kern_resource.c revision 1.100 1 /* $NetBSD: kern_resource.c,v 1.100 2006/02/04 12:09:50 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.100 2006/02/04 12:09:50 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52
53 #include <sys/mount.h>
54 #include <sys/sa.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
69
70
71 /*
72 * Resource controls and accounting.
73 */
74
75 int
76 sys_getpriority(struct lwp *l, void *v, register_t *retval)
77 {
78 struct sys_getpriority_args /* {
79 syscallarg(int) which;
80 syscallarg(id_t) who;
81 } */ *uap = v;
82 struct proc *curp = l->l_proc, *p;
83 int low = NZERO + PRIO_MAX + 1;
84
85 switch (SCARG(uap, which)) {
86
87 case PRIO_PROCESS:
88 if (SCARG(uap, who) == 0)
89 p = curp;
90 else
91 p = pfind(SCARG(uap, who));
92 if (p == 0)
93 break;
94 low = p->p_nice;
95 break;
96
97 case PRIO_PGRP: {
98 struct pgrp *pg;
99
100 if (SCARG(uap, who) == 0)
101 pg = curp->p_pgrp;
102 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
103 break;
104 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
105 if (p->p_nice < low)
106 low = p->p_nice;
107 }
108 break;
109 }
110
111 case PRIO_USER:
112 if (SCARG(uap, who) == 0)
113 SCARG(uap, who) = curp->p_ucred->cr_uid;
114 proclist_lock_read();
115 PROCLIST_FOREACH(p, &allproc) {
116 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
117 p->p_nice < low)
118 low = p->p_nice;
119 }
120 proclist_unlock_read();
121 break;
122
123 default:
124 return (EINVAL);
125 }
126 if (low == NZERO + PRIO_MAX + 1)
127 return (ESRCH);
128 *retval = low - NZERO;
129 return (0);
130 }
131
132 /* ARGSUSED */
133 int
134 sys_setpriority(struct lwp *l, void *v, register_t *retval)
135 {
136 struct sys_setpriority_args /* {
137 syscallarg(int) which;
138 syscallarg(id_t) who;
139 syscallarg(int) prio;
140 } */ *uap = v;
141 struct proc *curp = l->l_proc, *p;
142 int found = 0, error = 0;
143
144 switch (SCARG(uap, which)) {
145
146 case PRIO_PROCESS:
147 if (SCARG(uap, who) == 0)
148 p = curp;
149 else
150 p = pfind(SCARG(uap, who));
151 if (p == 0)
152 break;
153 error = donice(curp, p, SCARG(uap, prio));
154 found++;
155 break;
156
157 case PRIO_PGRP: {
158 struct pgrp *pg;
159
160 if (SCARG(uap, who) == 0)
161 pg = curp->p_pgrp;
162 else if ((pg = pgfind(SCARG(uap, who))) == NULL)
163 break;
164 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
165 error = donice(curp, p, SCARG(uap, prio));
166 found++;
167 }
168 break;
169 }
170
171 case PRIO_USER:
172 if (SCARG(uap, who) == 0)
173 SCARG(uap, who) = curp->p_ucred->cr_uid;
174 proclist_lock_read();
175 PROCLIST_FOREACH(p, &allproc) {
176 if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
177 error = donice(curp, p, SCARG(uap, prio));
178 found++;
179 }
180 }
181 proclist_unlock_read();
182 break;
183
184 default:
185 return (EINVAL);
186 }
187 if (found == 0)
188 return (ESRCH);
189 return (error);
190 }
191
192 int
193 donice(struct proc *curp, struct proc *chgp, int n)
194 {
195 struct pcred *pcred = curp->p_cred;
196 int s;
197
198 if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
199 pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
200 pcred->p_ruid != chgp->p_ucred->cr_uid)
201 return (EPERM);
202 if (n > PRIO_MAX)
203 n = PRIO_MAX;
204 if (n < PRIO_MIN)
205 n = PRIO_MIN;
206 n += NZERO;
207 if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
208 return (EACCES);
209 chgp->p_nice = n;
210 SCHED_LOCK(s);
211 (void)resetprocpriority(chgp);
212 SCHED_UNLOCK(s);
213 return (0);
214 }
215
216 /* ARGSUSED */
217 int
218 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
219 {
220 struct sys_setrlimit_args /* {
221 syscallarg(int) which;
222 syscallarg(const struct rlimit *) rlp;
223 } */ *uap = v;
224 struct proc *p = l->l_proc;
225 int which = SCARG(uap, which);
226 struct rlimit alim;
227 int error;
228
229 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
230 if (error)
231 return (error);
232 return (dosetrlimit(p, p->p_cred, which, &alim));
233 }
234
235 int
236 dosetrlimit(struct proc *p, struct pcred *cred, int which, struct rlimit *limp)
237 {
238 struct rlimit *alimp;
239 struct plimit *oldplim;
240 int error;
241
242 if ((u_int)which >= RLIM_NLIMITS)
243 return (EINVAL);
244
245 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
246 return (EINVAL);
247
248 alimp = &p->p_rlimit[which];
249 /* if we don't change the value, no need to limcopy() */
250 if (limp->rlim_cur == alimp->rlim_cur &&
251 limp->rlim_max == alimp->rlim_max)
252 return 0;
253
254 if (limp->rlim_cur > limp->rlim_max) {
255 /*
256 * This is programming error. According to SUSv2, we should
257 * return error in this case.
258 */
259 return (EINVAL);
260 }
261 if (limp->rlim_max > alimp->rlim_max
262 && (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
263 return (error);
264
265 if (p->p_limit->p_refcnt > 1 &&
266 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
267 p->p_limit = limcopy(oldplim = p->p_limit);
268 limfree(oldplim);
269 alimp = &p->p_rlimit[which];
270 }
271
272 switch (which) {
273
274 case RLIMIT_DATA:
275 if (limp->rlim_cur > maxdmap)
276 limp->rlim_cur = maxdmap;
277 if (limp->rlim_max > maxdmap)
278 limp->rlim_max = maxdmap;
279 break;
280
281 case RLIMIT_STACK:
282 if (limp->rlim_cur > maxsmap)
283 limp->rlim_cur = maxsmap;
284 if (limp->rlim_max > maxsmap)
285 limp->rlim_max = maxsmap;
286
287 /*
288 * Return EINVAL if the new stack size limit is lower than
289 * current usage. Otherwise, the process would get SIGSEGV the
290 * moment it would try to access anything on it's current stack.
291 * This conforms to SUSv2.
292 */
293 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
294 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
295 return (EINVAL);
296
297 /*
298 * Stack is allocated to the max at exec time with
299 * only "rlim_cur" bytes accessible (In other words,
300 * allocates stack dividing two contiguous regions at
301 * "rlim_cur" bytes boundary).
302 *
303 * Since allocation is done in terms of page, roundup
304 * "rlim_cur" (otherwise, contiguous regions
305 * overlap). If stack limit is going up make more
306 * accessible, if going down make inaccessible.
307 */
308 limp->rlim_cur = round_page(limp->rlim_cur);
309 if (limp->rlim_cur != alimp->rlim_cur) {
310 vaddr_t addr;
311 vsize_t size;
312 vm_prot_t prot;
313
314 if (limp->rlim_cur > alimp->rlim_cur) {
315 prot = VM_PROT_READ | VM_PROT_WRITE;
316 size = limp->rlim_cur - alimp->rlim_cur;
317 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
318 limp->rlim_cur;
319 } else {
320 prot = VM_PROT_NONE;
321 size = alimp->rlim_cur - limp->rlim_cur;
322 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
323 alimp->rlim_cur;
324 }
325 (void) uvm_map_protect(&p->p_vmspace->vm_map,
326 addr, addr+size, prot, FALSE);
327 }
328 break;
329
330 case RLIMIT_NOFILE:
331 if (limp->rlim_cur > maxfiles)
332 limp->rlim_cur = maxfiles;
333 if (limp->rlim_max > maxfiles)
334 limp->rlim_max = maxfiles;
335 break;
336
337 case RLIMIT_NPROC:
338 if (limp->rlim_cur > maxproc)
339 limp->rlim_cur = maxproc;
340 if (limp->rlim_max > maxproc)
341 limp->rlim_max = maxproc;
342 break;
343 }
344 *alimp = *limp;
345 return (0);
346 }
347
348 /* ARGSUSED */
349 int
350 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
351 {
352 struct sys_getrlimit_args /* {
353 syscallarg(int) which;
354 syscallarg(struct rlimit *) rlp;
355 } */ *uap = v;
356 struct proc *p = l->l_proc;
357 int which = SCARG(uap, which);
358
359 if ((u_int)which >= RLIM_NLIMITS)
360 return (EINVAL);
361 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
362 sizeof(struct rlimit)));
363 }
364
365 /*
366 * Transform the running time and tick information in proc p into user,
367 * system, and interrupt time usage.
368 */
369 void
370 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
371 struct timeval *ip)
372 {
373 u_quad_t u, st, ut, it, tot;
374 unsigned long sec;
375 long usec;
376 int s;
377 struct timeval tv;
378 struct lwp *l;
379
380 s = splstatclock();
381 st = p->p_sticks;
382 ut = p->p_uticks;
383 it = p->p_iticks;
384 splx(s);
385
386 sec = p->p_rtime.tv_sec;
387 usec = p->p_rtime.tv_usec;
388 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
389 if (l->l_stat == LSONPROC) {
390 struct schedstate_percpu *spc;
391
392 KDASSERT(l->l_cpu != NULL);
393 spc = &l->l_cpu->ci_schedstate;
394
395 /*
396 * Adjust for the current time slice. This is
397 * actually fairly important since the error
398 * here is on the order of a time quantum,
399 * which is much greater than the sampling
400 * error.
401 */
402 microtime(&tv);
403 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
404 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
405 }
406 }
407
408 tot = st + ut + it;
409 u = sec * 1000000ull + usec;
410
411 if (tot == 0) {
412 /* No ticks, so can't use to share time out, split 50-50 */
413 st = ut = u / 2;
414 } else {
415 st = (u * st) / tot;
416 ut = (u * ut) / tot;
417 }
418 sp->tv_sec = st / 1000000;
419 sp->tv_usec = st % 1000000;
420 up->tv_sec = ut / 1000000;
421 up->tv_usec = ut % 1000000;
422 if (ip != NULL) {
423 if (it != 0)
424 it = (u * it) / tot;
425 ip->tv_sec = it / 1000000;
426 ip->tv_usec = it % 1000000;
427 }
428 }
429
430 /* ARGSUSED */
431 int
432 sys_getrusage(struct lwp *l, void *v, register_t *retval)
433 {
434 struct sys_getrusage_args /* {
435 syscallarg(int) who;
436 syscallarg(struct rusage *) rusage;
437 } */ *uap = v;
438 struct rusage *rup;
439 struct proc *p = l->l_proc;
440
441 switch (SCARG(uap, who)) {
442
443 case RUSAGE_SELF:
444 rup = &p->p_stats->p_ru;
445 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
446 break;
447
448 case RUSAGE_CHILDREN:
449 rup = &p->p_stats->p_cru;
450 break;
451
452 default:
453 return (EINVAL);
454 }
455 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
456 }
457
458 void
459 ruadd(struct rusage *ru, struct rusage *ru2)
460 {
461 long *ip, *ip2;
462 int i;
463
464 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
465 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
466 if (ru->ru_maxrss < ru2->ru_maxrss)
467 ru->ru_maxrss = ru2->ru_maxrss;
468 ip = &ru->ru_first; ip2 = &ru2->ru_first;
469 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
470 *ip++ += *ip2++;
471 }
472
473 /*
474 * Make a copy of the plimit structure.
475 * We share these structures copy-on-write after fork,
476 * and copy when a limit is changed.
477 */
478 struct plimit *
479 limcopy(struct plimit *lim)
480 {
481 struct plimit *newlim;
482 size_t l = 0;
483
484 simple_lock(&lim->p_slock);
485 if (lim->pl_corename != defcorename)
486 l = strlen(lim->pl_corename) + 1;
487 simple_unlock(&lim->p_slock);
488
489 newlim = pool_get(&plimit_pool, PR_WAITOK);
490 simple_lock_init(&newlim->p_slock);
491 newlim->p_lflags = 0;
492 newlim->p_refcnt = 1;
493 newlim->pl_corename = (l != 0)
494 ? malloc(l, M_TEMP, M_WAITOK)
495 : defcorename;
496
497 simple_lock(&lim->p_slock);
498 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
499 sizeof(struct rlimit) * RLIM_NLIMITS);
500
501 if (l != 0)
502 strlcpy(newlim->pl_corename, lim->pl_corename, l);
503 simple_unlock(&lim->p_slock);
504
505 return (newlim);
506 }
507
508 void
509 limfree(struct plimit *lim)
510 {
511 int n;
512
513 simple_lock(&lim->p_slock);
514 n = --lim->p_refcnt;
515 simple_unlock(&lim->p_slock);
516 if (n > 0)
517 return;
518 #ifdef DIAGNOSTIC
519 if (n < 0)
520 panic("limfree");
521 #endif
522 if (lim->pl_corename != defcorename)
523 free(lim->pl_corename, M_TEMP);
524 pool_put(&plimit_pool, lim);
525 }
526
527 struct pstats *
528 pstatscopy(struct pstats *ps)
529 {
530
531 struct pstats *newps;
532
533 newps = pool_get(&pstats_pool, PR_WAITOK);
534
535 memset(&newps->pstat_startzero, 0,
536 (unsigned) ((caddr_t)&newps->pstat_endzero -
537 (caddr_t)&newps->pstat_startzero));
538 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
539 ((caddr_t)&newps->pstat_endcopy -
540 (caddr_t)&newps->pstat_startcopy));
541
542 return (newps);
543
544 }
545
546 void
547 pstatsfree(struct pstats *ps)
548 {
549
550 pool_put(&pstats_pool, ps);
551 }
552
553 /*
554 * sysctl interface in five parts
555 */
556
557 /*
558 * a routine for sysctl proc subtree helpers that need to pick a valid
559 * process by pid.
560 */
561 static int
562 sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid)
563 {
564 struct proc *ptmp;
565 int i, error = 0;
566
567 if (pid == PROC_CURPROC)
568 ptmp = p;
569 else if ((ptmp = pfind(pid)) == NULL)
570 error = ESRCH;
571 else {
572 /*
573 * suid proc of ours or proc not ours
574 */
575 if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
576 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
577 error = suser(p->p_ucred, &p->p_acflag);
578
579 /*
580 * sgid proc has sgid back to us temporarily
581 */
582 else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
583 error = suser(p->p_ucred, &p->p_acflag);
584
585 /*
586 * our rgid must be in target's group list (ie,
587 * sub-processes started by a sgid process)
588 */
589 else {
590 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
591 if (p->p_ucred->cr_groups[i] ==
592 ptmp->p_cred->p_rgid)
593 break;
594 }
595 if (i == p->p_ucred->cr_ngroups)
596 error = suser(p->p_ucred, &p->p_acflag);
597 }
598 }
599
600 *p2 = ptmp;
601 return (error);
602 }
603
604 /*
605 * sysctl helper routine for setting a process's specific corefile
606 * name. picks the process based on the given pid and checks the
607 * correctness of the new value.
608 */
609 static int
610 sysctl_proc_corename(SYSCTLFN_ARGS)
611 {
612 struct proc *ptmp, *p;
613 struct plimit *lim;
614 int error = 0, len;
615 char *cname;
616 char *tmp;
617 struct sysctlnode node;
618
619 /*
620 * is this all correct?
621 */
622 if (namelen != 0)
623 return (EINVAL);
624 if (name[-1] != PROC_PID_CORENAME)
625 return (EINVAL);
626
627 /*
628 * whom are we tweaking?
629 */
630 p = l->l_proc;
631 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
632 if (error)
633 return (error);
634
635 cname = PNBUF_GET();
636 /*
637 * let them modify a temporary copy of the core name
638 */
639 node = *rnode;
640 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
641 node.sysctl_data = cname;
642 error = sysctl_lookup(SYSCTLFN_CALL(&node));
643
644 /*
645 * if that failed, or they have nothing new to say, or we've
646 * heard it before...
647 */
648 if (error || newp == NULL ||
649 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
650 goto done;
651 }
652
653 /*
654 * no error yet and cname now has the new core name in it.
655 * let's see if it looks acceptable. it must be either "core"
656 * or end in ".core" or "/core".
657 */
658 len = strlen(cname);
659 if (len < 4) {
660 error = EINVAL;
661 } else if (strcmp(cname + len - 4, "core") != 0) {
662 error = EINVAL;
663 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
664 error = EINVAL;
665 }
666 if (error != 0) {
667 goto done;
668 }
669
670 /*
671 * hmm...looks good. now...where do we put it?
672 */
673 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
674 if (tmp == NULL) {
675 error = ENOMEM;
676 goto done;
677 }
678 strlcpy(tmp, cname, len + 1);
679
680 lim = ptmp->p_limit;
681 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
682 ptmp->p_limit = limcopy(lim);
683 limfree(lim);
684 lim = ptmp->p_limit;
685 }
686 if (lim->pl_corename != defcorename)
687 free(lim->pl_corename, M_TEMP);
688 lim->pl_corename = tmp;
689 done:
690 PNBUF_PUT(cname);
691 return error;
692 }
693
694 /*
695 * sysctl helper routine for checking/setting a process's stop flags,
696 * one for fork and one for exec.
697 */
698 static int
699 sysctl_proc_stop(SYSCTLFN_ARGS)
700 {
701 struct proc *p, *ptmp;
702 int i, f, error = 0;
703 struct sysctlnode node;
704
705 if (namelen != 0)
706 return (EINVAL);
707
708 p = l->l_proc;
709 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
710 if (error)
711 return (error);
712
713 switch (rnode->sysctl_num) {
714 case PROC_PID_STOPFORK:
715 f = P_STOPFORK;
716 break;
717 case PROC_PID_STOPEXEC:
718 f = P_STOPEXEC;
719 break;
720 case PROC_PID_STOPEXIT:
721 f = P_STOPEXIT;
722 break;
723 default:
724 return (EINVAL);
725 }
726
727 i = (ptmp->p_flag & f) ? 1 : 0;
728 node = *rnode;
729 node.sysctl_data = &i;
730 error = sysctl_lookup(SYSCTLFN_CALL(&node));
731 if (error || newp == NULL)
732 return (error);
733
734 if (i)
735 ptmp->p_flag |= f;
736 else
737 ptmp->p_flag &= ~f;
738
739 return (0);
740 }
741
742 /*
743 * sysctl helper routine for a process's rlimits as exposed by sysctl.
744 */
745 static int
746 sysctl_proc_plimit(SYSCTLFN_ARGS)
747 {
748 struct proc *ptmp, *p;
749 u_int limitno;
750 int which, error = 0;
751 struct rlimit alim;
752 struct sysctlnode node;
753
754 if (namelen != 0)
755 return (EINVAL);
756
757 which = name[-1];
758 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
759 which != PROC_PID_LIMIT_TYPE_HARD)
760 return (EINVAL);
761
762 limitno = name[-2] - 1;
763 if (limitno >= RLIM_NLIMITS)
764 return (EINVAL);
765
766 if (name[-3] != PROC_PID_LIMIT)
767 return (EINVAL);
768
769 p = l->l_proc;
770 error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]);
771 if (error)
772 return (error);
773
774 node = *rnode;
775 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
776 if (which == PROC_PID_LIMIT_TYPE_HARD)
777 node.sysctl_data = &alim.rlim_max;
778 else
779 node.sysctl_data = &alim.rlim_cur;
780
781 error = sysctl_lookup(SYSCTLFN_CALL(&node));
782 if (error || newp == NULL)
783 return (error);
784
785 return (dosetrlimit(ptmp, p->p_cred, limitno, &alim));
786 }
787
788 /*
789 * and finally, the actually glue that sticks it to the tree
790 */
791 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
792 {
793
794 sysctl_createv(clog, 0, NULL, NULL,
795 CTLFLAG_PERMANENT,
796 CTLTYPE_NODE, "proc", NULL,
797 NULL, 0, NULL, 0,
798 CTL_PROC, CTL_EOL);
799 sysctl_createv(clog, 0, NULL, NULL,
800 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
801 CTLTYPE_NODE, "curproc",
802 SYSCTL_DESCR("Per-process settings"),
803 NULL, 0, NULL, 0,
804 CTL_PROC, PROC_CURPROC, CTL_EOL);
805
806 sysctl_createv(clog, 0, NULL, NULL,
807 CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE,
808 CTLTYPE_STRING, "corename",
809 SYSCTL_DESCR("Core file name"),
810 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
811 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
812 sysctl_createv(clog, 0, NULL, NULL,
813 CTLFLAG_PERMANENT,
814 CTLTYPE_NODE, "rlimit",
815 SYSCTL_DESCR("Process limits"),
816 NULL, 0, NULL, 0,
817 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
818
819 #define create_proc_plimit(s, n) do { \
820 sysctl_createv(clog, 0, NULL, NULL, \
821 CTLFLAG_PERMANENT, \
822 CTLTYPE_NODE, s, \
823 SYSCTL_DESCR("Process " s " limits"), \
824 NULL, 0, NULL, 0, \
825 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
826 CTL_EOL); \
827 sysctl_createv(clog, 0, NULL, NULL, \
828 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
829 CTLTYPE_QUAD, "soft", \
830 SYSCTL_DESCR("Process soft " s " limit"), \
831 sysctl_proc_plimit, 0, NULL, 0, \
832 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
833 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
834 sysctl_createv(clog, 0, NULL, NULL, \
835 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
836 CTLTYPE_QUAD, "hard", \
837 SYSCTL_DESCR("Process hard " s " limit"), \
838 sysctl_proc_plimit, 0, NULL, 0, \
839 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
840 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
841 } while (0/*CONSTCOND*/)
842
843 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
844 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
845 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
846 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
847 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
848 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
849 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
850 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
851 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
852 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
853
854 #undef create_proc_plimit
855
856 sysctl_createv(clog, 0, NULL, NULL,
857 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
858 CTLTYPE_INT, "stopfork",
859 SYSCTL_DESCR("Stop process at fork(2)"),
860 sysctl_proc_stop, 0, NULL, 0,
861 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
862 sysctl_createv(clog, 0, NULL, NULL,
863 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
864 CTLTYPE_INT, "stopexec",
865 SYSCTL_DESCR("Stop process at execve(2)"),
866 sysctl_proc_stop, 0, NULL, 0,
867 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
868 sysctl_createv(clog, 0, NULL, NULL,
869 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
870 CTLTYPE_INT, "stopexit",
871 SYSCTL_DESCR("Stop process before completing exit"),
872 sysctl_proc_stop, 0, NULL, 0,
873 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
874 }
875
876 struct uidinfo *
877 uid_find(uid_t uid)
878 {
879 struct uidinfo *uip;
880 struct uidinfo *newuip = NULL;
881 struct uihashhead *uipp;
882
883 uipp = UIHASH(uid);
884
885 again:
886 simple_lock(&uihashtbl_slock);
887 LIST_FOREACH(uip, uipp, ui_hash)
888 if (uip->ui_uid == uid) {
889 simple_unlock(&uihashtbl_slock);
890 if (newuip)
891 free(newuip, M_PROC);
892 return uip;
893 }
894
895 if (newuip == NULL) {
896 simple_unlock(&uihashtbl_slock);
897 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
898 goto again;
899 }
900 uip = newuip;
901
902 LIST_INSERT_HEAD(uipp, uip, ui_hash);
903 uip->ui_uid = uid;
904 simple_lock_init(&uip->ui_slock);
905 simple_unlock(&uihashtbl_slock);
906
907 return uip;
908 }
909
910 /*
911 * Change the count associated with number of processes
912 * a given user is using.
913 */
914 int
915 chgproccnt(uid_t uid, int diff)
916 {
917 struct uidinfo *uip;
918 int s;
919
920 if (diff == 0)
921 return 0;
922
923 uip = uid_find(uid);
924 UILOCK(uip, s);
925 uip->ui_proccnt += diff;
926 KASSERT(uip->ui_proccnt >= 0);
927 UIUNLOCK(uip, s);
928 return uip->ui_proccnt;
929 }
930
931 int
932 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
933 {
934 rlim_t nsb;
935 int s;
936
937 UILOCK(uip, s);
938 nsb = uip->ui_sbsize + to - *hiwat;
939 if (to > *hiwat && nsb > xmax) {
940 UIUNLOCK(uip, s);
941 splx(s);
942 return 0;
943 }
944 *hiwat = to;
945 uip->ui_sbsize = nsb;
946 KASSERT(uip->ui_sbsize >= 0);
947 UIUNLOCK(uip, s);
948 return 1;
949 }
950