kern_resource.c revision 1.103.4.7 1 /* $NetBSD: kern_resource.c,v 1.103.4.7 2007/01/12 01:04:06 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.103.4.7 2007/01/12 01:04:06 ad Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Maximum process data and stack limits.
62 * They are variables so they are patchable.
63 */
64 rlim_t maxdmap = MAXDSIZ;
65 rlim_t maxsmap = MAXSSIZ;
66
67 struct uihashhead *uihashtbl;
68 u_long uihash; /* size of hash table - 1 */
69 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
70
71
72 /*
73 * Resource controls and accounting.
74 */
75
76 int
77 sys_getpriority(struct lwp *l, void *v, register_t *retval)
78 {
79 struct sys_getpriority_args /* {
80 syscallarg(int) which;
81 syscallarg(id_t) who;
82 } */ *uap = v;
83 struct proc *curp = l->l_proc, *p;
84 int low = NZERO + PRIO_MAX + 1;
85 int who = SCARG(uap, who);
86
87 switch (SCARG(uap, which)) {
88
89 case PRIO_PROCESS:
90 if (who == 0)
91 p = curp;
92 else
93 p = p_find(who, 0);
94 if (p != NULL)
95 low = p->p_nice;
96 if (who != 0)
97 rw_exit(&proclist_lock);
98 break;
99
100 case PRIO_PGRP: {
101 struct pgrp *pg;
102
103 rw_enter(&proclist_lock, RW_READER);
104 if (who == 0)
105 pg = curp->p_pgrp;
106 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL))
107 == NULL)
108 break;
109 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
110 if (p->p_nice < low)
111 low = p->p_nice;
112 }
113 rw_exit(&proclist_lock);
114 break;
115 }
116
117 case PRIO_USER:
118 if (who == 0)
119 who = (int)kauth_cred_geteuid(l->l_cred);
120 rw_enter(&proclist_lock, RW_READER);
121 PROCLIST_FOREACH(p, &allproc) {
122 mutex_enter(&p->p_mutex);
123 if (kauth_cred_geteuid(p->p_cred) ==
124 (uid_t)who && p->p_nice < low)
125 low = p->p_nice;
126 mutex_exit(&p->p_mutex);
127 }
128 rw_exit(&proclist_lock);
129 break;
130
131 default:
132 return (EINVAL);
133 }
134 if (low == NZERO + PRIO_MAX + 1)
135 return (ESRCH);
136 *retval = low - NZERO;
137 return (0);
138 }
139
140 /* ARGSUSED */
141 int
142 sys_setpriority(struct lwp *l, void *v, register_t *retval)
143 {
144 struct sys_setpriority_args /* {
145 syscallarg(int) which;
146 syscallarg(id_t) who;
147 syscallarg(int) prio;
148 } */ *uap = v;
149 struct proc *curp = l->l_proc, *p;
150 int found = 0, error = 0;
151 int who = SCARG(uap, who);
152
153 switch (SCARG(uap, which)) {
154
155 case PRIO_PROCESS:
156 if (who == 0)
157 p = curp;
158 else
159 p = p_find(who, 0);
160 if (p != 0) {
161 mutex_enter(&p->p_mutex);
162 error = donice(l, p, SCARG(uap, prio));
163 mutex_exit(&p->p_mutex);
164 }
165 if (who != 0)
166 rw_exit(&proclist_lock);
167 found++;
168 break;
169
170 case PRIO_PGRP: {
171 struct pgrp *pg;
172
173 rw_enter(&proclist_lock, RW_READER);
174 if (who == 0)
175 pg = curp->p_pgrp;
176 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL)) == NULL)
177 break;
178 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
179 mutex_enter(&p->p_mutex);
180 error = donice(l, p, SCARG(uap, prio));
181 mutex_exit(&p->p_mutex);
182 found++;
183 }
184 rw_exit(&proclist_lock);
185 break;
186 }
187
188 case PRIO_USER:
189 if (who == 0)
190 who = (int)kauth_cred_geteuid(l->l_cred);
191 rw_enter(&proclist_lock, RW_READER);
192 PROCLIST_FOREACH(p, &allproc) {
193 mutex_enter(&p->p_mutex);
194 if (kauth_cred_geteuid(p->p_cred) ==
195 (uid_t)SCARG(uap, who)) {
196 error = donice(l, p, SCARG(uap, prio));
197 found++;
198 }
199 mutex_exit(&p->p_mutex);
200 }
201 rw_exit(&proclist_lock);
202 break;
203
204 default:
205 return (EINVAL);
206 }
207 if (found == 0)
208 return (ESRCH);
209 return (error);
210 }
211
212 /*
213 * Renice a process.
214 *
215 * Call with the target process' credentials locked.
216 */
217 int
218 donice(struct lwp *l, struct proc *chgp, int n)
219 {
220 kauth_cred_t cred = l->l_cred;
221 int onice;
222
223 LOCK_ASSERT(mutex_owned(&chgp->p_mutex));
224
225 if (n > PRIO_MAX)
226 n = PRIO_MAX;
227 if (n < PRIO_MIN)
228 n = PRIO_MIN;
229 n += NZERO;
230 onice = chgp->p_nice; /* XXXSMP not covered by p_mutex */
231
232 again:
233 if (kauth_authorize_process(cred, KAUTH_PROCESS_RESOURCE, chgp,
234 (void *)KAUTH_REQ_PROCESS_RESOURCE_NICE, KAUTH_ARG(n), NULL))
235 return (EACCES);
236 mutex_enter(&chgp->p_smutex);
237 if (onice != chgp->p_nice) {
238 mutex_exit(&chgp->p_smutex);
239 goto again;
240 }
241 chgp->p_nice = n;
242 (void)resetprocpriority(chgp);
243 mutex_exit(&chgp->p_smutex);
244 return (0);
245 }
246
247 /* ARGSUSED */
248 int
249 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
250 {
251 struct sys_setrlimit_args /* {
252 syscallarg(int) which;
253 syscallarg(const struct rlimit *) rlp;
254 } */ *uap = v;
255 int which = SCARG(uap, which);
256 struct rlimit alim;
257 int error;
258
259 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
260 if (error)
261 return (error);
262 return (dosetrlimit(l, l->l_proc, which, &alim));
263 }
264
265 int
266 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
267 {
268 struct rlimit *alimp;
269 struct plimit *oldplim;
270 int error;
271
272 if ((u_int)which >= RLIM_NLIMITS)
273 return (EINVAL);
274
275 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
276 return (EINVAL);
277
278 alimp = &p->p_rlimit[which];
279 /* if we don't change the value, no need to limcopy() */
280 if (limp->rlim_cur == alimp->rlim_cur &&
281 limp->rlim_max == alimp->rlim_max)
282 return 0;
283
284 if (limp->rlim_cur > limp->rlim_max) {
285 /*
286 * This is programming error. According to SUSv2, we should
287 * return error in this case.
288 */
289 return (EINVAL);
290 }
291 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RESOURCE,
292 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RESOURCE_RLIMIT), limp,
293 KAUTH_ARG(which));
294 if (error)
295 return (error);
296
297 if (p->p_limit->p_refcnt > 1 &&
298 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
299 p->p_limit = limcopy(oldplim = p->p_limit);
300 limfree(oldplim);
301 alimp = &p->p_rlimit[which];
302 }
303
304 switch (which) {
305
306 case RLIMIT_DATA:
307 if (limp->rlim_cur > maxdmap)
308 limp->rlim_cur = maxdmap;
309 if (limp->rlim_max > maxdmap)
310 limp->rlim_max = maxdmap;
311 break;
312
313 case RLIMIT_STACK:
314 if (limp->rlim_cur > maxsmap)
315 limp->rlim_cur = maxsmap;
316 if (limp->rlim_max > maxsmap)
317 limp->rlim_max = maxsmap;
318
319 /*
320 * Return EINVAL if the new stack size limit is lower than
321 * current usage. Otherwise, the process would get SIGSEGV the
322 * moment it would try to access anything on it's current stack.
323 * This conforms to SUSv2.
324 */
325 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
326 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
327 return (EINVAL);
328
329 /*
330 * Stack is allocated to the max at exec time with
331 * only "rlim_cur" bytes accessible (In other words,
332 * allocates stack dividing two contiguous regions at
333 * "rlim_cur" bytes boundary).
334 *
335 * Since allocation is done in terms of page, roundup
336 * "rlim_cur" (otherwise, contiguous regions
337 * overlap). If stack limit is going up make more
338 * accessible, if going down make inaccessible.
339 */
340 limp->rlim_cur = round_page(limp->rlim_cur);
341 if (limp->rlim_cur != alimp->rlim_cur) {
342 vaddr_t addr;
343 vsize_t size;
344 vm_prot_t prot;
345
346 if (limp->rlim_cur > alimp->rlim_cur) {
347 prot = VM_PROT_READ | VM_PROT_WRITE;
348 size = limp->rlim_cur - alimp->rlim_cur;
349 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
350 limp->rlim_cur;
351 } else {
352 prot = VM_PROT_NONE;
353 size = alimp->rlim_cur - limp->rlim_cur;
354 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
355 alimp->rlim_cur;
356 }
357 (void) uvm_map_protect(&p->p_vmspace->vm_map,
358 addr, addr+size, prot, FALSE);
359 }
360 break;
361
362 case RLIMIT_NOFILE:
363 if (limp->rlim_cur > maxfiles)
364 limp->rlim_cur = maxfiles;
365 if (limp->rlim_max > maxfiles)
366 limp->rlim_max = maxfiles;
367 break;
368
369 case RLIMIT_NPROC:
370 if (limp->rlim_cur > maxproc)
371 limp->rlim_cur = maxproc;
372 if (limp->rlim_max > maxproc)
373 limp->rlim_max = maxproc;
374 break;
375 }
376 *alimp = *limp;
377 return (0);
378 }
379
380 /* ARGSUSED */
381 int
382 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
383 {
384 struct sys_getrlimit_args /* {
385 syscallarg(int) which;
386 syscallarg(struct rlimit *) rlp;
387 } */ *uap = v;
388 struct proc *p = l->l_proc;
389 int which = SCARG(uap, which);
390
391 if ((u_int)which >= RLIM_NLIMITS)
392 return (EINVAL);
393 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
394 sizeof(struct rlimit)));
395 }
396
397 /*
398 * Transform the running time and tick information in proc p into user,
399 * system, and interrupt time usage.
400 *
401 * Should be called with p->p_smutex held unless called from exit1().
402 */
403 void
404 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
405 struct timeval *ip, struct timeval *rp)
406 {
407 u_quad_t u, st, ut, it, tot;
408 unsigned long sec;
409 long usec;
410 struct timeval tv;
411 struct lwp *l;
412
413 mutex_enter(&p->p_stmutex);
414 st = p->p_sticks;
415 ut = p->p_uticks;
416 it = p->p_iticks;
417 mutex_exit(&p->p_stmutex);
418
419 sec = p->p_rtime.tv_sec;
420 usec = p->p_rtime.tv_usec;
421
422 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
423 lwp_lock(l);
424 sec += l->l_rtime.tv_sec;
425 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
426 sec++;
427 usec -= 1000000;
428 }
429 if (l->l_cpu == curcpu()) {
430 struct schedstate_percpu *spc;
431
432 KDASSERT(l->l_cpu != NULL);
433 spc = &l->l_cpu->ci_schedstate;
434
435 /*
436 * Adjust for the current time slice. This is
437 * actually fairly important since the error
438 * here is on the order of a time quantum,
439 * which is much greater than the sampling
440 * error.
441 */
442 microtime(&tv);
443 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
444 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
445 if (usec >= 1000000) {
446 sec++;
447 usec -= 1000000;
448 }
449 }
450 lwp_unlock(l);
451 }
452
453 tot = st + ut + it;
454 u = sec * 1000000ull + usec;
455
456 if (tot == 0) {
457 /* No ticks, so can't use to share time out, split 50-50 */
458 st = ut = u / 2;
459 } else {
460 st = (u * st) / tot;
461 ut = (u * ut) / tot;
462 }
463 if (sp != NULL) {
464 sp->tv_sec = st / 1000000;
465 sp->tv_usec = st % 1000000;
466 }
467 if (up != NULL) {
468 up->tv_sec = ut / 1000000;
469 up->tv_usec = ut % 1000000;
470 }
471 if (ip != NULL) {
472 if (it != 0)
473 it = (u * it) / tot;
474 ip->tv_sec = it / 1000000;
475 ip->tv_usec = it % 1000000;
476 }
477 if (rp != NULL) {
478 rp->tv_sec = sec;
479 rp->tv_usec = usec;
480 }
481 }
482
483 /* ARGSUSED */
484 int
485 sys_getrusage(struct lwp *l, void *v, register_t *retval)
486 {
487 struct sys_getrusage_args /* {
488 syscallarg(int) who;
489 syscallarg(struct rusage *) rusage;
490 } */ *uap = v;
491 struct rusage *rup;
492 struct proc *p = l->l_proc;
493
494 switch (SCARG(uap, who)) {
495
496 case RUSAGE_SELF:
497 rup = &p->p_stats->p_ru;
498 mutex_enter(&p->p_smutex);
499 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL, NULL);
500 mutex_exit(&p->p_smutex);
501 break;
502
503 case RUSAGE_CHILDREN:
504 rup = &p->p_stats->p_cru;
505 break;
506
507 default:
508 return (EINVAL);
509 }
510 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
511 }
512
513 void
514 ruadd(struct rusage *ru, struct rusage *ru2)
515 {
516 long *ip, *ip2;
517 int i;
518
519 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
520 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
521 if (ru->ru_maxrss < ru2->ru_maxrss)
522 ru->ru_maxrss = ru2->ru_maxrss;
523 ip = &ru->ru_first; ip2 = &ru2->ru_first;
524 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
525 *ip++ += *ip2++;
526 }
527
528 /*
529 * Make a copy of the plimit structure.
530 * We share these structures copy-on-write after fork,
531 * and copy when a limit is changed.
532 */
533 struct plimit *
534 limcopy(struct plimit *lim)
535 {
536 struct plimit *newlim;
537 size_t l = 0;
538
539 simple_lock(&lim->p_slock);
540 if (lim->pl_corename != defcorename)
541 l = strlen(lim->pl_corename) + 1;
542 simple_unlock(&lim->p_slock);
543
544 newlim = pool_get(&plimit_pool, PR_WAITOK);
545 simple_lock_init(&newlim->p_slock);
546 newlim->p_lflags = 0;
547 newlim->p_refcnt = 1;
548 newlim->pl_corename = (l != 0)
549 ? malloc(l, M_TEMP, M_WAITOK)
550 : defcorename;
551
552 simple_lock(&lim->p_slock);
553 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
554 sizeof(struct rlimit) * RLIM_NLIMITS);
555
556 if (l != 0)
557 strlcpy(newlim->pl_corename, lim->pl_corename, l);
558 simple_unlock(&lim->p_slock);
559
560 return (newlim);
561 }
562
563 void
564 limfree(struct plimit *lim)
565 {
566 int n;
567
568 simple_lock(&lim->p_slock);
569 n = --lim->p_refcnt;
570 simple_unlock(&lim->p_slock);
571 if (n > 0)
572 return;
573 #ifdef DIAGNOSTIC
574 if (n < 0)
575 panic("limfree");
576 #endif
577 if (lim->pl_corename != defcorename)
578 free(lim->pl_corename, M_TEMP);
579 pool_put(&plimit_pool, lim);
580 }
581
582 struct pstats *
583 pstatscopy(struct pstats *ps)
584 {
585
586 struct pstats *newps;
587
588 newps = pool_get(&pstats_pool, PR_WAITOK);
589
590 memset(&newps->pstat_startzero, 0,
591 (unsigned) ((caddr_t)&newps->pstat_endzero -
592 (caddr_t)&newps->pstat_startzero));
593 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
594 ((caddr_t)&newps->pstat_endcopy -
595 (caddr_t)&newps->pstat_startcopy));
596
597 return (newps);
598
599 }
600
601 void
602 pstatsfree(struct pstats *ps)
603 {
604
605 pool_put(&pstats_pool, ps);
606 }
607
608 /*
609 * sysctl interface in five parts
610 */
611
612 /*
613 * a routine for sysctl proc subtree helpers that need to pick a valid
614 * process by pid.
615 */
616 static int
617 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
618 {
619 struct proc *ptmp;
620 int error = 0;
621
622 if (pid == PROC_CURPROC)
623 ptmp = l->l_proc;
624 else if ((ptmp = pfind(pid)) == NULL)
625 error = ESRCH;
626
627 *p2 = ptmp;
628 return (error);
629 }
630
631 /*
632 * sysctl helper routine for setting a process's specific corefile
633 * name. picks the process based on the given pid and checks the
634 * correctness of the new value.
635 */
636 static int
637 sysctl_proc_corename(SYSCTLFN_ARGS)
638 {
639 struct proc *ptmp;
640 struct plimit *lim;
641 int error = 0, len;
642 char *cname;
643 char *tmp;
644 struct sysctlnode node;
645
646 /*
647 * is this all correct?
648 */
649 if (namelen != 0)
650 return (EINVAL);
651 if (name[-1] != PROC_PID_CORENAME)
652 return (EINVAL);
653
654 /*
655 * whom are we tweaking?
656 */
657 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
658 if (error)
659 return (error);
660
661 /* XXX this should be in p_find() */
662 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
663 ptmp, NULL, NULL, NULL);
664 if (error)
665 return (error);
666
667 cname = PNBUF_GET();
668 /*
669 * let them modify a temporary copy of the core name
670 */
671 node = *rnode;
672 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
673 node.sysctl_data = cname;
674 error = sysctl_lookup(SYSCTLFN_CALL(&node));
675
676 /*
677 * if that failed, or they have nothing new to say, or we've
678 * heard it before...
679 */
680 if (error || newp == NULL ||
681 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
682 goto done;
683 }
684
685 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
686 ptmp, cname, NULL, NULL);
687 if (error)
688 return (error);
689
690 /*
691 * no error yet and cname now has the new core name in it.
692 * let's see if it looks acceptable. it must be either "core"
693 * or end in ".core" or "/core".
694 */
695 len = strlen(cname);
696 if (len < 4) {
697 error = EINVAL;
698 } else if (strcmp(cname + len - 4, "core") != 0) {
699 error = EINVAL;
700 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
701 error = EINVAL;
702 }
703 if (error != 0) {
704 goto done;
705 }
706
707 /*
708 * hmm...looks good. now...where do we put it?
709 */
710 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
711 if (tmp == NULL) {
712 error = ENOMEM;
713 goto done;
714 }
715 strlcpy(tmp, cname, len + 1);
716
717 lim = ptmp->p_limit;
718 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
719 ptmp->p_limit = limcopy(lim);
720 limfree(lim);
721 lim = ptmp->p_limit;
722 }
723 if (lim->pl_corename != defcorename)
724 free(lim->pl_corename, M_TEMP);
725 lim->pl_corename = tmp;
726 done:
727 PNBUF_PUT(cname);
728 return error;
729 }
730
731 /*
732 * sysctl helper routine for checking/setting a process's stop flags,
733 * one for fork and one for exec.
734 */
735 static int
736 sysctl_proc_stop(SYSCTLFN_ARGS)
737 {
738 struct proc *ptmp;
739 int i, f, error = 0;
740 struct sysctlnode node;
741
742 if (namelen != 0)
743 return (EINVAL);
744
745 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
746 if (error)
747 return (error);
748
749 /* XXX this should be in p_find() */
750 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
751 ptmp, NULL, NULL, NULL);
752 if (error)
753 return (error);
754
755 switch (rnode->sysctl_num) {
756 case PROC_PID_STOPFORK:
757 f = PS_STOPFORK;
758 break;
759 case PROC_PID_STOPEXEC:
760 f = PS_STOPEXEC;
761 break;
762 case PROC_PID_STOPEXIT:
763 f = PS_STOPEXIT;
764 break;
765 default:
766 return (EINVAL);
767 }
768
769 i = (ptmp->p_flag & f) ? 1 : 0;
770 node = *rnode;
771 node.sysctl_data = &i;
772 error = sysctl_lookup(SYSCTLFN_CALL(&node));
773 if (error || newp == NULL)
774 return (error);
775
776 mutex_enter(&ptmp->p_smutex);
777 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
778 ptmp, KAUTH_ARG(f), NULL, NULL);
779 if (error)
780 return (error);
781 if (i)
782 ptmp->p_sflag |= f;
783 else
784 ptmp->p_sflag &= ~f;
785 mutex_exit(&ptmp->p_smutex);
786
787 return (0);
788 }
789
790 /*
791 * sysctl helper routine for a process's rlimits as exposed by sysctl.
792 */
793 static int
794 sysctl_proc_plimit(SYSCTLFN_ARGS)
795 {
796 struct proc *ptmp;
797 u_int limitno;
798 int which, error = 0;
799 struct rlimit alim;
800 struct sysctlnode node;
801
802 if (namelen != 0)
803 return (EINVAL);
804
805 which = name[-1];
806 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
807 which != PROC_PID_LIMIT_TYPE_HARD)
808 return (EINVAL);
809
810 limitno = name[-2] - 1;
811 if (limitno >= RLIM_NLIMITS)
812 return (EINVAL);
813
814 if (name[-3] != PROC_PID_LIMIT)
815 return (EINVAL);
816
817 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
818 if (error)
819 return (error);
820
821 /* XXX this should be in p_find() */
822 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
823 ptmp, NULL, NULL, NULL);
824 if (error)
825 return (error);
826
827 node = *rnode;
828 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
829 if (which == PROC_PID_LIMIT_TYPE_HARD)
830 node.sysctl_data = &alim.rlim_max;
831 else
832 node.sysctl_data = &alim.rlim_cur;
833
834 error = sysctl_lookup(SYSCTLFN_CALL(&node));
835 if (error || newp == NULL)
836 return (error);
837
838 return (dosetrlimit(l, ptmp, limitno, &alim));
839 }
840
841 /*
842 * and finally, the actually glue that sticks it to the tree
843 */
844 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
845 {
846
847 sysctl_createv(clog, 0, NULL, NULL,
848 CTLFLAG_PERMANENT,
849 CTLTYPE_NODE, "proc", NULL,
850 NULL, 0, NULL, 0,
851 CTL_PROC, CTL_EOL);
852 sysctl_createv(clog, 0, NULL, NULL,
853 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
854 CTLTYPE_NODE, "curproc",
855 SYSCTL_DESCR("Per-process settings"),
856 NULL, 0, NULL, 0,
857 CTL_PROC, PROC_CURPROC, CTL_EOL);
858
859 sysctl_createv(clog, 0, NULL, NULL,
860 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
861 CTLTYPE_STRING, "corename",
862 SYSCTL_DESCR("Core file name"),
863 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
864 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
865 sysctl_createv(clog, 0, NULL, NULL,
866 CTLFLAG_PERMANENT,
867 CTLTYPE_NODE, "rlimit",
868 SYSCTL_DESCR("Process limits"),
869 NULL, 0, NULL, 0,
870 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
871
872 #define create_proc_plimit(s, n) do { \
873 sysctl_createv(clog, 0, NULL, NULL, \
874 CTLFLAG_PERMANENT, \
875 CTLTYPE_NODE, s, \
876 SYSCTL_DESCR("Process " s " limits"), \
877 NULL, 0, NULL, 0, \
878 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
879 CTL_EOL); \
880 sysctl_createv(clog, 0, NULL, NULL, \
881 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
882 CTLTYPE_QUAD, "soft", \
883 SYSCTL_DESCR("Process soft " s " limit"), \
884 sysctl_proc_plimit, 0, NULL, 0, \
885 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
886 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
887 sysctl_createv(clog, 0, NULL, NULL, \
888 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
889 CTLTYPE_QUAD, "hard", \
890 SYSCTL_DESCR("Process hard " s " limit"), \
891 sysctl_proc_plimit, 0, NULL, 0, \
892 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
893 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
894 } while (0/*CONSTCOND*/)
895
896 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
897 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
898 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
899 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
900 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
901 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
902 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
903 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
904 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
905 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
906
907 #undef create_proc_plimit
908
909 sysctl_createv(clog, 0, NULL, NULL,
910 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
911 CTLTYPE_INT, "stopfork",
912 SYSCTL_DESCR("Stop process at fork(2)"),
913 sysctl_proc_stop, 0, NULL, 0,
914 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
915 sysctl_createv(clog, 0, NULL, NULL,
916 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
917 CTLTYPE_INT, "stopexec",
918 SYSCTL_DESCR("Stop process at execve(2)"),
919 sysctl_proc_stop, 0, NULL, 0,
920 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
921 sysctl_createv(clog, 0, NULL, NULL,
922 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
923 CTLTYPE_INT, "stopexit",
924 SYSCTL_DESCR("Stop process before completing exit"),
925 sysctl_proc_stop, 0, NULL, 0,
926 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
927 }
928
929 struct uidinfo *
930 uid_find(uid_t uid)
931 {
932 struct uidinfo *uip;
933 struct uidinfo *newuip = NULL;
934 struct uihashhead *uipp;
935
936 uipp = UIHASH(uid);
937
938 again:
939 simple_lock(&uihashtbl_slock);
940 LIST_FOREACH(uip, uipp, ui_hash)
941 if (uip->ui_uid == uid) {
942 simple_unlock(&uihashtbl_slock);
943 if (newuip)
944 free(newuip, M_PROC);
945 return uip;
946 }
947
948 if (newuip == NULL) {
949 simple_unlock(&uihashtbl_slock);
950 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
951 goto again;
952 }
953 uip = newuip;
954
955 LIST_INSERT_HEAD(uipp, uip, ui_hash);
956 uip->ui_uid = uid;
957 simple_lock_init(&uip->ui_slock);
958 simple_unlock(&uihashtbl_slock);
959
960 return uip;
961 }
962
963 /*
964 * Change the count associated with number of processes
965 * a given user is using.
966 */
967 int
968 chgproccnt(uid_t uid, int diff)
969 {
970 struct uidinfo *uip;
971 int s;
972
973 if (diff == 0)
974 return 0;
975
976 uip = uid_find(uid);
977 UILOCK(uip, s);
978 uip->ui_proccnt += diff;
979 KASSERT(uip->ui_proccnt >= 0);
980 UIUNLOCK(uip, s);
981 return uip->ui_proccnt;
982 }
983
984 int
985 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
986 {
987 rlim_t nsb;
988 int s;
989
990 UILOCK(uip, s);
991 nsb = uip->ui_sbsize + to - *hiwat;
992 if (to > *hiwat && nsb > xmax) {
993 UIUNLOCK(uip, s);
994 splx(s);
995 return 0;
996 }
997 *hiwat = to;
998 uip->ui_sbsize = nsb;
999 KASSERT(uip->ui_sbsize >= 0);
1000 UIUNLOCK(uip, s);
1001 return 1;
1002 }
1003