p->p_lock));
    673  1.137        ad 
    674  1.137        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    675  1.137        ad 		ruadd(ru, &l->l_ru);
    676  1.137        ad 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    677  1.137        ad 		ru->ru_nivcsw += l->l_nivcsw;
    678  1.137        ad 	}
    679  1.137        ad }
    680  1.137        ad 
    681   1.17       cgd /*
    682  1.161     rmind  * lim_copy: make a copy of the plimit structure.
    683  1.113        ad  *
    684  1.161     rmind  * We use copy-on-write after fork, and copy when a limit is changed.
    685   1.17       cgd  */
    686   1.17       cgd struct plimit *
    687  1.122       dsl lim_copy(struct plimit *lim)
    688   1.17       cgd {
    689  1.122       dsl 	struct plimit *newlim;
    690  1.113        ad 	char *corename;
    691  1.122       dsl 	size_t alen, len;
    692   1.17       cgd 
    693  1.193        ad 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    694  1.121       dsl 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    695  1.161     rmind 	newlim->pl_writeable = false;
    696  1.121       dsl 	newlim->pl_refcnt = 1;
    697  1.122       dsl 	newlim->pl_sv_limit = NULL;
    698  1.122       dsl 
    699  1.122       dsl 	mutex_enter(&lim->pl_lock);
    700  1.122       dsl 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    701  1.122       dsl 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    702   1.83        pk 
    703  1.161     rmind 	/*
    704  1.161     rmind 	 * Note: the common case is a use of default core name.
    705  1.161     rmind 	 */
    706  1.122       dsl 	alen = 0;
    707  1.122       dsl 	corename = NULL;
    708  1.113        ad 	for (;;) {
    709  1.122       dsl 		if (lim->pl_corename == defcorename) {
    710  1.122       dsl 			newlim->pl_corename = defcorename;
    711  1.161     rmind 			newlim->pl_cnlen = 0;
    712  1.122       dsl 			break;
    713  1.122       dsl 		}
    714  1.161     rmind 		len = lim->pl_cnlen;
    715  1.161     rmind 		if (len == alen) {
    716  1.122       dsl 			newlim->pl_corename = corename;
    717  1.161     rmind 			newlim->pl_cnlen = len;
    718  1.122       dsl 			memcpy(corename, lim->pl_corename, len);
    719  1.122       dsl 			corename = NULL;
    720  1.122       dsl 			break;
    721  1.122       dsl 		}
    722  1.122       dsl 		mutex_exit(&lim->pl_lock);
    723  1.161     rmind 		if (corename) {
    724  1.161     rmind 			kmem_free(corename, alen);
    725  1.161     rmind 		}
    726  1.122       dsl 		alen = len;
    727  1.161     rmind 		corename = kmem_alloc(alen, KM_SLEEP);
    728  1.121       dsl 		mutex_enter(&lim->pl_lock);
    729  1.122       dsl 	}
    730  1.122       dsl 	mutex_exit(&lim->pl_lock);
    731  1.161     rmind 
    732  1.161     rmind 	if (corename) {
    733  1.161     rmind 		kmem_free(corename, alen);
    734  1.161     rmind 	}
    735  1.122       dsl 	return newlim;
    736  1.122       dsl }
    737  1.122       dsl 
    738  1.122       dsl void
    739  1.122       dsl lim_addref(struct plimit *lim)
    740  1.122       dsl {
    741  1.125        ad 	atomic_inc_uint(&lim->pl_refcnt);
    742  1.122       dsl }
    743  1.113        ad 
    744  1.122       dsl /*
    745  1.161     rmind  * lim_privatise: give a process its own private plimit structure.
    746  1.122       dsl  */
    747  1.122       dsl void
    748  1.161     rmind lim_privatise(proc_t *p)
    749  1.122       dsl {
    750  1.161     rmind 	struct plimit *lim = p->p_limit, *newlim;
    751  1.122       dsl 
    752  1.161     rmind 	if (lim->pl_writeable) {
    753  1.122       dsl 		return;
    754  1.122       dsl 	}
    755  1.122       dsl 
    756  1.122       dsl 	newlim = lim_copy(lim);
    757  1.113        ad 
    758  1.139        ad 	mutex_enter(p->p_lock);
    759  1.161     rmind 	if (p->p_limit->pl_writeable) {
    760  1.161     rmind 		/* Other thread won the race. */
    761  1.139        ad 		mutex_exit(p->p_lock);
    762  1.159     rmind 		lim_free(newlim);
    763  1.122       dsl 		return;
    764  1.113        ad 	}
    765   1.83        pk 
    766  1.122       dsl 	/*
    767  1.161     rmind 	 * Since p->p_limit can be accessed without locked held,
    768  1.161     rmind 	 * old limit structure must not be deleted yet.
    769  1.122       dsl 	 */
    770  1.122       dsl 	newlim->pl_sv_limit = p->p_limit;
    771  1.161     rmind 	newlim->pl_writeable = true;
    772  1.122       dsl 	p->p_limit = newlim;
    773  1.139        ad 	mutex_exit(p->p_lock);
    774   1.32   mycroft }
    775   1.32   mycroft 
    776   1.32   mycroft void
    777  1.160     rmind lim_setcorename(proc_t *p, char *name, size_t len)
    778  1.160     rmind {
    779  1.160     rmind 	struct plimit *lim;
    780  1.160     rmind 	char *oname;
    781  1.161     rmind 	size_t olen;
    782  1.160     rmind 
    783  1.161     rmind 	lim_privatise(p);
    784  1.160     rmind 	lim = p->p_limit;
    785  1.160     rmind 
    786  1.160     rmind 	mutex_enter(&lim->pl_lock);
    787  1.160     rmind 	oname = lim->pl_corename;
    788  1.161     rmind 	olen = lim->pl_cnlen;
    789  1.160     rmind 	lim->pl_corename = name;
    790  1.161     rmind 	lim->pl_cnlen = len;
    791  1.160     rmind 	mutex_exit(&lim->pl_lock);
    792  1.160     rmind 
    793  1.160     rmind 	if (oname != defcorename) {
    794  1.161     rmind 		kmem_free(oname, olen);
    795  1.160     rmind 	}
    796  1.160     rmind }
    797  1.160     rmind 
    798  1.160     rmind void
    799  1.159     rmind lim_free(struct plimit *lim)
    800   1.32   mycroft {
    801  1.122       dsl 	struct plimit *sv_lim;
    802   1.85    kleink 
    803  1.122       dsl 	do {
    804  1.189  riastrad 		membar_release();
    805  1.159     rmind 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    806  1.122       dsl 			return;
    807  1.159     rmind 		}
    808  1.189  riastrad 		membar_acquire();
    809  1.159     rmind 		if (lim->pl_corename != defcorename) {
    810  1.161     rmind 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    811  1.159     rmind 		}
    812  1.122       dsl 		sv_lim = lim->pl_sv_limit;
    813  1.122       dsl 		mutex_destroy(&lim->pl_lock);
    814  1.193        ad 		pool_cache_put(plimit_cache, lim);
    815  1.122       dsl 	} while ((lim = sv_lim) != NULL);
    816   1.68   thorpej }
    817   1.68   thorpej 
    818   1.68   thorpej struct pstats *
    819   1.98   thorpej pstatscopy(struct pstats *ps)
    820   1.68   thorpej {
    821  1.164     rmind 	struct pstats *nps;
    822  1.164     rmind 	size_t len;
    823   1.87     perry 
    824  1.193        ad 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    825   1.68   thorpej 
    826  1.164     rmind 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    827  1.164     rmind 	memset(&nps->pstat_startzero, 0, len);
    828   1.68   thorpej 
    829  1.164     rmind 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    830  1.164     rmind 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    831   1.68   thorpej 
    832  1.164     rmind 	return nps;
    833   1.68   thorpej }
    834   1.68   thorpej 
    835   1.68   thorpej void
    836   1.98   thorpej pstatsfree(struct pstats *ps)
    837   1.68   thorpej {
    838   1.68   thorpej 
    839  1.193        ad 	pool_cache_put(pstats_cache, ps);
    840   1.74    atatat }
    841   1.74    atatat 
    842   1.74    atatat /*
    843  1.157     rmind  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    844  1.157     rmind  * need to pick a valid process by PID.
    845  1.157     rmind  *
    846  1.157     rmind  * => Hold a reference on the process, on success.
    847   1.74    atatat  */
    848   1.74    atatat static int
    849  1.157     rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    850   1.74    atatat {
    851  1.157     rmind 	proc_t *p;
    852  1.157     rmind 	int error;
    853   1.74    atatat 
    854  1.157     rmind 	if (pid == PROC_CURPROC) {
    855  1.157     rmind 		p = l->l_proc;
    856  1.157     rmind 	} else {
    857  1.187        ad 		mutex_enter(&proc_lock);
    858  1.157     rmind 		p = proc_find(pid);
    859  1.157     rmind 		if (p == NULL) {
    860  1.187        ad 			mutex_exit(&proc_lock);
    861  1.157     rmind 			return ESRCH;
    862  1.157     rmind 		}
    863  1.157     rmind 	}
    864  1.157     rmind 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    865  1.157     rmind 	if (pid != PROC_CURPROC) {
    866  1.187        ad 		mutex_exit(&proc_lock);
    867  1.157     rmind 	}
    868  1.157     rmind 	*p2 = p;
    869  1.157     rmind 	return error;
    870   1.74    atatat }
    871   1.74    atatat 
    872   1.74    atatat /*
    873  1.176  pgoyette  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    874  1.176  pgoyette  */
    875  1.176  pgoyette static int
    876  1.176  pgoyette sysctl_proc_paxflags(SYSCTLFN_ARGS)
    877  1.176  pgoyette {
    878  1.176  pgoyette 	struct proc *p;
    879  1.176  pgoyette 	struct sysctlnode node;
    880  1.176  pgoyette 	int paxflags;
    881  1.176  pgoyette 	int error;
    882  1.176  pgoyette 
    883  1.176  pgoyette 	/* First, validate the request. */
    884  1.176  pgoyette 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    885  1.176  pgoyette 		return EINVAL;
    886  1.176  pgoyette 
    887  1.176  pgoyette 	/* Find the process.  Hold a reference (p_reflock), if found. */
    888  1.176  pgoyette 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    889  1.176  pgoyette 	if (error)
    890  1.176  pgoyette 		return error;
    891  1.176  pgoyette 
    892  1.176  pgoyette 	/* XXX-elad */
    893  1.176  pgoyette 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    894  1.176  pgoyette 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    895  1.176  pgoyette 	if (error) {
    896  1.176  pgoyette 		rw_exit(&p->p_reflock);
    897  1.176  pgoyette 		return error;
    898  1.176  pgoyette 	}
    899  1.176  pgoyette 
    900  1.176  pgoyette 	/* Retrieve the limits. */
    901  1.176  pgoyette 	node = *rnode;
    902  1.176  pgoyette 	paxflags = p->p_pax;
    903  1.176  pgoyette 	node.sysctl_data = &paxflags;
    904  1.176  pgoyette 
    905  1.176  pgoyette 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    906  1.176  pgoyette 
    907  1.176  pgoyette 	/* If attempting to write new value, it's an error */
    908  1.176  pgoyette 	if (error == 0 && newp != NULL)
    909  1.176  pgoyette 		error = EACCES;
    910  1.176  pgoyette 
    911  1.176  pgoyette 	rw_exit(&p->p_reflock);
    912  1.176  pgoyette 	return error;
    913  1.176  pgoyette }
    914  1.176  pgoyette 
    915  1.176  pgoyette /*
    916  1.158     rmind  * sysctl_proc_corename: helper routine to get or set the core file name
    917  1.158     rmind  * for a process specified by PID.
    918   1.74    atatat  */
    919   1.74    atatat static int
    920   1.74    atatat sysctl_proc_corename(SYSCTLFN_ARGS)
    921   1.74    atatat {
    922  1.158     rmind 	struct proc *p;
    923   1.83        pk 	struct plimit *lim;
    924  1.158     rmind 	char *cnbuf, *cname;
    925  1.157     rmind 	struct sysctlnode node;
    926  1.158     rmind 	size_t len;
    927  1.158     rmind 	int error;
    928   1.74    atatat 
    929  1.158     rmind 	/* First, validate the request. */
    930  1.158     rmind 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    931  1.158     rmind 		return EINVAL;
    932   1.74    atatat 
    933  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
    934  1.158     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    935   1.74    atatat 	if (error)
    936  1.157     rmind 		return error;
    937   1.74    atatat 
    938  1.131      elad 	/* XXX-elad */
    939  1.158     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    940  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    941  1.157     rmind 	if (error) {
    942  1.158     rmind 		rw_exit(&p->p_reflock);
    943  1.157     rmind 		return error;
    944  1.157     rmind 	}
    945  1.111      elad 
    946  1.158     rmind 	cnbuf = PNBUF_GET();
    947  1.158     rmind 
    948  1.165       mrg 	if (oldp) {
    949  1.158     rmind 		/* Get case: copy the core name into the buffer. */
    950  1.131      elad 		error = kauth_authorize_process(l->l_cred,
    951  1.158     rmind 		    KAUTH_PROCESS_CORENAME, p,
    952  1.131      elad 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    953  1.157     rmind 		if (error) {
    954  1.158     rmind 			goto done;
    955  1.158     rmind 		}
    956  1.158     rmind 		lim = p->p_limit;
    957  1.158     rmind 		mutex_enter(&lim->pl_lock);
    958  1.158     rmind 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    959  1.158     rmind 		mutex_exit(&lim->pl_lock);
    960  1.165       mrg 	}
    961  1.131      elad 
    962   1.74    atatat 	node = *rnode;
    963  1.158     rmind 	node.sysctl_data = cnbuf;
    964   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    965   1.74    atatat 
    966  1.163     rmind 	/* Return if error, or if caller is only getting the core name. */
    967  1.158     rmind 	if (error || newp == NULL) {
    968  1.100      yamt 		goto done;
    969  1.157     rmind 	}
    970  1.103      elad 
    971   1.74    atatat 	/*
    972  1.166     rmind 	 * Set case.  Check permission and then validate new core name.
    973  1.166     rmind 	 * It must be either "core", "/core", or end in ".core".
    974   1.74    atatat 	 */
    975  1.166     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    976  1.166     rmind 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    977  1.166     rmind 	if (error) {
    978  1.166     rmind 		goto done;
    979  1.166     rmind 	}
    980  1.158     rmind 	len = strlen(cnbuf);
    981  1.158     rmind 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    982  1.158     rmind 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    983  1.100      yamt 		error = EINVAL;
    984  1.100      yamt 		goto done;
    985  1.100      yamt 	}
    986   1.74    atatat 
    987  1.158     rmind 	/* Allocate, copy and set the new core name for plimit structure. */
    988  1.161     rmind 	cname = kmem_alloc(++len, KM_NOSLEEP);
    989  1.158     rmind 	if (cname == NULL) {
    990  1.100      yamt 		error = ENOMEM;
    991  1.100      yamt 		goto done;
    992  1.100      yamt 	}
    993  1.158     rmind 	memcpy(cname, cnbuf, len);
    994  1.160     rmind 	lim_setcorename(p, cname, len);
    995  1.100      yamt done:
    996  1.158     rmind 	rw_exit(&p->p_reflock);
    997  1.158     rmind 	PNBUF_PUT(cnbuf);
    998  1.100      yamt 	return error;
    999   1.74    atatat }
   1000   1.74    atatat 
   1001   1.74    atatat /*
   1002  1.163     rmind  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
   1003   1.74    atatat  */
   1004   1.74    atatat static int
   1005   1.74    atatat sysctl_proc_stop(SYSCTLFN_ARGS)
   1006   1.74    atatat {
   1007  1.163     rmind 	struct proc *p;
   1008  1.163     rmind 	int isset, flag, error = 0;
   1009   1.74    atatat 	struct sysctlnode node;
   1010   1.74    atatat 
   1011   1.74    atatat 	if (namelen != 0)
   1012  1.163     rmind 		return EINVAL;
   1013   1.74    atatat 
   1014  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1015  1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1016   1.74    atatat 	if (error)
   1017  1.157     rmind 		return error;
   1018   1.74    atatat 
   1019  1.131      elad 	/* XXX-elad */
   1020  1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1021  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1022  1.163     rmind 	if (error) {
   1023  1.157     rmind 		goto out;
   1024  1.163     rmind 	}
   1025  1.111      elad 
   1026  1.163     rmind 	/* Determine the flag. */
   1027   1.74    atatat 	switch (rnode->sysctl_num) {
   1028   1.74    atatat 	case PROC_PID_STOPFORK:
   1029  1.163     rmind 		flag = PS_STOPFORK;
   1030   1.74    atatat 		break;
   1031   1.74    atatat 	case PROC_PID_STOPEXEC:
   1032  1.163     rmind 		flag = PS_STOPEXEC;
   1033   1.74    atatat 		break;
   1034   1.74    atatat 	case PROC_PID_STOPEXIT:
   1035  1.163     rmind 		flag = PS_STOPEXIT;
   1036   1.74    atatat 		break;
   1037   1.74    atatat 	default:
   1038  1.157     rmind 		error = EINVAL;
   1039  1.157     rmind 		goto out;
   1040   1.74    atatat 	}
   1041  1.163     rmind 	isset = (p->p_flag & flag) ? 1 : 0;
   1042   1.74    atatat 	node = *rnode;
   1043  1.163     rmind 	node.sysctl_data = &isset;
   1044   1.74    atatat 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1045  1.163     rmind 
   1046  1.163     rmind 	/* Return if error, or if callers is only getting the flag. */
   1047  1.163     rmind 	if (error || newp == NULL) {
   1048  1.157     rmind 		goto out;
   1049  1.163     rmind 	}
   1050   1.74    atatat 
   1051  1.163     rmind 	/* Check if caller can set the flags. */
   1052  1.111      elad 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1053  1.163     rmind 	    p, KAUTH_ARG(flag), NULL, NULL);
   1054  1.163     rmind 	if (error) {
   1055  1.163     rmind 		goto out;
   1056  1.163     rmind 	}
   1057  1.163     rmind 	mutex_enter(p->p_lock);
   1058  1.163     rmind 	if (isset) {
   1059  1.163     rmind 		p->p_sflag |= flag;
   1060  1.163     rmind 	} else {
   1061  1.163     rmind 		p->p_sflag &= ~flag;
   1062  1.143     rmind 	}
   1063  1.163     rmind 	mutex_exit(p->p_lock);
   1064  1.157     rmind out:
   1065  1.163     rmind 	rw_exit(&p->p_reflock);
   1066  1.143     rmind 	return error;
   1067   1.74    atatat }
   1068   1.74    atatat 
   1069   1.74    atatat /*
   1070  1.163     rmind  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1071   1.74    atatat  */
   1072   1.74    atatat static int
   1073   1.74    atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
   1074   1.74    atatat {
   1075  1.163     rmind 	struct proc *p;
   1076   1.74    atatat 	u_int limitno;
   1077   1.74    atatat 	int which, error = 0;
   1078   1.74    atatat         struct rlimit alim;
   1079   1.74    atatat 	struct sysctlnode node;
   1080   1.74    atatat 
   1081   1.74    atatat 	if (namelen != 0)
   1082  1.163     rmind 		return EINVAL;
   1083   1.74    atatat 
   1084   1.74    atatat 	which = name[-1];
   1085   1.74    atatat 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1086   1.74    atatat 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1087  1.163     rmind 		return EINVAL;
   1088   1.74    atatat 
   1089   1.74    atatat 	limitno = name[-2] - 1;
   1090   1.74    atatat 	if (limitno >= RLIM_NLIMITS)
   1091  1.163     rmind 		return EINVAL;
   1092   1.74    atatat 
   1093   1.74    atatat 	if (name[-3] != PROC_PID_LIMIT)
   1094  1.163     rmind 		return EINVAL;
   1095   1.74    atatat 
   1096  1.157     rmind 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1097  1.163     rmind 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1098   1.74    atatat 	if (error)
   1099  1.157     rmind 		return error;
   1100   1.74    atatat 
   1101  1.131      elad 	/* XXX-elad */
   1102  1.163     rmind 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1103  1.131      elad 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1104  1.111      elad 	if (error)
   1105  1.157     rmind 		goto out;
   1106  1.111      elad 
   1107  1.163     rmind 	/* Check if caller can retrieve the limits. */
   1108  1.131      elad 	if (newp == NULL) {
   1109  1.131      elad 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1110  1.163     rmind 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1111  1.131      elad 		    KAUTH_ARG(which));
   1112  1.131      elad 		if (error)
   1113  1.157     rmind 			goto out;
   1114  1.131      elad 	}
   1115  1.131      elad 
   1116  1.163     rmind 	/* Retrieve the limits. */
   1117   1.74    atatat 	node = *rnode;
   1118  1.163     rmind 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1119  1.163     rmind 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1120   1.74    atatat 		node.sysctl_data = &alim.rlim_max;
   1121  1.163     rmind 	} else {
   1122   1.74    atatat 		node.sysctl_data = &alim.rlim_cur;
   1123  1.163     rmind 	}
   1124  1.163     rmind 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1125   1.74    atatat 
   1126  1.163     rmind 	/* Return if error, or if we are only retrieving the limits. */
   1127  1.157     rmind 	if (error || newp == NULL) {
   1128  1.157     rmind 		goto out;
   1129  1.157     rmind 	}
   1130  1.163     rmind 	error = dosetrlimit(l, p, limitno, &alim);
   1131  1.157     rmind out:
   1132  1.163     rmind 	rw_exit(&p->p_reflock);
   1133  1.157     rmind 	return error;
   1134   1.74    atatat }
   1135   1.74    atatat 
   1136   1.74    atatat /*
   1137  1.164     rmind  * Setup sysctl nodes.
   1138   1.74    atatat  */
   1139  1.156     pooka static void
   1140  1.164     rmind sysctl_proc_setup(void)
   1141   1.74    atatat {
   1142   1.74    atatat 
   1143  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1144   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1145   1.78    atatat 		       CTLTYPE_NODE, "curproc",
   1146   1.78    atatat 		       SYSCTL_DESCR("Per-process settings"),
   1147   1.74    atatat 		       NULL, 0, NULL, 0,
   1148   1.74    atatat 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1149   1.74    atatat 
   1150  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1151  1.176  pgoyette 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1152  1.176  pgoyette 		       CTLTYPE_INT, "paxflags",
   1153  1.176  pgoyette 		       SYSCTL_DESCR("Process PAX control flags"),
   1154  1.176  pgoyette 		       sysctl_proc_paxflags, 0, NULL, 0,
   1155  1.176  pgoyette 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1156  1.176  pgoyette 
   1157  1.176  pgoyette 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1158  1.103      elad 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1159   1.78    atatat 		       CTLTYPE_STRING, "corename",
   1160   1.78    atatat 		       SYSCTL_DESCR("Core file name"),
   1161   1.74    atatat 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1162   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1163  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1164   1.76    atatat 		       CTLFLAG_PERMANENT,
   1165   1.78    atatat 		       CTLTYPE_NODE, "rlimit",
   1166   1.78    atatat 		       SYSCTL_DESCR("Process limits"),
   1167   1.74    atatat 		       NULL, 0, NULL, 0,
   1168   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1169   1.74    atatat 
   1170   1.74    atatat #define create_proc_plimit(s, n) do {					\
   1171  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1172   1.76    atatat 		       CTLFLAG_PERMANENT,				\
   1173   1.78    atatat 		       CTLTYPE_NODE, s,					\
   1174   1.78    atatat 		       SYSCTL_DESCR("Process " s " limits"),		\
   1175   1.74    atatat 		       NULL, 0, NULL, 0,				\
   1176   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1177   1.74    atatat 		       CTL_EOL);					\
   1178  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1179   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1180   1.78    atatat 		       CTLTYPE_QUAD, "soft",				\
   1181   1.78    atatat 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1182   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1183   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1184   1.74    atatat 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1185  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1186   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1187   1.78    atatat 		       CTLTYPE_QUAD, "hard",				\
   1188   1.78    atatat 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1189   1.74    atatat 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1190   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1191   1.74    atatat 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1192   1.74    atatat 	} while (0/*CONSTCOND*/)
   1193   1.74    atatat 
   1194   1.74    atatat 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1195   1.74    atatat 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1196   1.74    atatat 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1197   1.74    atatat 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1198   1.74    atatat 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1199   1.74    atatat 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1200   1.74    atatat 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1201   1.74    atatat 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1202   1.74    atatat 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1203   1.79  christos 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1204  1.151       mrg 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1205  1.169  christos 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1206   1.74    atatat 
   1207   1.74    atatat #undef create_proc_plimit
   1208   1.74    atatat 
   1209  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1210   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1211   1.78    atatat 		       CTLTYPE_INT, "stopfork",
   1212   1.78    atatat 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1213   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1214   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1215  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1216   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1217   1.78    atatat 		       CTLTYPE_INT, "stopexec",
   1218   1.78    atatat 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1219   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1220   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1221  1.156     pooka 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1222   1.76    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1223   1.78    atatat 		       CTLTYPE_INT, "stopexit",
   1224   1.78    atatat 		       SYSCTL_DESCR("Stop process before completing exit"),
   1225   1.74    atatat 		       sysctl_proc_stop, 0, NULL, 0,
   1226   1.74    atatat 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1227   1.17       cgd }
   1228