kern_resource.c revision 1.103.4.3 1 /* $NetBSD: kern_resource.c,v 1.103.4.3 2006/10/24 21:10:21 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.103.4.3 2006/10/24 21:10:21 ad Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Maximum process data and stack limits.
62 * They are variables so they are patchable.
63 */
64 rlim_t maxdmap = MAXDSIZ;
65 rlim_t maxsmap = MAXSSIZ;
66
67 struct uihashhead *uihashtbl;
68 u_long uihash; /* size of hash table - 1 */
69 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
70
71
72 /*
73 * Resource controls and accounting.
74 */
75
76 int
77 sys_getpriority(struct lwp *l, void *v, register_t *retval)
78 {
79 struct sys_getpriority_args /* {
80 syscallarg(int) which;
81 syscallarg(id_t) who;
82 } */ *uap = v;
83 struct proc *curp = l->l_proc, *p;
84 int low = NZERO + PRIO_MAX + 1;
85 int who = SCARG(uap, who);
86
87 switch (SCARG(uap, which)) {
88
89 case PRIO_PROCESS:
90 if (who == 0)
91 p = curp;
92 else
93 p = p_find(who, 0);
94 if (p != NULL)
95 low = p->p_nice;
96 if (who != 0)
97 rw_exit(&proclist_lock);
98 break;
99
100 case PRIO_PGRP: {
101 struct pgrp *pg;
102
103 rw_enter(&proclist_lock, RW_READER);
104 if (who == 0)
105 pg = curp->p_pgrp;
106 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL))
107 == NULL)
108 break;
109 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
110 if (p->p_nice < low)
111 low = p->p_nice;
112 }
113 rw_exit(&proclist_lock);
114 break;
115 }
116
117 case PRIO_USER:
118 if (who == 0)
119 who = (int)kauth_cred_geteuid(l->l_cred);
120 rw_enter(&proclist_lock, RW_READER);
121 PROCLIST_FOREACH(p, &allproc) {
122 mutex_enter(&p->p_crmutex);
123 if (kauth_cred_geteuid(p->p_cred) ==
124 (uid_t)who && p->p_nice < low)
125 low = p->p_nice;
126 mutex_exit(&p->p_crmutex);
127 }
128 rw_exit(&proclist_lock);
129 break;
130
131 default:
132 return (EINVAL);
133 }
134 if (low == NZERO + PRIO_MAX + 1)
135 return (ESRCH);
136 *retval = low - NZERO;
137 return (0);
138 }
139
140 /* ARGSUSED */
141 int
142 sys_setpriority(struct lwp *l, void *v, register_t *retval)
143 {
144 struct sys_setpriority_args /* {
145 syscallarg(int) which;
146 syscallarg(id_t) who;
147 syscallarg(int) prio;
148 } */ *uap = v;
149 struct proc *curp = l->l_proc, *p;
150 int found = 0, error = 0;
151 int who = SCARG(uap, who);
152
153 switch (SCARG(uap, which)) {
154
155 case PRIO_PROCESS:
156 if (who == 0)
157 p = curp;
158 else
159 p = p_find(who, 0);
160 if (p != 0) {
161 mutex_enter(&p->p_crmutex);
162 error = donice(l, p, SCARG(uap, prio));
163 mutex_exit(&p->p_crmutex);
164 }
165 if (who != 0)
166 rw_exit(&proclist_lock);
167 found++;
168 break;
169
170 case PRIO_PGRP: {
171 struct pgrp *pg;
172
173 rw_enter(&proclist_lock, RW_READER);
174 if (who == 0)
175 pg = curp->p_pgrp;
176 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL)) == NULL)
177 break;
178 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
179 mutex_enter(&p->p_crmutex);
180 error = donice(l, p, SCARG(uap, prio));
181 mutex_exit(&p->p_crmutex);
182 found++;
183 }
184 rw_exit(&proclist_lock);
185 break;
186 }
187
188 case PRIO_USER:
189 if (who == 0)
190 who = (int)kauth_cred_geteuid(l->l_cred);
191 rw_enter(&proclist_lock, RW_READER);
192 PROCLIST_FOREACH(p, &allproc) {
193 mutex_enter(&p->p_crmutex);
194 if (kauth_cred_geteuid(p->p_cred) ==
195 (uid_t)SCARG(uap, who)) {
196 error = donice(l, p, SCARG(uap, prio));
197 found++;
198 }
199 mutex_exit(&p->p_crmutex);
200 }
201 rw_exit(&proclist_lock);
202 break;
203
204 default:
205 return (EINVAL);
206 }
207 if (found == 0)
208 return (ESRCH);
209 return (error);
210 }
211
212 /*
213 * Renice a process.
214 *
215 * Call with the target process' credentials locked.
216 */
217 int
218 donice(struct lwp *l, struct proc *chgp, int n)
219 {
220 kauth_cred_t cred = l->l_cred;
221 int onice;
222
223 LOCK_ASSERT(mutex_owned(&chgp->p_crmutex));
224
225 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
226 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
227 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
228 return (EPERM);
229 if (n > PRIO_MAX)
230 n = PRIO_MAX;
231 if (n < PRIO_MIN)
232 n = PRIO_MIN;
233 n += NZERO;
234
235 again:
236 if (n < (onice = chgp->p_nice) && kauth_authorize_generic(cred,
237 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
238 return (EACCES);
239 mutex_enter(&chgp->p_smutex);
240 if (onice != chgp->p_nice) {
241 mutex_exit(&chgp->p_smutex);
242 goto again;
243 }
244 chgp->p_nice = n;
245 (void)resetprocpriority(chgp);
246 mutex_exit(&chgp->p_smutex);
247 return (0);
248 }
249
250 /* ARGSUSED */
251 int
252 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
253 {
254 struct sys_setrlimit_args /* {
255 syscallarg(int) which;
256 syscallarg(const struct rlimit *) rlp;
257 } */ *uap = v;
258 int which = SCARG(uap, which);
259 struct rlimit alim;
260 int error;
261
262 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
263 if (error)
264 return (error);
265 return (dosetrlimit(l, l->l_proc, which, &alim));
266 }
267
268 int
269 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
270 {
271 struct rlimit *alimp;
272 struct plimit *oldplim;
273 int error;
274
275 if ((u_int)which >= RLIM_NLIMITS)
276 return (EINVAL);
277
278 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
279 return (EINVAL);
280
281 alimp = &p->p_rlimit[which];
282 /* if we don't change the value, no need to limcopy() */
283 if (limp->rlim_cur == alimp->rlim_cur &&
284 limp->rlim_max == alimp->rlim_max)
285 return 0;
286
287 if (limp->rlim_cur > limp->rlim_max) {
288 /*
289 * This is programming error. According to SUSv2, we should
290 * return error in this case.
291 */
292 return (EINVAL);
293 }
294 if (limp->rlim_max > alimp->rlim_max && (error =
295 kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
296 &l->l_acflag)) != 0)
297 return (error);
298
299 if (p->p_limit->p_refcnt > 1 &&
300 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
301 p->p_limit = limcopy(oldplim = p->p_limit);
302 limfree(oldplim);
303 alimp = &p->p_rlimit[which];
304 }
305
306 switch (which) {
307
308 case RLIMIT_DATA:
309 if (limp->rlim_cur > maxdmap)
310 limp->rlim_cur = maxdmap;
311 if (limp->rlim_max > maxdmap)
312 limp->rlim_max = maxdmap;
313 break;
314
315 case RLIMIT_STACK:
316 if (limp->rlim_cur > maxsmap)
317 limp->rlim_cur = maxsmap;
318 if (limp->rlim_max > maxsmap)
319 limp->rlim_max = maxsmap;
320
321 /*
322 * Return EINVAL if the new stack size limit is lower than
323 * current usage. Otherwise, the process would get SIGSEGV the
324 * moment it would try to access anything on it's current stack.
325 * This conforms to SUSv2.
326 */
327 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
328 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
329 return (EINVAL);
330
331 /*
332 * Stack is allocated to the max at exec time with
333 * only "rlim_cur" bytes accessible (In other words,
334 * allocates stack dividing two contiguous regions at
335 * "rlim_cur" bytes boundary).
336 *
337 * Since allocation is done in terms of page, roundup
338 * "rlim_cur" (otherwise, contiguous regions
339 * overlap). If stack limit is going up make more
340 * accessible, if going down make inaccessible.
341 */
342 limp->rlim_cur = round_page(limp->rlim_cur);
343 if (limp->rlim_cur != alimp->rlim_cur) {
344 vaddr_t addr;
345 vsize_t size;
346 vm_prot_t prot;
347
348 if (limp->rlim_cur > alimp->rlim_cur) {
349 prot = VM_PROT_READ | VM_PROT_WRITE;
350 size = limp->rlim_cur - alimp->rlim_cur;
351 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
352 limp->rlim_cur;
353 } else {
354 prot = VM_PROT_NONE;
355 size = alimp->rlim_cur - limp->rlim_cur;
356 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
357 alimp->rlim_cur;
358 }
359 (void) uvm_map_protect(&p->p_vmspace->vm_map,
360 addr, addr+size, prot, FALSE);
361 }
362 break;
363
364 case RLIMIT_NOFILE:
365 if (limp->rlim_cur > maxfiles)
366 limp->rlim_cur = maxfiles;
367 if (limp->rlim_max > maxfiles)
368 limp->rlim_max = maxfiles;
369 break;
370
371 case RLIMIT_NPROC:
372 if (limp->rlim_cur > maxproc)
373 limp->rlim_cur = maxproc;
374 if (limp->rlim_max > maxproc)
375 limp->rlim_max = maxproc;
376 break;
377 }
378 *alimp = *limp;
379 return (0);
380 }
381
382 /* ARGSUSED */
383 int
384 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
385 {
386 struct sys_getrlimit_args /* {
387 syscallarg(int) which;
388 syscallarg(struct rlimit *) rlp;
389 } */ *uap = v;
390 struct proc *p = l->l_proc;
391 int which = SCARG(uap, which);
392
393 if ((u_int)which >= RLIM_NLIMITS)
394 return (EINVAL);
395 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
396 sizeof(struct rlimit)));
397 }
398
399 /*
400 * Transform the running time and tick information in proc p into user,
401 * system, and interrupt time usage.
402 */
403 void
404 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
405 struct timeval *ip, struct timeval *rp)
406 {
407 u_quad_t u, st, ut, it, tot;
408 unsigned long sec;
409 long usec;
410 int s;
411 struct timeval tv;
412 struct lwp *l;
413
414 LOCK_ASSERT(mutex_owned(&p->p_smutex));
415
416 s = splstatclock();
417 st = p->p_sticks;
418 ut = p->p_uticks;
419 it = p->p_iticks;
420 splx(s);
421
422 sec = 0;
423 usec = 0;
424 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
425 lwp_lock(l);
426 sec += l->l_rtime.tv_sec;
427 usec += l->l_rtime.tv_usec;
428 if (l->l_stat == LSONPROC) {
429 struct schedstate_percpu *spc;
430
431 KDASSERT(l->l_cpu != NULL);
432 spc = &l->l_cpu->ci_schedstate;
433
434 /*
435 * Adjust for the current time slice. This is
436 * actually fairly important since the error
437 * here is on the order of a time quantum,
438 * which is much greater than the sampling
439 * error.
440 */
441 microtime(&tv);
442 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
443 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
444 }
445 lwp_unlock(l);
446 }
447
448 tot = st + ut + it;
449 u = sec * 1000000ull + usec;
450
451 if (tot == 0) {
452 /* No ticks, so can't use to share time out, split 50-50 */
453 st = ut = u / 2;
454 } else {
455 st = (u * st) / tot;
456 ut = (u * ut) / tot;
457 }
458 if (sp != NULL) {
459 if (tot == 0) {
460 /* No ticks, so can't use to share time out, split 50-50 */
461 st = u / 2;
462 } else
463 st = (u * st) / tot;
464 sp->tv_sec = st / 1000000;
465 sp->tv_usec = st % 1000000;
466 }
467 if (up != NULL) {
468 if (tot == 0) {
469 /* No ticks, so can't use to share time out, split 50-50 */
470 ut = u / 2;
471 } else
472 ut = (u * ut) / tot;
473 up->tv_sec = ut / 1000000;
474 up->tv_usec = ut % 1000000;
475 }
476 if (ip != NULL) {
477 if (it != 0)
478 it = (u * it) / tot;
479 ip->tv_sec = it / 1000000;
480 ip->tv_usec = it % 1000000;
481 }
482 if (rp != NULL) {
483 rp->tv_sec = sec;
484 rp->tv_usec = usec;
485 }
486 }
487
488 /* ARGSUSED */
489 int
490 sys_getrusage(struct lwp *l, void *v, register_t *retval)
491 {
492 struct sys_getrusage_args /* {
493 syscallarg(int) who;
494 syscallarg(struct rusage *) rusage;
495 } */ *uap = v;
496 struct rusage *rup;
497 struct proc *p = l->l_proc;
498
499 switch (SCARG(uap, who)) {
500
501 case RUSAGE_SELF:
502 rup = &p->p_stats->p_ru;
503 mutex_enter(&p->p_smutex);
504 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL, NULL);
505 mutex_exit(&p->p_smutex);
506 break;
507
508 case RUSAGE_CHILDREN:
509 rup = &p->p_stats->p_cru;
510 break;
511
512 default:
513 return (EINVAL);
514 }
515 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
516 }
517
518 void
519 ruadd(struct rusage *ru, struct rusage *ru2)
520 {
521 long *ip, *ip2;
522 int i;
523
524 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
525 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
526 if (ru->ru_maxrss < ru2->ru_maxrss)
527 ru->ru_maxrss = ru2->ru_maxrss;
528 ip = &ru->ru_first; ip2 = &ru2->ru_first;
529 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
530 *ip++ += *ip2++;
531 }
532
533 /*
534 * Make a copy of the plimit structure.
535 * We share these structures copy-on-write after fork,
536 * and copy when a limit is changed.
537 */
538 struct plimit *
539 limcopy(struct plimit *lim)
540 {
541 struct plimit *newlim;
542 size_t l = 0;
543
544 simple_lock(&lim->p_slock);
545 if (lim->pl_corename != defcorename)
546 l = strlen(lim->pl_corename) + 1;
547 simple_unlock(&lim->p_slock);
548
549 newlim = pool_get(&plimit_pool, PR_WAITOK);
550 simple_lock_init(&newlim->p_slock);
551 newlim->p_lflags = 0;
552 newlim->p_refcnt = 1;
553 newlim->pl_corename = (l != 0)
554 ? malloc(l, M_TEMP, M_WAITOK)
555 : defcorename;
556
557 simple_lock(&lim->p_slock);
558 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
559 sizeof(struct rlimit) * RLIM_NLIMITS);
560
561 if (l != 0)
562 strlcpy(newlim->pl_corename, lim->pl_corename, l);
563 simple_unlock(&lim->p_slock);
564
565 return (newlim);
566 }
567
568 void
569 limfree(struct plimit *lim)
570 {
571 int n;
572
573 simple_lock(&lim->p_slock);
574 n = --lim->p_refcnt;
575 simple_unlock(&lim->p_slock);
576 if (n > 0)
577 return;
578 #ifdef DIAGNOSTIC
579 if (n < 0)
580 panic("limfree");
581 #endif
582 if (lim->pl_corename != defcorename)
583 free(lim->pl_corename, M_TEMP);
584 pool_put(&plimit_pool, lim);
585 }
586
587 struct pstats *
588 pstatscopy(struct pstats *ps)
589 {
590
591 struct pstats *newps;
592
593 newps = pool_get(&pstats_pool, PR_WAITOK);
594
595 memset(&newps->pstat_startzero, 0,
596 (unsigned) ((caddr_t)&newps->pstat_endzero -
597 (caddr_t)&newps->pstat_startzero));
598 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
599 ((caddr_t)&newps->pstat_endcopy -
600 (caddr_t)&newps->pstat_startcopy));
601
602 return (newps);
603
604 }
605
606 void
607 pstatsfree(struct pstats *ps)
608 {
609
610 pool_put(&pstats_pool, ps);
611 }
612
613 /*
614 * sysctl interface in five parts
615 */
616
617 /*
618 * a routine for sysctl proc subtree helpers that need to pick a valid
619 * process by pid.
620 */
621 static int
622 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
623 {
624 struct proc *ptmp;
625 int error = 0;
626
627 if (pid == PROC_CURPROC)
628 ptmp = l->l_proc;
629 else if ((ptmp = pfind(pid)) == NULL)
630 error = ESRCH;
631 else {
632 /*
633 * suid proc of ours or proc not ours
634 */
635 if (kauth_cred_getuid(l->l_cred) !=
636 kauth_cred_getuid(ptmp->p_cred) ||
637 kauth_cred_getuid(l->l_cred) !=
638 kauth_cred_getsvuid(ptmp->p_cred))
639 error = kauth_authorize_generic(l->l_cred,
640 KAUTH_GENERIC_ISSUSER, &l->l_acflag);
641
642 /*
643 * sgid proc has sgid back to us temporarily
644 */
645 else if (kauth_cred_getgid(ptmp->p_cred) !=
646 kauth_cred_getsvgid(ptmp->p_cred))
647 error = kauth_authorize_generic(l->l_cred,
648 KAUTH_GENERIC_ISSUSER, &l->l_acflag);
649
650 /*
651 * our rgid must be in target's group list (ie,
652 * sub-processes started by a sgid process)
653 */
654 else {
655 int ismember = 0;
656
657 if (kauth_cred_ismember_gid(l->l_cred,
658 kauth_cred_getgid(ptmp->p_cred), &ismember) != 0 ||
659 !ismember) {
660 error = kauth_authorize_generic(l->l_cred,
661 KAUTH_GENERIC_ISSUSER, &l->l_acflag);
662 }
663 }
664 }
665
666 *p2 = ptmp;
667 return (error);
668 }
669
670 /*
671 * sysctl helper routine for setting a process's specific corefile
672 * name. picks the process based on the given pid and checks the
673 * correctness of the new value.
674 */
675 static int
676 sysctl_proc_corename(SYSCTLFN_ARGS)
677 {
678 struct proc *ptmp;
679 struct plimit *lim;
680 int error = 0, len;
681 char *cname;
682 char *tmp;
683 struct sysctlnode node;
684
685 /*
686 * is this all correct?
687 */
688 if (namelen != 0)
689 return (EINVAL);
690 if (name[-1] != PROC_PID_CORENAME)
691 return (EINVAL);
692
693 /*
694 * whom are we tweaking?
695 */
696 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
697 if (error)
698 return (error);
699
700 cname = PNBUF_GET();
701 /*
702 * let them modify a temporary copy of the core name
703 */
704 node = *rnode;
705 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
706 node.sysctl_data = cname;
707 error = sysctl_lookup(SYSCTLFN_CALL(&node));
708
709 /*
710 * if that failed, or they have nothing new to say, or we've
711 * heard it before...
712 */
713 if (error || newp == NULL ||
714 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
715 goto done;
716 }
717
718 if (securelevel > 1)
719 return (EPERM);
720
721 /*
722 * no error yet and cname now has the new core name in it.
723 * let's see if it looks acceptable. it must be either "core"
724 * or end in ".core" or "/core".
725 */
726 len = strlen(cname);
727 if (len < 4) {
728 error = EINVAL;
729 } else if (strcmp(cname + len - 4, "core") != 0) {
730 error = EINVAL;
731 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
732 error = EINVAL;
733 }
734 if (error != 0) {
735 goto done;
736 }
737
738 /*
739 * hmm...looks good. now...where do we put it?
740 */
741 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
742 if (tmp == NULL) {
743 error = ENOMEM;
744 goto done;
745 }
746 strlcpy(tmp, cname, len + 1);
747
748 lim = ptmp->p_limit;
749 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
750 ptmp->p_limit = limcopy(lim);
751 limfree(lim);
752 lim = ptmp->p_limit;
753 }
754 if (lim->pl_corename != defcorename)
755 free(lim->pl_corename, M_TEMP);
756 lim->pl_corename = tmp;
757 done:
758 PNBUF_PUT(cname);
759 return error;
760 }
761
762 /*
763 * sysctl helper routine for checking/setting a process's stop flags,
764 * one for fork and one for exec.
765 */
766 static int
767 sysctl_proc_stop(SYSCTLFN_ARGS)
768 {
769 struct proc *ptmp;
770 int i, f, error = 0;
771 struct sysctlnode node;
772
773 if (namelen != 0)
774 return (EINVAL);
775
776 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
777 if (error)
778 return (error);
779
780 switch (rnode->sysctl_num) {
781 case PROC_PID_STOPFORK:
782 f = P_STOPFORK;
783 break;
784 case PROC_PID_STOPEXEC:
785 f = P_STOPEXEC;
786 break;
787 case PROC_PID_STOPEXIT:
788 f = P_STOPEXIT;
789 break;
790 default:
791 return (EINVAL);
792 }
793
794 i = (ptmp->p_flag & f) ? 1 : 0;
795 node = *rnode;
796 node.sysctl_data = &i;
797 error = sysctl_lookup(SYSCTLFN_CALL(&node));
798 if (error || newp == NULL)
799 return (error);
800
801 if (i)
802 ptmp->p_flag |= f;
803 else
804 ptmp->p_flag &= ~f;
805
806 return (0);
807 }
808
809 /*
810 * sysctl helper routine for a process's rlimits as exposed by sysctl.
811 */
812 static int
813 sysctl_proc_plimit(SYSCTLFN_ARGS)
814 {
815 struct proc *ptmp;
816 u_int limitno;
817 int which, error = 0;
818 struct rlimit alim;
819 struct sysctlnode node;
820
821 if (namelen != 0)
822 return (EINVAL);
823
824 which = name[-1];
825 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
826 which != PROC_PID_LIMIT_TYPE_HARD)
827 return (EINVAL);
828
829 limitno = name[-2] - 1;
830 if (limitno >= RLIM_NLIMITS)
831 return (EINVAL);
832
833 if (name[-3] != PROC_PID_LIMIT)
834 return (EINVAL);
835
836 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
837 if (error)
838 return (error);
839
840 node = *rnode;
841 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
842 if (which == PROC_PID_LIMIT_TYPE_HARD)
843 node.sysctl_data = &alim.rlim_max;
844 else
845 node.sysctl_data = &alim.rlim_cur;
846
847 error = sysctl_lookup(SYSCTLFN_CALL(&node));
848 if (error || newp == NULL)
849 return (error);
850
851 return (dosetrlimit(l, ptmp, limitno, &alim));
852 }
853
854 /*
855 * and finally, the actually glue that sticks it to the tree
856 */
857 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
858 {
859
860 sysctl_createv(clog, 0, NULL, NULL,
861 CTLFLAG_PERMANENT,
862 CTLTYPE_NODE, "proc", NULL,
863 NULL, 0, NULL, 0,
864 CTL_PROC, CTL_EOL);
865 sysctl_createv(clog, 0, NULL, NULL,
866 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
867 CTLTYPE_NODE, "curproc",
868 SYSCTL_DESCR("Per-process settings"),
869 NULL, 0, NULL, 0,
870 CTL_PROC, PROC_CURPROC, CTL_EOL);
871
872 sysctl_createv(clog, 0, NULL, NULL,
873 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
874 CTLTYPE_STRING, "corename",
875 SYSCTL_DESCR("Core file name"),
876 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
877 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
878 sysctl_createv(clog, 0, NULL, NULL,
879 CTLFLAG_PERMANENT,
880 CTLTYPE_NODE, "rlimit",
881 SYSCTL_DESCR("Process limits"),
882 NULL, 0, NULL, 0,
883 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
884
885 #define create_proc_plimit(s, n) do { \
886 sysctl_createv(clog, 0, NULL, NULL, \
887 CTLFLAG_PERMANENT, \
888 CTLTYPE_NODE, s, \
889 SYSCTL_DESCR("Process " s " limits"), \
890 NULL, 0, NULL, 0, \
891 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
892 CTL_EOL); \
893 sysctl_createv(clog, 0, NULL, NULL, \
894 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
895 CTLTYPE_QUAD, "soft", \
896 SYSCTL_DESCR("Process soft " s " limit"), \
897 sysctl_proc_plimit, 0, NULL, 0, \
898 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
899 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
900 sysctl_createv(clog, 0, NULL, NULL, \
901 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
902 CTLTYPE_QUAD, "hard", \
903 SYSCTL_DESCR("Process hard " s " limit"), \
904 sysctl_proc_plimit, 0, NULL, 0, \
905 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
906 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
907 } while (0/*CONSTCOND*/)
908
909 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
910 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
911 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
912 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
913 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
914 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
915 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
916 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
917 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
918 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
919
920 #undef create_proc_plimit
921
922 sysctl_createv(clog, 0, NULL, NULL,
923 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
924 CTLTYPE_INT, "stopfork",
925 SYSCTL_DESCR("Stop process at fork(2)"),
926 sysctl_proc_stop, 0, NULL, 0,
927 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
928 sysctl_createv(clog, 0, NULL, NULL,
929 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
930 CTLTYPE_INT, "stopexec",
931 SYSCTL_DESCR("Stop process at execve(2)"),
932 sysctl_proc_stop, 0, NULL, 0,
933 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
934 sysctl_createv(clog, 0, NULL, NULL,
935 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
936 CTLTYPE_INT, "stopexit",
937 SYSCTL_DESCR("Stop process before completing exit"),
938 sysctl_proc_stop, 0, NULL, 0,
939 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
940 }
941
942 struct uidinfo *
943 uid_find(uid_t uid)
944 {
945 struct uidinfo *uip;
946 struct uidinfo *newuip = NULL;
947 struct uihashhead *uipp;
948
949 uipp = UIHASH(uid);
950
951 again:
952 simple_lock(&uihashtbl_slock);
953 LIST_FOREACH(uip, uipp, ui_hash)
954 if (uip->ui_uid == uid) {
955 simple_unlock(&uihashtbl_slock);
956 if (newuip)
957 free(newuip, M_PROC);
958 return uip;
959 }
960
961 if (newuip == NULL) {
962 simple_unlock(&uihashtbl_slock);
963 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
964 goto again;
965 }
966 uip = newuip;
967
968 LIST_INSERT_HEAD(uipp, uip, ui_hash);
969 uip->ui_uid = uid;
970 simple_lock_init(&uip->ui_slock);
971 simple_unlock(&uihashtbl_slock);
972
973 return uip;
974 }
975
976 /*
977 * Change the count associated with number of processes
978 * a given user is using.
979 */
980 int
981 chgproccnt(uid_t uid, int diff)
982 {
983 struct uidinfo *uip;
984 int s;
985
986 if (diff == 0)
987 return 0;
988
989 uip = uid_find(uid);
990 UILOCK(uip, s);
991 uip->ui_proccnt += diff;
992 KASSERT(uip->ui_proccnt >= 0);
993 UIUNLOCK(uip, s);
994 return uip->ui_proccnt;
995 }
996
997 int
998 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
999 {
1000 rlim_t nsb;
1001 int s;
1002
1003 UILOCK(uip, s);
1004 nsb = uip->ui_sbsize + to - *hiwat;
1005 if (to > *hiwat && nsb > xmax) {
1006 UIUNLOCK(uip, s);
1007 splx(s);
1008 return 0;
1009 }
1010 *hiwat = to;
1011 uip->ui_sbsize = nsb;
1012 KASSERT(uip->ui_sbsize >= 0);
1013 UIUNLOCK(uip, s);
1014 return 1;
1015 }
1016