kern_resource.c revision 1.195 1 1.195 ad /* $NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $ */
2 1.20 cgd
3 1.17 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.17 cgd * (c) UNIX System Laboratories, Inc.
7 1.17 cgd * All or some portions of this file are derived from material licensed
8 1.17 cgd * to the University of California by American Telephone and Telegraph
9 1.17 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.17 cgd * the permission of UNIX System Laboratories, Inc.
11 1.17 cgd *
12 1.17 cgd * Redistribution and use in source and binary forms, with or without
13 1.17 cgd * modification, are permitted provided that the following conditions
14 1.17 cgd * are met:
15 1.17 cgd * 1. Redistributions of source code must retain the above copyright
16 1.17 cgd * notice, this list of conditions and the following disclaimer.
17 1.17 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.17 cgd * notice, this list of conditions and the following disclaimer in the
19 1.17 cgd * documentation and/or other materials provided with the distribution.
20 1.72 agc * 3. Neither the name of the University nor the names of its contributors
21 1.17 cgd * may be used to endorse or promote products derived from this software
22 1.17 cgd * without specific prior written permission.
23 1.17 cgd *
24 1.17 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.17 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.17 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.17 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.17 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.17 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.17 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.17 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.17 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.17 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.17 cgd * SUCH DAMAGE.
35 1.17 cgd *
36 1.45 fvdl * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 1.17 cgd */
38 1.61 lukem
39 1.61 lukem #include <sys/cdefs.h>
40 1.195 ad __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $");
41 1.44 mrg
42 1.17 cgd #include <sys/param.h>
43 1.22 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/kernel.h>
45 1.19 cgd #include <sys/file.h>
46 1.17 cgd #include <sys/resourcevar.h>
47 1.132 yamt #include <sys/kmem.h>
48 1.100 yamt #include <sys/namei.h>
49 1.49 thorpej #include <sys/pool.h>
50 1.17 cgd #include <sys/proc.h>
51 1.74 atatat #include <sys/sysctl.h>
52 1.129 yamt #include <sys/timevar.h>
53 1.101 elad #include <sys/kauth.h>
54 1.125 ad #include <sys/atomic.h>
55 1.22 cgd #include <sys/mount.h>
56 1.22 cgd #include <sys/syscallargs.h>
57 1.136 ad #include <sys/atomic.h>
58 1.17 cgd
59 1.43 mrg #include <uvm/uvm_extern.h>
60 1.43 mrg
61 1.17 cgd /*
62 1.60 eeh * Maximum process data and stack limits.
63 1.60 eeh * They are variables so they are patchable.
64 1.60 eeh */
65 1.167 rmind rlim_t maxdmap = MAXDSIZ;
66 1.167 rmind rlim_t maxsmap = MAXSSIZ;
67 1.60 eeh
68 1.154 elad static kauth_listener_t resource_listener;
69 1.164 rmind static struct sysctllog *proc_sysctllog;
70 1.153 elad
71 1.164 rmind static int donice(struct lwp *, struct proc *, int);
72 1.164 rmind static void sysctl_proc_setup(void);
73 1.156 pooka
74 1.153 elad static int
75 1.154 elad resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
76 1.153 elad void *arg0, void *arg1, void *arg2, void *arg3)
77 1.153 elad {
78 1.153 elad struct proc *p;
79 1.153 elad int result;
80 1.153 elad
81 1.153 elad result = KAUTH_RESULT_DEFER;
82 1.153 elad p = arg0;
83 1.153 elad
84 1.154 elad switch (action) {
85 1.154 elad case KAUTH_PROCESS_NICE:
86 1.154 elad if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
87 1.164 rmind kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
88 1.164 rmind break;
89 1.164 rmind }
90 1.153 elad
91 1.164 rmind if ((u_long)arg1 >= p->p_nice)
92 1.164 rmind result = KAUTH_RESULT_ALLOW;
93 1.153 elad
94 1.154 elad break;
95 1.154 elad
96 1.154 elad case KAUTH_PROCESS_RLIMIT: {
97 1.154 elad enum kauth_process_req req;
98 1.153 elad
99 1.186 joerg req = (enum kauth_process_req)(uintptr_t)arg1;
100 1.153 elad
101 1.154 elad switch (req) {
102 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_GET:
103 1.153 elad result = KAUTH_RESULT_ALLOW;
104 1.154 elad break;
105 1.154 elad
106 1.154 elad case KAUTH_REQ_PROCESS_RLIMIT_SET: {
107 1.154 elad struct rlimit *new_rlimit;
108 1.154 elad u_long which;
109 1.154 elad
110 1.154 elad if ((p != curlwp->l_proc) &&
111 1.154 elad (proc_uidmatch(cred, p->p_cred) != 0))
112 1.154 elad break;
113 1.154 elad
114 1.154 elad new_rlimit = arg2;
115 1.154 elad which = (u_long)arg3;
116 1.154 elad
117 1.154 elad if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
118 1.154 elad result = KAUTH_RESULT_ALLOW;
119 1.154 elad
120 1.154 elad break;
121 1.154 elad }
122 1.154 elad
123 1.154 elad default:
124 1.154 elad break;
125 1.154 elad }
126 1.154 elad
127 1.154 elad break;
128 1.154 elad }
129 1.154 elad
130 1.154 elad default:
131 1.154 elad break;
132 1.153 elad }
133 1.153 elad
134 1.153 elad return result;
135 1.153 elad }
136 1.153 elad
137 1.130 ad void
138 1.130 ad resource_init(void)
139 1.130 ad {
140 1.130 ad
141 1.154 elad resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
142 1.154 elad resource_listener_cb, NULL);
143 1.156 pooka
144 1.156 pooka sysctl_proc_setup();
145 1.130 ad }
146 1.130 ad
147 1.60 eeh /*
148 1.17 cgd * Resource controls and accounting.
149 1.17 cgd */
150 1.17 cgd
151 1.25 cgd int
152 1.134 rmind sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
153 1.134 rmind register_t *retval)
154 1.30 thorpej {
155 1.128 dsl /* {
156 1.22 cgd syscallarg(int) which;
157 1.81 kleink syscallarg(id_t) who;
158 1.128 dsl } */
159 1.68 thorpej struct proc *curp = l->l_proc, *p;
160 1.164 rmind id_t who = SCARG(uap, who);
161 1.54 augustss int low = NZERO + PRIO_MAX + 1;
162 1.17 cgd
163 1.187 ad mutex_enter(&proc_lock);
164 1.22 cgd switch (SCARG(uap, which)) {
165 1.17 cgd case PRIO_PROCESS:
166 1.171 njoly p = who ? proc_find(who) : curp;
167 1.113 ad if (p != NULL)
168 1.113 ad low = p->p_nice;
169 1.17 cgd break;
170 1.17 cgd
171 1.17 cgd case PRIO_PGRP: {
172 1.54 augustss struct pgrp *pg;
173 1.17 cgd
174 1.113 ad if (who == 0)
175 1.17 cgd pg = curp->p_pgrp;
176 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
177 1.17 cgd break;
178 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
179 1.17 cgd if (p->p_nice < low)
180 1.17 cgd low = p->p_nice;
181 1.17 cgd }
182 1.17 cgd break;
183 1.17 cgd }
184 1.17 cgd
185 1.17 cgd case PRIO_USER:
186 1.113 ad if (who == 0)
187 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
188 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
189 1.139 ad mutex_enter(p->p_lock);
190 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
191 1.113 ad (uid_t)who && p->p_nice < low)
192 1.17 cgd low = p->p_nice;
193 1.139 ad mutex_exit(p->p_lock);
194 1.64 matt }
195 1.17 cgd break;
196 1.17 cgd
197 1.17 cgd default:
198 1.187 ad mutex_exit(&proc_lock);
199 1.164 rmind return EINVAL;
200 1.17 cgd }
201 1.187 ad mutex_exit(&proc_lock);
202 1.113 ad
203 1.164 rmind if (low == NZERO + PRIO_MAX + 1) {
204 1.164 rmind return ESRCH;
205 1.164 rmind }
206 1.37 ws *retval = low - NZERO;
207 1.164 rmind return 0;
208 1.17 cgd }
209 1.17 cgd
210 1.25 cgd int
211 1.134 rmind sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
212 1.134 rmind register_t *retval)
213 1.30 thorpej {
214 1.128 dsl /* {
215 1.22 cgd syscallarg(int) which;
216 1.81 kleink syscallarg(id_t) who;
217 1.22 cgd syscallarg(int) prio;
218 1.128 dsl } */
219 1.68 thorpej struct proc *curp = l->l_proc, *p;
220 1.164 rmind id_t who = SCARG(uap, who);
221 1.17 cgd int found = 0, error = 0;
222 1.17 cgd
223 1.187 ad mutex_enter(&proc_lock);
224 1.22 cgd switch (SCARG(uap, which)) {
225 1.17 cgd case PRIO_PROCESS:
226 1.157 rmind p = who ? proc_find(who) : curp;
227 1.157 rmind if (p != NULL) {
228 1.139 ad mutex_enter(p->p_lock);
229 1.162 christos found++;
230 1.113 ad error = donice(l, p, SCARG(uap, prio));
231 1.139 ad mutex_exit(p->p_lock);
232 1.113 ad }
233 1.17 cgd break;
234 1.17 cgd
235 1.17 cgd case PRIO_PGRP: {
236 1.54 augustss struct pgrp *pg;
237 1.87 perry
238 1.113 ad if (who == 0)
239 1.17 cgd pg = curp->p_pgrp;
240 1.157 rmind else if ((pg = pgrp_find(who)) == NULL)
241 1.17 cgd break;
242 1.64 matt LIST_FOREACH(p, &pg->pg_members, p_pglist) {
243 1.139 ad mutex_enter(p->p_lock);
244 1.162 christos found++;
245 1.102 ad error = donice(l, p, SCARG(uap, prio));
246 1.139 ad mutex_exit(p->p_lock);
247 1.162 christos if (error)
248 1.162 christos break;
249 1.17 cgd }
250 1.17 cgd break;
251 1.17 cgd }
252 1.17 cgd
253 1.17 cgd case PRIO_USER:
254 1.113 ad if (who == 0)
255 1.113 ad who = (int)kauth_cred_geteuid(l->l_cred);
256 1.86 yamt PROCLIST_FOREACH(p, &allproc) {
257 1.139 ad mutex_enter(p->p_lock);
258 1.102 ad if (kauth_cred_geteuid(p->p_cred) ==
259 1.102 ad (uid_t)SCARG(uap, who)) {
260 1.162 christos found++;
261 1.102 ad error = donice(l, p, SCARG(uap, prio));
262 1.17 cgd }
263 1.139 ad mutex_exit(p->p_lock);
264 1.162 christos if (error)
265 1.162 christos break;
266 1.64 matt }
267 1.17 cgd break;
268 1.17 cgd
269 1.17 cgd default:
270 1.187 ad mutex_exit(&proc_lock);
271 1.144 njoly return EINVAL;
272 1.17 cgd }
273 1.187 ad mutex_exit(&proc_lock);
274 1.164 rmind
275 1.164 rmind return (found == 0) ? ESRCH : error;
276 1.17 cgd }
277 1.17 cgd
278 1.113 ad /*
279 1.113 ad * Renice a process.
280 1.113 ad *
281 1.113 ad * Call with the target process' credentials locked.
282 1.113 ad */
283 1.164 rmind static int
284 1.102 ad donice(struct lwp *l, struct proc *chgp, int n)
285 1.17 cgd {
286 1.102 ad kauth_cred_t cred = l->l_cred;
287 1.113 ad
288 1.139 ad KASSERT(mutex_owned(chgp->p_lock));
289 1.17 cgd
290 1.152 elad if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
291 1.152 elad kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
292 1.152 elad kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
293 1.164 rmind return EPERM;
294 1.152 elad
295 1.164 rmind if (n > PRIO_MAX) {
296 1.17 cgd n = PRIO_MAX;
297 1.164 rmind }
298 1.164 rmind if (n < PRIO_MIN) {
299 1.17 cgd n = PRIO_MIN;
300 1.164 rmind }
301 1.37 ws n += NZERO;
302 1.164 rmind
303 1.112 elad if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
304 1.164 rmind KAUTH_ARG(n), NULL, NULL)) {
305 1.164 rmind return EACCES;
306 1.164 rmind }
307 1.164 rmind
308 1.117 yamt sched_nice(chgp, n);
309 1.164 rmind return 0;
310 1.17 cgd }
311 1.17 cgd
312 1.25 cgd int
313 1.134 rmind sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
314 1.134 rmind register_t *retval)
315 1.30 thorpej {
316 1.128 dsl /* {
317 1.42 mycroft syscallarg(int) which;
318 1.39 cgd syscallarg(const struct rlimit *) rlp;
319 1.128 dsl } */
320 1.164 rmind int error, which = SCARG(uap, which);
321 1.19 cgd struct rlimit alim;
322 1.17 cgd
323 1.46 perry error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
324 1.164 rmind if (error) {
325 1.164 rmind return error;
326 1.164 rmind }
327 1.164 rmind return dosetrlimit(l, l->l_proc, which, &alim);
328 1.17 cgd }
329 1.17 cgd
330 1.17 cgd int
331 1.102 ad dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
332 1.17 cgd {
333 1.54 augustss struct rlimit *alimp;
334 1.17 cgd int error;
335 1.17 cgd
336 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
337 1.164 rmind return EINVAL;
338 1.38 matthias
339 1.62 jdolecek if (limp->rlim_cur > limp->rlim_max) {
340 1.62 jdolecek /*
341 1.62 jdolecek * This is programming error. According to SUSv2, we should
342 1.62 jdolecek * return error in this case.
343 1.62 jdolecek */
344 1.164 rmind return EINVAL;
345 1.62 jdolecek }
346 1.122 dsl
347 1.122 dsl alimp = &p->p_rlimit[which];
348 1.122 dsl /* if we don't change the value, no need to limcopy() */
349 1.122 dsl if (limp->rlim_cur == alimp->rlim_cur &&
350 1.122 dsl limp->rlim_max == alimp->rlim_max)
351 1.122 dsl return 0;
352 1.122 dsl
353 1.112 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
354 1.131 elad p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
355 1.111 elad if (error)
356 1.164 rmind return error;
357 1.62 jdolecek
358 1.161 rmind lim_privatise(p);
359 1.122 dsl /* p->p_limit is now unchangeable */
360 1.122 dsl alimp = &p->p_rlimit[which];
361 1.17 cgd
362 1.17 cgd switch (which) {
363 1.17 cgd
364 1.17 cgd case RLIMIT_DATA:
365 1.19 cgd if (limp->rlim_cur > maxdmap)
366 1.19 cgd limp->rlim_cur = maxdmap;
367 1.19 cgd if (limp->rlim_max > maxdmap)
368 1.19 cgd limp->rlim_max = maxdmap;
369 1.17 cgd break;
370 1.17 cgd
371 1.17 cgd case RLIMIT_STACK:
372 1.19 cgd if (limp->rlim_cur > maxsmap)
373 1.19 cgd limp->rlim_cur = maxsmap;
374 1.19 cgd if (limp->rlim_max > maxsmap)
375 1.19 cgd limp->rlim_max = maxsmap;
376 1.62 jdolecek
377 1.62 jdolecek /*
378 1.62 jdolecek * Return EINVAL if the new stack size limit is lower than
379 1.62 jdolecek * current usage. Otherwise, the process would get SIGSEGV the
380 1.174 snj * moment it would try to access anything on its current stack.
381 1.62 jdolecek * This conforms to SUSv2.
382 1.62 jdolecek */
383 1.177 mlelstv if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
384 1.177 mlelstv btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
385 1.164 rmind return EINVAL;
386 1.113 ad }
387 1.40 enami
388 1.17 cgd /*
389 1.40 enami * Stack is allocated to the max at exec time with
390 1.40 enami * only "rlim_cur" bytes accessible (In other words,
391 1.40 enami * allocates stack dividing two contiguous regions at
392 1.40 enami * "rlim_cur" bytes boundary).
393 1.40 enami *
394 1.40 enami * Since allocation is done in terms of page, roundup
395 1.40 enami * "rlim_cur" (otherwise, contiguous regions
396 1.40 enami * overlap). If stack limit is going up make more
397 1.40 enami * accessible, if going down make inaccessible.
398 1.17 cgd */
399 1.175 njoly limp->rlim_max = round_page(limp->rlim_max);
400 1.40 enami limp->rlim_cur = round_page(limp->rlim_cur);
401 1.17 cgd if (limp->rlim_cur != alimp->rlim_cur) {
402 1.48 eeh vaddr_t addr;
403 1.48 eeh vsize_t size;
404 1.17 cgd vm_prot_t prot;
405 1.172 chs char *base, *tmp;
406 1.17 cgd
407 1.172 chs base = p->p_vmspace->vm_minsaddr;
408 1.17 cgd if (limp->rlim_cur > alimp->rlim_cur) {
409 1.73 chs prot = VM_PROT_READ | VM_PROT_WRITE;
410 1.17 cgd size = limp->rlim_cur - alimp->rlim_cur;
411 1.172 chs tmp = STACK_GROW(base, alimp->rlim_cur);
412 1.17 cgd } else {
413 1.17 cgd prot = VM_PROT_NONE;
414 1.17 cgd size = alimp->rlim_cur - limp->rlim_cur;
415 1.172 chs tmp = STACK_GROW(base, limp->rlim_cur);
416 1.17 cgd }
417 1.172 chs addr = (vaddr_t)STACK_ALLOC(tmp, size);
418 1.43 mrg (void) uvm_map_protect(&p->p_vmspace->vm_map,
419 1.172 chs addr, addr + size, prot, false);
420 1.17 cgd }
421 1.17 cgd break;
422 1.19 cgd
423 1.19 cgd case RLIMIT_NOFILE:
424 1.19 cgd if (limp->rlim_cur > maxfiles)
425 1.19 cgd limp->rlim_cur = maxfiles;
426 1.19 cgd if (limp->rlim_max > maxfiles)
427 1.19 cgd limp->rlim_max = maxfiles;
428 1.19 cgd break;
429 1.19 cgd
430 1.19 cgd case RLIMIT_NPROC:
431 1.19 cgd if (limp->rlim_cur > maxproc)
432 1.19 cgd limp->rlim_cur = maxproc;
433 1.19 cgd if (limp->rlim_max > maxproc)
434 1.19 cgd limp->rlim_max = maxproc;
435 1.19 cgd break;
436 1.169 christos
437 1.169 christos case RLIMIT_NTHR:
438 1.169 christos if (limp->rlim_cur > maxlwp)
439 1.169 christos limp->rlim_cur = maxlwp;
440 1.169 christos if (limp->rlim_max > maxlwp)
441 1.169 christos limp->rlim_max = maxlwp;
442 1.169 christos break;
443 1.17 cgd }
444 1.122 dsl
445 1.122 dsl mutex_enter(&p->p_limit->pl_lock);
446 1.17 cgd *alimp = *limp;
447 1.122 dsl mutex_exit(&p->p_limit->pl_lock);
448 1.164 rmind return 0;
449 1.17 cgd }
450 1.17 cgd
451 1.25 cgd int
452 1.134 rmind sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
453 1.134 rmind register_t *retval)
454 1.30 thorpej {
455 1.128 dsl /* {
456 1.42 mycroft syscallarg(int) which;
457 1.22 cgd syscallarg(struct rlimit *) rlp;
458 1.128 dsl } */
459 1.68 thorpej struct proc *p = l->l_proc;
460 1.42 mycroft int which = SCARG(uap, which);
461 1.119 ad struct rlimit rl;
462 1.17 cgd
463 1.67 itojun if ((u_int)which >= RLIM_NLIMITS)
464 1.164 rmind return EINVAL;
465 1.119 ad
466 1.139 ad mutex_enter(p->p_lock);
467 1.119 ad memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
468 1.139 ad mutex_exit(p->p_lock);
469 1.119 ad
470 1.119 ad return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
471 1.17 cgd }
472 1.17 cgd
473 1.191 riastrad void
474 1.191 riastrad addrulwp(struct lwp *l, struct bintime *tm)
475 1.191 riastrad {
476 1.191 riastrad
477 1.191 riastrad lwp_lock(l);
478 1.191 riastrad bintime_add(tm, &l->l_rtime);
479 1.191 riastrad if ((l->l_pflag & LP_RUNNING) != 0 &&
480 1.191 riastrad (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
481 1.191 riastrad struct bintime diff;
482 1.191 riastrad /*
483 1.191 riastrad * Adjust for the current time slice. This is
484 1.191 riastrad * actually fairly important since the error
485 1.191 riastrad * here is on the order of a time quantum,
486 1.191 riastrad * which is much greater than the sampling
487 1.191 riastrad * error.
488 1.191 riastrad */
489 1.191 riastrad binuptime(&diff);
490 1.191 riastrad membar_consumer(); /* for softint_dispatch() */
491 1.191 riastrad bintime_sub(&diff, &l->l_stime);
492 1.191 riastrad bintime_add(tm, &diff);
493 1.191 riastrad }
494 1.191 riastrad lwp_unlock(l);
495 1.191 riastrad }
496 1.191 riastrad
497 1.17 cgd /*
498 1.17 cgd * Transform the running time and tick information in proc p into user,
499 1.17 cgd * system, and interrupt time usage.
500 1.113 ad *
501 1.139 ad * Should be called with p->p_lock held unless called from exit1().
502 1.17 cgd */
503 1.25 cgd void
504 1.98 thorpej calcru(struct proc *p, struct timeval *up, struct timeval *sp,
505 1.113 ad struct timeval *ip, struct timeval *rp)
506 1.17 cgd {
507 1.182 mlelstv uint64_t u, st, ut, it, tot, dt;
508 1.68 thorpej struct lwp *l;
509 1.129 yamt struct bintime tm;
510 1.129 yamt struct timeval tv;
511 1.17 cgd
512 1.168 yamt KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
513 1.168 yamt
514 1.113 ad mutex_spin_enter(&p->p_stmutex);
515 1.17 cgd st = p->p_sticks;
516 1.17 cgd ut = p->p_uticks;
517 1.17 cgd it = p->p_iticks;
518 1.113 ad mutex_spin_exit(&p->p_stmutex);
519 1.17 cgd
520 1.129 yamt tm = p->p_rtime;
521 1.113 ad
522 1.70 dsl LIST_FOREACH(l, &p->p_lwps, l_sibling) {
523 1.191 riastrad addrulwp(l, &tm);
524 1.17 cgd }
525 1.69 dsl
526 1.69 dsl tot = st + ut + it;
527 1.129 yamt bintime2timeval(&tm, &tv);
528 1.129 yamt u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
529 1.70 dsl
530 1.69 dsl if (tot == 0) {
531 1.69 dsl /* No ticks, so can't use to share time out, split 50-50 */
532 1.70 dsl st = ut = u / 2;
533 1.70 dsl } else {
534 1.70 dsl st = (u * st) / tot;
535 1.70 dsl ut = (u * ut) / tot;
536 1.69 dsl }
537 1.180 kre
538 1.180 kre /*
539 1.180 kre * Try to avoid lying to the users (too much)
540 1.180 kre *
541 1.180 kre * Of course, user/sys time are based on sampling (ie: statistics)
542 1.180 kre * so that would be impossible, but convincing the mark
543 1.180 kre * that we have used less ?time this call than we had
544 1.180 kre * last time, is beyond reasonable... (the con fails!)
545 1.180 kre *
546 1.180 kre * Note that since actual used time cannot decrease, either
547 1.180 kre * utime or stime (or both) must be greater now than last time
548 1.180 kre * (or both the same) - if one seems to have decreased, hold
549 1.180 kre * it constant and steal the necessary bump from the other
550 1.180 kre * which must have increased.
551 1.180 kre */
552 1.180 kre if (p->p_xutime > ut) {
553 1.182 mlelstv dt = p->p_xutime - ut;
554 1.182 mlelstv st -= uimin(dt, st);
555 1.180 kre ut = p->p_xutime;
556 1.180 kre } else if (p->p_xstime > st) {
557 1.182 mlelstv dt = p->p_xstime - st;
558 1.182 mlelstv ut -= uimin(dt, ut);
559 1.180 kre st = p->p_xstime;
560 1.180 kre }
561 1.180 kre
562 1.113 ad if (sp != NULL) {
563 1.180 kre p->p_xstime = st;
564 1.113 ad sp->tv_sec = st / 1000000;
565 1.113 ad sp->tv_usec = st % 1000000;
566 1.113 ad }
567 1.113 ad if (up != NULL) {
568 1.180 kre p->p_xutime = ut;
569 1.113 ad up->tv_sec = ut / 1000000;
570 1.113 ad up->tv_usec = ut % 1000000;
571 1.113 ad }
572 1.17 cgd if (ip != NULL) {
573 1.180 kre if (it != 0) /* it != 0 --> tot != 0 */
574 1.70 dsl it = (u * it) / tot;
575 1.17 cgd ip->tv_sec = it / 1000000;
576 1.17 cgd ip->tv_usec = it % 1000000;
577 1.17 cgd }
578 1.113 ad if (rp != NULL) {
579 1.129 yamt *rp = tv;
580 1.113 ad }
581 1.17 cgd }
582 1.17 cgd
583 1.25 cgd int
584 1.148 christos sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
585 1.134 rmind register_t *retval)
586 1.30 thorpej {
587 1.128 dsl /* {
588 1.22 cgd syscallarg(int) who;
589 1.22 cgd syscallarg(struct rusage *) rusage;
590 1.128 dsl } */
591 1.170 njoly int error;
592 1.119 ad struct rusage ru;
593 1.68 thorpej struct proc *p = l->l_proc;
594 1.17 cgd
595 1.170 njoly error = getrusage1(p, SCARG(uap, who), &ru);
596 1.170 njoly if (error != 0)
597 1.170 njoly return error;
598 1.170 njoly
599 1.170 njoly return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
600 1.170 njoly }
601 1.170 njoly
602 1.170 njoly int
603 1.190 riastrad getrusage1(struct proc *p, int who, struct rusage *ru)
604 1.190 riastrad {
605 1.170 njoly
606 1.170 njoly switch (who) {
607 1.19 cgd case RUSAGE_SELF:
608 1.139 ad mutex_enter(p->p_lock);
609 1.178 christos ruspace(p);
610 1.170 njoly memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
611 1.170 njoly calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
612 1.170 njoly rulwps(p, ru);
613 1.139 ad mutex_exit(p->p_lock);
614 1.17 cgd break;
615 1.17 cgd case RUSAGE_CHILDREN:
616 1.139 ad mutex_enter(p->p_lock);
617 1.170 njoly memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
618 1.139 ad mutex_exit(p->p_lock);
619 1.17 cgd break;
620 1.17 cgd default:
621 1.119 ad return EINVAL;
622 1.17 cgd }
623 1.119 ad
624 1.170 njoly return 0;
625 1.17 cgd }
626 1.17 cgd
627 1.25 cgd void
628 1.178 christos ruspace(struct proc *p)
629 1.178 christos {
630 1.178 christos struct vmspace *vm = p->p_vmspace;
631 1.178 christos struct rusage *ru = &p->p_stats->p_ru;
632 1.178 christos
633 1.178 christos ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
634 1.178 christos ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
635 1.178 christos ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
636 1.179 christos #ifdef __HAVE_NO_PMAP_STATS
637 1.179 christos /* We don't keep track of the max so we get the current */
638 1.181 christos ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
639 1.179 christos #else
640 1.179 christos ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
641 1.179 christos #endif
642 1.178 christos }
643 1.178 christos
644 1.178 christos void
645 1.98 thorpej ruadd(struct rusage *ru, struct rusage *ru2)
646 1.17 cgd {
647 1.54 augustss long *ip, *ip2;
648 1.54 augustss int i;
649 1.17 cgd
650 1.27 mycroft timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
651 1.27 mycroft timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
652 1.17 cgd if (ru->ru_maxrss < ru2->ru_maxrss)
653 1.17 cgd ru->ru_maxrss = ru2->ru_maxrss;
654 1.17 cgd ip = &ru->ru_first; ip2 = &ru2->ru_first;
655 1.17 cgd for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
656 1.17 cgd *ip++ += *ip2++;
657 1.17 cgd }
658 1.17 cgd
659 1.137 ad void
660 1.137 ad rulwps(proc_t *p, struct rusage *ru)
661 1.137 ad {
662 1.137 ad lwp_t *l;
663 1.137 ad
664 1.139 ad KASSERT(mutex_owned(p->p_lock));
665 1.137 ad
666 1.137 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
667 1.137 ad ruadd(ru, &l->l_ru);
668 1.137 ad }
669 1.137 ad }
670 1.137 ad
671 1.17 cgd /*
672 1.161 rmind * lim_copy: make a copy of the plimit structure.
673 1.113 ad *
674 1.161 rmind * We use copy-on-write after fork, and copy when a limit is changed.
675 1.17 cgd */
676 1.17 cgd struct plimit *
677 1.122 dsl lim_copy(struct plimit *lim)
678 1.17 cgd {
679 1.122 dsl struct plimit *newlim;
680 1.113 ad char *corename;
681 1.122 dsl size_t alen, len;
682 1.17 cgd
683 1.194 ad newlim = kmem_alloc(sizeof(*newlim), KM_SLEEP);
684 1.121 dsl mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
685 1.161 rmind newlim->pl_writeable = false;
686 1.121 dsl newlim->pl_refcnt = 1;
687 1.122 dsl newlim->pl_sv_limit = NULL;
688 1.122 dsl
689 1.122 dsl mutex_enter(&lim->pl_lock);
690 1.122 dsl memcpy(newlim->pl_rlimit, lim->pl_rlimit,
691 1.122 dsl sizeof(struct rlimit) * RLIM_NLIMITS);
692 1.83 pk
693 1.161 rmind /*
694 1.161 rmind * Note: the common case is a use of default core name.
695 1.161 rmind */
696 1.122 dsl alen = 0;
697 1.122 dsl corename = NULL;
698 1.113 ad for (;;) {
699 1.122 dsl if (lim->pl_corename == defcorename) {
700 1.122 dsl newlim->pl_corename = defcorename;
701 1.161 rmind newlim->pl_cnlen = 0;
702 1.122 dsl break;
703 1.122 dsl }
704 1.161 rmind len = lim->pl_cnlen;
705 1.161 rmind if (len == alen) {
706 1.122 dsl newlim->pl_corename = corename;
707 1.161 rmind newlim->pl_cnlen = len;
708 1.122 dsl memcpy(corename, lim->pl_corename, len);
709 1.122 dsl corename = NULL;
710 1.122 dsl break;
711 1.122 dsl }
712 1.122 dsl mutex_exit(&lim->pl_lock);
713 1.161 rmind if (corename) {
714 1.161 rmind kmem_free(corename, alen);
715 1.161 rmind }
716 1.122 dsl alen = len;
717 1.161 rmind corename = kmem_alloc(alen, KM_SLEEP);
718 1.121 dsl mutex_enter(&lim->pl_lock);
719 1.122 dsl }
720 1.122 dsl mutex_exit(&lim->pl_lock);
721 1.161 rmind
722 1.161 rmind if (corename) {
723 1.161 rmind kmem_free(corename, alen);
724 1.161 rmind }
725 1.122 dsl return newlim;
726 1.122 dsl }
727 1.122 dsl
728 1.122 dsl void
729 1.122 dsl lim_addref(struct plimit *lim)
730 1.122 dsl {
731 1.125 ad atomic_inc_uint(&lim->pl_refcnt);
732 1.122 dsl }
733 1.113 ad
734 1.122 dsl /*
735 1.161 rmind * lim_privatise: give a process its own private plimit structure.
736 1.122 dsl */
737 1.122 dsl void
738 1.161 rmind lim_privatise(proc_t *p)
739 1.122 dsl {
740 1.161 rmind struct plimit *lim = p->p_limit, *newlim;
741 1.122 dsl
742 1.161 rmind if (lim->pl_writeable) {
743 1.122 dsl return;
744 1.122 dsl }
745 1.122 dsl
746 1.122 dsl newlim = lim_copy(lim);
747 1.113 ad
748 1.139 ad mutex_enter(p->p_lock);
749 1.161 rmind if (p->p_limit->pl_writeable) {
750 1.161 rmind /* Other thread won the race. */
751 1.139 ad mutex_exit(p->p_lock);
752 1.159 rmind lim_free(newlim);
753 1.122 dsl return;
754 1.113 ad }
755 1.83 pk
756 1.122 dsl /*
757 1.161 rmind * Since p->p_limit can be accessed without locked held,
758 1.161 rmind * old limit structure must not be deleted yet.
759 1.122 dsl */
760 1.122 dsl newlim->pl_sv_limit = p->p_limit;
761 1.161 rmind newlim->pl_writeable = true;
762 1.122 dsl p->p_limit = newlim;
763 1.139 ad mutex_exit(p->p_lock);
764 1.32 mycroft }
765 1.32 mycroft
766 1.32 mycroft void
767 1.160 rmind lim_setcorename(proc_t *p, char *name, size_t len)
768 1.160 rmind {
769 1.160 rmind struct plimit *lim;
770 1.160 rmind char *oname;
771 1.161 rmind size_t olen;
772 1.160 rmind
773 1.161 rmind lim_privatise(p);
774 1.160 rmind lim = p->p_limit;
775 1.160 rmind
776 1.160 rmind mutex_enter(&lim->pl_lock);
777 1.160 rmind oname = lim->pl_corename;
778 1.161 rmind olen = lim->pl_cnlen;
779 1.160 rmind lim->pl_corename = name;
780 1.161 rmind lim->pl_cnlen = len;
781 1.160 rmind mutex_exit(&lim->pl_lock);
782 1.160 rmind
783 1.160 rmind if (oname != defcorename) {
784 1.161 rmind kmem_free(oname, olen);
785 1.160 rmind }
786 1.160 rmind }
787 1.160 rmind
788 1.160 rmind void
789 1.159 rmind lim_free(struct plimit *lim)
790 1.32 mycroft {
791 1.122 dsl struct plimit *sv_lim;
792 1.85 kleink
793 1.122 dsl do {
794 1.189 riastrad membar_release();
795 1.159 rmind if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
796 1.122 dsl return;
797 1.159 rmind }
798 1.189 riastrad membar_acquire();
799 1.159 rmind if (lim->pl_corename != defcorename) {
800 1.161 rmind kmem_free(lim->pl_corename, lim->pl_cnlen);
801 1.159 rmind }
802 1.122 dsl sv_lim = lim->pl_sv_limit;
803 1.122 dsl mutex_destroy(&lim->pl_lock);
804 1.194 ad kmem_free(lim, sizeof(*lim));
805 1.122 dsl } while ((lim = sv_lim) != NULL);
806 1.68 thorpej }
807 1.68 thorpej
808 1.68 thorpej struct pstats *
809 1.98 thorpej pstatscopy(struct pstats *ps)
810 1.68 thorpej {
811 1.164 rmind struct pstats *nps;
812 1.164 rmind size_t len;
813 1.87 perry
814 1.194 ad nps = kmem_alloc(sizeof(*nps), KM_SLEEP);
815 1.68 thorpej
816 1.164 rmind len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
817 1.164 rmind memset(&nps->pstat_startzero, 0, len);
818 1.68 thorpej
819 1.164 rmind len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
820 1.164 rmind memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
821 1.68 thorpej
822 1.164 rmind return nps;
823 1.68 thorpej }
824 1.68 thorpej
825 1.68 thorpej void
826 1.98 thorpej pstatsfree(struct pstats *ps)
827 1.68 thorpej {
828 1.68 thorpej
829 1.194 ad kmem_free(ps, sizeof(*ps));
830 1.74 atatat }
831 1.74 atatat
832 1.74 atatat /*
833 1.157 rmind * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
834 1.157 rmind * need to pick a valid process by PID.
835 1.157 rmind *
836 1.157 rmind * => Hold a reference on the process, on success.
837 1.74 atatat */
838 1.74 atatat static int
839 1.157 rmind sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
840 1.74 atatat {
841 1.157 rmind proc_t *p;
842 1.157 rmind int error;
843 1.74 atatat
844 1.157 rmind if (pid == PROC_CURPROC) {
845 1.157 rmind p = l->l_proc;
846 1.157 rmind } else {
847 1.187 ad mutex_enter(&proc_lock);
848 1.157 rmind p = proc_find(pid);
849 1.157 rmind if (p == NULL) {
850 1.187 ad mutex_exit(&proc_lock);
851 1.157 rmind return ESRCH;
852 1.157 rmind }
853 1.157 rmind }
854 1.157 rmind error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
855 1.157 rmind if (pid != PROC_CURPROC) {
856 1.187 ad mutex_exit(&proc_lock);
857 1.157 rmind }
858 1.157 rmind *p2 = p;
859 1.157 rmind return error;
860 1.74 atatat }
861 1.74 atatat
862 1.74 atatat /*
863 1.176 pgoyette * sysctl_proc_paxflags: helper routine to get process's paxctl flags
864 1.176 pgoyette */
865 1.176 pgoyette static int
866 1.176 pgoyette sysctl_proc_paxflags(SYSCTLFN_ARGS)
867 1.176 pgoyette {
868 1.176 pgoyette struct proc *p;
869 1.176 pgoyette struct sysctlnode node;
870 1.176 pgoyette int paxflags;
871 1.176 pgoyette int error;
872 1.176 pgoyette
873 1.176 pgoyette /* First, validate the request. */
874 1.176 pgoyette if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
875 1.176 pgoyette return EINVAL;
876 1.176 pgoyette
877 1.176 pgoyette /* Find the process. Hold a reference (p_reflock), if found. */
878 1.176 pgoyette error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
879 1.176 pgoyette if (error)
880 1.176 pgoyette return error;
881 1.176 pgoyette
882 1.176 pgoyette /* XXX-elad */
883 1.176 pgoyette error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
884 1.176 pgoyette KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
885 1.176 pgoyette if (error) {
886 1.176 pgoyette rw_exit(&p->p_reflock);
887 1.176 pgoyette return error;
888 1.176 pgoyette }
889 1.176 pgoyette
890 1.176 pgoyette /* Retrieve the limits. */
891 1.176 pgoyette node = *rnode;
892 1.176 pgoyette paxflags = p->p_pax;
893 1.176 pgoyette node.sysctl_data = &paxflags;
894 1.176 pgoyette
895 1.176 pgoyette error = sysctl_lookup(SYSCTLFN_CALL(&node));
896 1.176 pgoyette
897 1.176 pgoyette /* If attempting to write new value, it's an error */
898 1.176 pgoyette if (error == 0 && newp != NULL)
899 1.176 pgoyette error = EACCES;
900 1.176 pgoyette
901 1.176 pgoyette rw_exit(&p->p_reflock);
902 1.176 pgoyette return error;
903 1.176 pgoyette }
904 1.176 pgoyette
905 1.176 pgoyette /*
906 1.158 rmind * sysctl_proc_corename: helper routine to get or set the core file name
907 1.158 rmind * for a process specified by PID.
908 1.74 atatat */
909 1.74 atatat static int
910 1.74 atatat sysctl_proc_corename(SYSCTLFN_ARGS)
911 1.74 atatat {
912 1.158 rmind struct proc *p;
913 1.83 pk struct plimit *lim;
914 1.158 rmind char *cnbuf, *cname;
915 1.157 rmind struct sysctlnode node;
916 1.158 rmind size_t len;
917 1.158 rmind int error;
918 1.74 atatat
919 1.158 rmind /* First, validate the request. */
920 1.158 rmind if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
921 1.158 rmind return EINVAL;
922 1.74 atatat
923 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
924 1.158 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
925 1.74 atatat if (error)
926 1.157 rmind return error;
927 1.74 atatat
928 1.131 elad /* XXX-elad */
929 1.158 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
930 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
931 1.157 rmind if (error) {
932 1.158 rmind rw_exit(&p->p_reflock);
933 1.157 rmind return error;
934 1.157 rmind }
935 1.111 elad
936 1.158 rmind cnbuf = PNBUF_GET();
937 1.158 rmind
938 1.165 mrg if (oldp) {
939 1.158 rmind /* Get case: copy the core name into the buffer. */
940 1.131 elad error = kauth_authorize_process(l->l_cred,
941 1.158 rmind KAUTH_PROCESS_CORENAME, p,
942 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
943 1.157 rmind if (error) {
944 1.158 rmind goto done;
945 1.158 rmind }
946 1.158 rmind lim = p->p_limit;
947 1.158 rmind mutex_enter(&lim->pl_lock);
948 1.158 rmind strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
949 1.158 rmind mutex_exit(&lim->pl_lock);
950 1.165 mrg }
951 1.131 elad
952 1.74 atatat node = *rnode;
953 1.158 rmind node.sysctl_data = cnbuf;
954 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
955 1.74 atatat
956 1.163 rmind /* Return if error, or if caller is only getting the core name. */
957 1.158 rmind if (error || newp == NULL) {
958 1.100 yamt goto done;
959 1.157 rmind }
960 1.103 elad
961 1.74 atatat /*
962 1.166 rmind * Set case. Check permission and then validate new core name.
963 1.166 rmind * It must be either "core", "/core", or end in ".core".
964 1.74 atatat */
965 1.166 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
966 1.166 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
967 1.166 rmind if (error) {
968 1.166 rmind goto done;
969 1.166 rmind }
970 1.158 rmind len = strlen(cnbuf);
971 1.158 rmind if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
972 1.158 rmind (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
973 1.100 yamt error = EINVAL;
974 1.100 yamt goto done;
975 1.100 yamt }
976 1.74 atatat
977 1.158 rmind /* Allocate, copy and set the new core name for plimit structure. */
978 1.161 rmind cname = kmem_alloc(++len, KM_NOSLEEP);
979 1.158 rmind if (cname == NULL) {
980 1.100 yamt error = ENOMEM;
981 1.100 yamt goto done;
982 1.100 yamt }
983 1.158 rmind memcpy(cname, cnbuf, len);
984 1.160 rmind lim_setcorename(p, cname, len);
985 1.100 yamt done:
986 1.158 rmind rw_exit(&p->p_reflock);
987 1.158 rmind PNBUF_PUT(cnbuf);
988 1.100 yamt return error;
989 1.74 atatat }
990 1.74 atatat
991 1.74 atatat /*
992 1.163 rmind * sysctl_proc_stop: helper routine for checking/setting the stop flags.
993 1.74 atatat */
994 1.74 atatat static int
995 1.74 atatat sysctl_proc_stop(SYSCTLFN_ARGS)
996 1.74 atatat {
997 1.163 rmind struct proc *p;
998 1.163 rmind int isset, flag, error = 0;
999 1.74 atatat struct sysctlnode node;
1000 1.74 atatat
1001 1.74 atatat if (namelen != 0)
1002 1.163 rmind return EINVAL;
1003 1.74 atatat
1004 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
1005 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1006 1.74 atatat if (error)
1007 1.157 rmind return error;
1008 1.74 atatat
1009 1.131 elad /* XXX-elad */
1010 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1011 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1012 1.163 rmind if (error) {
1013 1.157 rmind goto out;
1014 1.163 rmind }
1015 1.111 elad
1016 1.163 rmind /* Determine the flag. */
1017 1.74 atatat switch (rnode->sysctl_num) {
1018 1.74 atatat case PROC_PID_STOPFORK:
1019 1.163 rmind flag = PS_STOPFORK;
1020 1.74 atatat break;
1021 1.74 atatat case PROC_PID_STOPEXEC:
1022 1.163 rmind flag = PS_STOPEXEC;
1023 1.74 atatat break;
1024 1.74 atatat case PROC_PID_STOPEXIT:
1025 1.163 rmind flag = PS_STOPEXIT;
1026 1.74 atatat break;
1027 1.74 atatat default:
1028 1.157 rmind error = EINVAL;
1029 1.157 rmind goto out;
1030 1.74 atatat }
1031 1.163 rmind isset = (p->p_flag & flag) ? 1 : 0;
1032 1.74 atatat node = *rnode;
1033 1.163 rmind node.sysctl_data = &isset;
1034 1.74 atatat error = sysctl_lookup(SYSCTLFN_CALL(&node));
1035 1.163 rmind
1036 1.163 rmind /* Return if error, or if callers is only getting the flag. */
1037 1.163 rmind if (error || newp == NULL) {
1038 1.157 rmind goto out;
1039 1.163 rmind }
1040 1.74 atatat
1041 1.163 rmind /* Check if caller can set the flags. */
1042 1.111 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1043 1.163 rmind p, KAUTH_ARG(flag), NULL, NULL);
1044 1.163 rmind if (error) {
1045 1.163 rmind goto out;
1046 1.163 rmind }
1047 1.163 rmind mutex_enter(p->p_lock);
1048 1.163 rmind if (isset) {
1049 1.163 rmind p->p_sflag |= flag;
1050 1.163 rmind } else {
1051 1.163 rmind p->p_sflag &= ~flag;
1052 1.143 rmind }
1053 1.163 rmind mutex_exit(p->p_lock);
1054 1.157 rmind out:
1055 1.163 rmind rw_exit(&p->p_reflock);
1056 1.143 rmind return error;
1057 1.74 atatat }
1058 1.74 atatat
1059 1.74 atatat /*
1060 1.163 rmind * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1061 1.74 atatat */
1062 1.74 atatat static int
1063 1.74 atatat sysctl_proc_plimit(SYSCTLFN_ARGS)
1064 1.74 atatat {
1065 1.163 rmind struct proc *p;
1066 1.74 atatat u_int limitno;
1067 1.74 atatat int which, error = 0;
1068 1.74 atatat struct rlimit alim;
1069 1.74 atatat struct sysctlnode node;
1070 1.74 atatat
1071 1.74 atatat if (namelen != 0)
1072 1.163 rmind return EINVAL;
1073 1.74 atatat
1074 1.74 atatat which = name[-1];
1075 1.74 atatat if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1076 1.74 atatat which != PROC_PID_LIMIT_TYPE_HARD)
1077 1.163 rmind return EINVAL;
1078 1.74 atatat
1079 1.74 atatat limitno = name[-2] - 1;
1080 1.74 atatat if (limitno >= RLIM_NLIMITS)
1081 1.163 rmind return EINVAL;
1082 1.74 atatat
1083 1.74 atatat if (name[-3] != PROC_PID_LIMIT)
1084 1.163 rmind return EINVAL;
1085 1.74 atatat
1086 1.157 rmind /* Find the process. Hold a reference (p_reflock), if found. */
1087 1.163 rmind error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1088 1.74 atatat if (error)
1089 1.157 rmind return error;
1090 1.74 atatat
1091 1.131 elad /* XXX-elad */
1092 1.163 rmind error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1093 1.131 elad KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1094 1.111 elad if (error)
1095 1.157 rmind goto out;
1096 1.111 elad
1097 1.163 rmind /* Check if caller can retrieve the limits. */
1098 1.131 elad if (newp == NULL) {
1099 1.131 elad error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1100 1.163 rmind p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1101 1.131 elad KAUTH_ARG(which));
1102 1.131 elad if (error)
1103 1.157 rmind goto out;
1104 1.131 elad }
1105 1.131 elad
1106 1.163 rmind /* Retrieve the limits. */
1107 1.74 atatat node = *rnode;
1108 1.163 rmind memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1109 1.163 rmind if (which == PROC_PID_LIMIT_TYPE_HARD) {
1110 1.74 atatat node.sysctl_data = &alim.rlim_max;
1111 1.163 rmind } else {
1112 1.74 atatat node.sysctl_data = &alim.rlim_cur;
1113 1.163 rmind }
1114 1.163 rmind error = sysctl_lookup(SYSCTLFN_CALL(&node));
1115 1.74 atatat
1116 1.163 rmind /* Return if error, or if we are only retrieving the limits. */
1117 1.157 rmind if (error || newp == NULL) {
1118 1.157 rmind goto out;
1119 1.157 rmind }
1120 1.163 rmind error = dosetrlimit(l, p, limitno, &alim);
1121 1.157 rmind out:
1122 1.163 rmind rw_exit(&p->p_reflock);
1123 1.157 rmind return error;
1124 1.74 atatat }
1125 1.74 atatat
1126 1.74 atatat /*
1127 1.164 rmind * Setup sysctl nodes.
1128 1.74 atatat */
1129 1.156 pooka static void
1130 1.164 rmind sysctl_proc_setup(void)
1131 1.74 atatat {
1132 1.74 atatat
1133 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1134 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1135 1.78 atatat CTLTYPE_NODE, "curproc",
1136 1.78 atatat SYSCTL_DESCR("Per-process settings"),
1137 1.74 atatat NULL, 0, NULL, 0,
1138 1.74 atatat CTL_PROC, PROC_CURPROC, CTL_EOL);
1139 1.74 atatat
1140 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1141 1.176 pgoyette CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1142 1.176 pgoyette CTLTYPE_INT, "paxflags",
1143 1.176 pgoyette SYSCTL_DESCR("Process PAX control flags"),
1144 1.176 pgoyette sysctl_proc_paxflags, 0, NULL, 0,
1145 1.176 pgoyette CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1146 1.176 pgoyette
1147 1.176 pgoyette sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1148 1.103 elad CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1149 1.78 atatat CTLTYPE_STRING, "corename",
1150 1.78 atatat SYSCTL_DESCR("Core file name"),
1151 1.74 atatat sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1152 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1153 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1154 1.76 atatat CTLFLAG_PERMANENT,
1155 1.78 atatat CTLTYPE_NODE, "rlimit",
1156 1.78 atatat SYSCTL_DESCR("Process limits"),
1157 1.74 atatat NULL, 0, NULL, 0,
1158 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1159 1.74 atatat
1160 1.74 atatat #define create_proc_plimit(s, n) do { \
1161 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1162 1.76 atatat CTLFLAG_PERMANENT, \
1163 1.78 atatat CTLTYPE_NODE, s, \
1164 1.78 atatat SYSCTL_DESCR("Process " s " limits"), \
1165 1.74 atatat NULL, 0, NULL, 0, \
1166 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1167 1.74 atatat CTL_EOL); \
1168 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1169 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1170 1.78 atatat CTLTYPE_QUAD, "soft", \
1171 1.78 atatat SYSCTL_DESCR("Process soft " s " limit"), \
1172 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1173 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1174 1.74 atatat PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1175 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1176 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1177 1.78 atatat CTLTYPE_QUAD, "hard", \
1178 1.78 atatat SYSCTL_DESCR("Process hard " s " limit"), \
1179 1.74 atatat sysctl_proc_plimit, 0, NULL, 0, \
1180 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1181 1.74 atatat PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1182 1.74 atatat } while (0/*CONSTCOND*/)
1183 1.74 atatat
1184 1.74 atatat create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1185 1.74 atatat create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1186 1.74 atatat create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1187 1.74 atatat create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1188 1.74 atatat create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1189 1.74 atatat create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1190 1.74 atatat create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1191 1.74 atatat create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1192 1.74 atatat create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1193 1.79 christos create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1194 1.151 mrg create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1195 1.169 christos create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1196 1.74 atatat
1197 1.74 atatat #undef create_proc_plimit
1198 1.74 atatat
1199 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1200 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1201 1.78 atatat CTLTYPE_INT, "stopfork",
1202 1.78 atatat SYSCTL_DESCR("Stop process at fork(2)"),
1203 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1204 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1205 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1206 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1207 1.78 atatat CTLTYPE_INT, "stopexec",
1208 1.78 atatat SYSCTL_DESCR("Stop process at execve(2)"),
1209 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1210 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1211 1.156 pooka sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1212 1.76 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1213 1.78 atatat CTLTYPE_INT, "stopexit",
1214 1.78 atatat SYSCTL_DESCR("Stop process before completing exit"),
1215 1.74 atatat sysctl_proc_stop, 0, NULL, 0,
1216 1.74 atatat CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1217 1.17 cgd }
1218