kern_resource.c revision 1.103.4.9 1 /* $NetBSD: kern_resource.c,v 1.103.4.9 2007/01/30 13:51:41 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.103.4.9 2007/01/30 13:51:41 ad Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
69
70
71 /*
72 * Resource controls and accounting.
73 */
74
75 int
76 sys_getpriority(struct lwp *l, void *v, register_t *retval)
77 {
78 struct sys_getpriority_args /* {
79 syscallarg(int) which;
80 syscallarg(id_t) who;
81 } */ *uap = v;
82 struct proc *curp = l->l_proc, *p;
83 int low = NZERO + PRIO_MAX + 1;
84 int who = SCARG(uap, who);
85
86 switch (SCARG(uap, which)) {
87
88 case PRIO_PROCESS:
89 if (who == 0)
90 p = curp;
91 else
92 p = p_find(who, 0);
93 if (p != NULL)
94 low = p->p_nice;
95 if (who != 0)
96 rw_exit(&proclist_lock);
97 break;
98
99 case PRIO_PGRP: {
100 struct pgrp *pg;
101
102 rw_enter(&proclist_lock, RW_READER);
103 if (who == 0)
104 pg = curp->p_pgrp;
105 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL))
106 == NULL)
107 break;
108 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
109 if (p->p_nice < low)
110 low = p->p_nice;
111 }
112 rw_exit(&proclist_lock);
113 break;
114 }
115
116 case PRIO_USER:
117 if (who == 0)
118 who = (int)kauth_cred_geteuid(l->l_cred);
119 rw_enter(&proclist_lock, RW_READER);
120 PROCLIST_FOREACH(p, &allproc) {
121 mutex_enter(&p->p_mutex);
122 if (kauth_cred_geteuid(p->p_cred) ==
123 (uid_t)who && p->p_nice < low)
124 low = p->p_nice;
125 mutex_exit(&p->p_mutex);
126 }
127 rw_exit(&proclist_lock);
128 break;
129
130 default:
131 return (EINVAL);
132 }
133 if (low == NZERO + PRIO_MAX + 1)
134 return (ESRCH);
135 *retval = low - NZERO;
136 return (0);
137 }
138
139 /* ARGSUSED */
140 int
141 sys_setpriority(struct lwp *l, void *v, register_t *retval)
142 {
143 struct sys_setpriority_args /* {
144 syscallarg(int) which;
145 syscallarg(id_t) who;
146 syscallarg(int) prio;
147 } */ *uap = v;
148 struct proc *curp = l->l_proc, *p;
149 int found = 0, error = 0;
150 int who = SCARG(uap, who);
151
152 switch (SCARG(uap, which)) {
153
154 case PRIO_PROCESS:
155 if (who == 0)
156 p = curp;
157 else
158 p = p_find(who, 0);
159 if (p != 0) {
160 mutex_enter(&p->p_mutex);
161 error = donice(l, p, SCARG(uap, prio));
162 mutex_exit(&p->p_mutex);
163 }
164 if (who != 0)
165 rw_exit(&proclist_lock);
166 found++;
167 break;
168
169 case PRIO_PGRP: {
170 struct pgrp *pg;
171
172 rw_enter(&proclist_lock, RW_READER);
173 if (who == 0)
174 pg = curp->p_pgrp;
175 else if ((pg = pg_find(who, PFIND_LOCKED | PFIND_UNLOCK_FAIL)) == NULL)
176 break;
177 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
178 mutex_enter(&p->p_mutex);
179 error = donice(l, p, SCARG(uap, prio));
180 mutex_exit(&p->p_mutex);
181 found++;
182 }
183 rw_exit(&proclist_lock);
184 break;
185 }
186
187 case PRIO_USER:
188 if (who == 0)
189 who = (int)kauth_cred_geteuid(l->l_cred);
190 rw_enter(&proclist_lock, RW_READER);
191 PROCLIST_FOREACH(p, &allproc) {
192 mutex_enter(&p->p_mutex);
193 if (kauth_cred_geteuid(p->p_cred) ==
194 (uid_t)SCARG(uap, who)) {
195 error = donice(l, p, SCARG(uap, prio));
196 found++;
197 }
198 mutex_exit(&p->p_mutex);
199 }
200 rw_exit(&proclist_lock);
201 break;
202
203 default:
204 return (EINVAL);
205 }
206 if (found == 0)
207 return (ESRCH);
208 return (error);
209 }
210
211 /*
212 * Renice a process.
213 *
214 * Call with the target process' credentials locked.
215 */
216 int
217 donice(struct lwp *l, struct proc *chgp, int n)
218 {
219 kauth_cred_t cred = l->l_cred;
220 int onice;
221
222 LOCK_ASSERT(mutex_owned(&chgp->p_mutex));
223
224 if (n > PRIO_MAX)
225 n = PRIO_MAX;
226 if (n < PRIO_MIN)
227 n = PRIO_MIN;
228 n += NZERO;
229 onice = chgp->p_nice;
230
231 again:
232 if (kauth_authorize_process(cred, KAUTH_PROCESS_RESOURCE, chgp,
233 (void *)KAUTH_REQ_PROCESS_RESOURCE_NICE, KAUTH_ARG(n), NULL))
234 return (EACCES);
235 mutex_enter(&chgp->p_stmutex);
236 if (onice != chgp->p_nice) {
237 mutex_exit(&chgp->p_stmutex);
238 goto again;
239 }
240 chgp->p_nice = n;
241 (void)resetprocpriority(chgp);
242 mutex_exit(&chgp->p_stmutex);
243 return (0);
244 }
245
246 /* ARGSUSED */
247 int
248 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
249 {
250 struct sys_setrlimit_args /* {
251 syscallarg(int) which;
252 syscallarg(const struct rlimit *) rlp;
253 } */ *uap = v;
254 int which = SCARG(uap, which);
255 struct rlimit alim;
256 int error;
257
258 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
259 if (error)
260 return (error);
261 return (dosetrlimit(l, l->l_proc, which, &alim));
262 }
263
264 int
265 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
266 {
267 struct rlimit *alimp;
268 struct plimit *oldplim;
269 int error;
270
271 if ((u_int)which >= RLIM_NLIMITS)
272 return (EINVAL);
273
274 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
275 return (EINVAL);
276
277 alimp = &p->p_rlimit[which];
278 /* if we don't change the value, no need to limcopy() */
279 if (limp->rlim_cur == alimp->rlim_cur &&
280 limp->rlim_max == alimp->rlim_max)
281 return 0;
282
283 if (limp->rlim_cur > limp->rlim_max) {
284 /*
285 * This is programming error. According to SUSv2, we should
286 * return error in this case.
287 */
288 return (EINVAL);
289 }
290 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RESOURCE,
291 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RESOURCE_RLIMIT), limp,
292 KAUTH_ARG(which));
293 if (error)
294 return (error);
295
296 if (p->p_limit->p_refcnt > 1 &&
297 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
298 p->p_limit = limcopy(oldplim = p->p_limit);
299 limfree(oldplim);
300 alimp = &p->p_rlimit[which];
301 }
302
303 switch (which) {
304
305 case RLIMIT_DATA:
306 if (limp->rlim_cur > maxdmap)
307 limp->rlim_cur = maxdmap;
308 if (limp->rlim_max > maxdmap)
309 limp->rlim_max = maxdmap;
310 break;
311
312 case RLIMIT_STACK:
313 if (limp->rlim_cur > maxsmap)
314 limp->rlim_cur = maxsmap;
315 if (limp->rlim_max > maxsmap)
316 limp->rlim_max = maxsmap;
317
318 /*
319 * Return EINVAL if the new stack size limit is lower than
320 * current usage. Otherwise, the process would get SIGSEGV the
321 * moment it would try to access anything on it's current stack.
322 * This conforms to SUSv2.
323 */
324 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
325 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
326 return (EINVAL);
327
328 /*
329 * Stack is allocated to the max at exec time with
330 * only "rlim_cur" bytes accessible (In other words,
331 * allocates stack dividing two contiguous regions at
332 * "rlim_cur" bytes boundary).
333 *
334 * Since allocation is done in terms of page, roundup
335 * "rlim_cur" (otherwise, contiguous regions
336 * overlap). If stack limit is going up make more
337 * accessible, if going down make inaccessible.
338 */
339 limp->rlim_cur = round_page(limp->rlim_cur);
340 if (limp->rlim_cur != alimp->rlim_cur) {
341 vaddr_t addr;
342 vsize_t size;
343 vm_prot_t prot;
344
345 if (limp->rlim_cur > alimp->rlim_cur) {
346 prot = VM_PROT_READ | VM_PROT_WRITE;
347 size = limp->rlim_cur - alimp->rlim_cur;
348 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
349 limp->rlim_cur;
350 } else {
351 prot = VM_PROT_NONE;
352 size = alimp->rlim_cur - limp->rlim_cur;
353 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
354 alimp->rlim_cur;
355 }
356 (void) uvm_map_protect(&p->p_vmspace->vm_map,
357 addr, addr+size, prot, FALSE);
358 }
359 break;
360
361 case RLIMIT_NOFILE:
362 if (limp->rlim_cur > maxfiles)
363 limp->rlim_cur = maxfiles;
364 if (limp->rlim_max > maxfiles)
365 limp->rlim_max = maxfiles;
366 break;
367
368 case RLIMIT_NPROC:
369 if (limp->rlim_cur > maxproc)
370 limp->rlim_cur = maxproc;
371 if (limp->rlim_max > maxproc)
372 limp->rlim_max = maxproc;
373 break;
374 }
375 *alimp = *limp;
376 return (0);
377 }
378
379 /* ARGSUSED */
380 int
381 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
382 {
383 struct sys_getrlimit_args /* {
384 syscallarg(int) which;
385 syscallarg(struct rlimit *) rlp;
386 } */ *uap = v;
387 struct proc *p = l->l_proc;
388 int which = SCARG(uap, which);
389
390 if ((u_int)which >= RLIM_NLIMITS)
391 return (EINVAL);
392 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
393 sizeof(struct rlimit)));
394 }
395
396 /*
397 * Transform the running time and tick information in proc p into user,
398 * system, and interrupt time usage.
399 *
400 * Should be called with p->p_smutex held unless called from exit1().
401 */
402 void
403 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
404 struct timeval *ip, struct timeval *rp)
405 {
406 u_quad_t u, st, ut, it, tot;
407 unsigned long sec;
408 long usec;
409 struct timeval tv;
410 struct lwp *l;
411
412 mutex_enter(&p->p_stmutex);
413 st = p->p_sticks;
414 ut = p->p_uticks;
415 it = p->p_iticks;
416 mutex_exit(&p->p_stmutex);
417
418 sec = p->p_rtime.tv_sec;
419 usec = p->p_rtime.tv_usec;
420
421 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
422 lwp_lock(l);
423 sec += l->l_rtime.tv_sec;
424 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
425 sec++;
426 usec -= 1000000;
427 }
428 if (l->l_cpu == curcpu()) {
429 struct schedstate_percpu *spc;
430
431 KDASSERT(l->l_cpu != NULL);
432 spc = &l->l_cpu->ci_schedstate;
433
434 /*
435 * Adjust for the current time slice. This is
436 * actually fairly important since the error
437 * here is on the order of a time quantum,
438 * which is much greater than the sampling
439 * error.
440 */
441 microtime(&tv);
442 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
443 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
444 if (usec >= 1000000) {
445 sec++;
446 usec -= 1000000;
447 }
448 }
449 lwp_unlock(l);
450 }
451
452 tot = st + ut + it;
453 u = sec * 1000000ull + usec;
454
455 if (tot == 0) {
456 /* No ticks, so can't use to share time out, split 50-50 */
457 st = ut = u / 2;
458 } else {
459 st = (u * st) / tot;
460 ut = (u * ut) / tot;
461 }
462 if (sp != NULL) {
463 sp->tv_sec = st / 1000000;
464 sp->tv_usec = st % 1000000;
465 }
466 if (up != NULL) {
467 up->tv_sec = ut / 1000000;
468 up->tv_usec = ut % 1000000;
469 }
470 if (ip != NULL) {
471 if (it != 0)
472 it = (u * it) / tot;
473 ip->tv_sec = it / 1000000;
474 ip->tv_usec = it % 1000000;
475 }
476 if (rp != NULL) {
477 rp->tv_sec = sec;
478 rp->tv_usec = usec;
479 }
480 }
481
482 /* ARGSUSED */
483 int
484 sys_getrusage(struct lwp *l, void *v, register_t *retval)
485 {
486 struct sys_getrusage_args /* {
487 syscallarg(int) who;
488 syscallarg(struct rusage *) rusage;
489 } */ *uap = v;
490 struct rusage *rup;
491 struct proc *p = l->l_proc;
492
493 switch (SCARG(uap, who)) {
494
495 case RUSAGE_SELF:
496 rup = &p->p_stats->p_ru;
497 mutex_enter(&p->p_smutex);
498 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL, NULL);
499 mutex_exit(&p->p_smutex);
500 break;
501
502 case RUSAGE_CHILDREN:
503 rup = &p->p_stats->p_cru;
504 break;
505
506 default:
507 return (EINVAL);
508 }
509 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
510 }
511
512 void
513 ruadd(struct rusage *ru, struct rusage *ru2)
514 {
515 long *ip, *ip2;
516 int i;
517
518 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
519 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
520 if (ru->ru_maxrss < ru2->ru_maxrss)
521 ru->ru_maxrss = ru2->ru_maxrss;
522 ip = &ru->ru_first; ip2 = &ru2->ru_first;
523 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
524 *ip++ += *ip2++;
525 }
526
527 /*
528 * Make a copy of the plimit structure.
529 * We share these structures copy-on-write after fork,
530 * and copy when a limit is changed.
531 */
532 struct plimit *
533 limcopy(struct plimit *lim)
534 {
535 struct plimit *newlim;
536 size_t l = 0;
537
538 simple_lock(&lim->p_slock);
539 if (lim->pl_corename != defcorename)
540 l = strlen(lim->pl_corename) + 1;
541 simple_unlock(&lim->p_slock);
542
543 newlim = pool_get(&plimit_pool, PR_WAITOK);
544 simple_lock_init(&newlim->p_slock);
545 newlim->p_lflags = 0;
546 newlim->p_refcnt = 1;
547 newlim->pl_corename = (l != 0)
548 ? malloc(l, M_TEMP, M_WAITOK)
549 : defcorename;
550
551 simple_lock(&lim->p_slock);
552 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
553 sizeof(struct rlimit) * RLIM_NLIMITS);
554
555 if (l != 0)
556 strlcpy(newlim->pl_corename, lim->pl_corename, l);
557 simple_unlock(&lim->p_slock);
558
559 return (newlim);
560 }
561
562 void
563 limfree(struct plimit *lim)
564 {
565 int n;
566
567 simple_lock(&lim->p_slock);
568 n = --lim->p_refcnt;
569 simple_unlock(&lim->p_slock);
570 if (n > 0)
571 return;
572 #ifdef DIAGNOSTIC
573 if (n < 0)
574 panic("limfree");
575 #endif
576 if (lim->pl_corename != defcorename)
577 free(lim->pl_corename, M_TEMP);
578 pool_put(&plimit_pool, lim);
579 }
580
581 struct pstats *
582 pstatscopy(struct pstats *ps)
583 {
584
585 struct pstats *newps;
586
587 newps = pool_get(&pstats_pool, PR_WAITOK);
588
589 memset(&newps->pstat_startzero, 0,
590 (unsigned) ((caddr_t)&newps->pstat_endzero -
591 (caddr_t)&newps->pstat_startzero));
592 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
593 ((caddr_t)&newps->pstat_endcopy -
594 (caddr_t)&newps->pstat_startcopy));
595
596 return (newps);
597
598 }
599
600 void
601 pstatsfree(struct pstats *ps)
602 {
603
604 pool_put(&pstats_pool, ps);
605 }
606
607 /*
608 * sysctl interface in five parts
609 */
610
611 /*
612 * a routine for sysctl proc subtree helpers that need to pick a valid
613 * process by pid.
614 */
615 static int
616 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
617 {
618 struct proc *ptmp;
619 int error = 0;
620
621 if (pid == PROC_CURPROC)
622 ptmp = l->l_proc;
623 else if ((ptmp = pfind(pid)) == NULL)
624 error = ESRCH;
625
626 *p2 = ptmp;
627 return (error);
628 }
629
630 /*
631 * sysctl helper routine for setting a process's specific corefile
632 * name. picks the process based on the given pid and checks the
633 * correctness of the new value.
634 */
635 static int
636 sysctl_proc_corename(SYSCTLFN_ARGS)
637 {
638 struct proc *ptmp;
639 struct plimit *lim;
640 int error = 0, len;
641 char *cname;
642 char *tmp;
643 struct sysctlnode node;
644
645 /*
646 * is this all correct?
647 */
648 if (namelen != 0)
649 return (EINVAL);
650 if (name[-1] != PROC_PID_CORENAME)
651 return (EINVAL);
652
653 /*
654 * whom are we tweaking?
655 */
656 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
657 if (error)
658 return (error);
659
660 /* XXX this should be in p_find() */
661 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
662 ptmp, NULL, NULL, NULL);
663 if (error)
664 return (error);
665
666 cname = PNBUF_GET();
667 /*
668 * let them modify a temporary copy of the core name
669 */
670 node = *rnode;
671 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
672 node.sysctl_data = cname;
673 error = sysctl_lookup(SYSCTLFN_CALL(&node));
674
675 /*
676 * if that failed, or they have nothing new to say, or we've
677 * heard it before...
678 */
679 if (error || newp == NULL ||
680 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
681 goto done;
682 }
683
684 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
685 ptmp, cname, NULL, NULL);
686 if (error)
687 return (error);
688
689 /*
690 * no error yet and cname now has the new core name in it.
691 * let's see if it looks acceptable. it must be either "core"
692 * or end in ".core" or "/core".
693 */
694 len = strlen(cname);
695 if (len < 4) {
696 error = EINVAL;
697 } else if (strcmp(cname + len - 4, "core") != 0) {
698 error = EINVAL;
699 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
700 error = EINVAL;
701 }
702 if (error != 0) {
703 goto done;
704 }
705
706 /*
707 * hmm...looks good. now...where do we put it?
708 */
709 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
710 if (tmp == NULL) {
711 error = ENOMEM;
712 goto done;
713 }
714 strlcpy(tmp, cname, len + 1);
715
716 lim = ptmp->p_limit;
717 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
718 ptmp->p_limit = limcopy(lim);
719 limfree(lim);
720 lim = ptmp->p_limit;
721 }
722 if (lim->pl_corename != defcorename)
723 free(lim->pl_corename, M_TEMP);
724 lim->pl_corename = tmp;
725 done:
726 PNBUF_PUT(cname);
727 return error;
728 }
729
730 /*
731 * sysctl helper routine for checking/setting a process's stop flags,
732 * one for fork and one for exec.
733 */
734 static int
735 sysctl_proc_stop(SYSCTLFN_ARGS)
736 {
737 struct proc *ptmp;
738 int i, f, error = 0;
739 struct sysctlnode node;
740
741 if (namelen != 0)
742 return (EINVAL);
743
744 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
745 if (error)
746 return (error);
747
748 /* XXX this should be in p_find() */
749 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
750 ptmp, NULL, NULL, NULL);
751 if (error)
752 return (error);
753
754 switch (rnode->sysctl_num) {
755 case PROC_PID_STOPFORK:
756 f = PS_STOPFORK;
757 break;
758 case PROC_PID_STOPEXEC:
759 f = PS_STOPEXEC;
760 break;
761 case PROC_PID_STOPEXIT:
762 f = PS_STOPEXIT;
763 break;
764 default:
765 return (EINVAL);
766 }
767
768 i = (ptmp->p_flag & f) ? 1 : 0;
769 node = *rnode;
770 node.sysctl_data = &i;
771 error = sysctl_lookup(SYSCTLFN_CALL(&node));
772 if (error || newp == NULL)
773 return (error);
774
775 mutex_enter(&ptmp->p_smutex);
776 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
777 ptmp, KAUTH_ARG(f), NULL, NULL);
778 if (error)
779 return (error);
780 if (i)
781 ptmp->p_sflag |= f;
782 else
783 ptmp->p_sflag &= ~f;
784 mutex_exit(&ptmp->p_smutex);
785
786 return (0);
787 }
788
789 /*
790 * sysctl helper routine for a process's rlimits as exposed by sysctl.
791 */
792 static int
793 sysctl_proc_plimit(SYSCTLFN_ARGS)
794 {
795 struct proc *ptmp;
796 u_int limitno;
797 int which, error = 0;
798 struct rlimit alim;
799 struct sysctlnode node;
800
801 if (namelen != 0)
802 return (EINVAL);
803
804 which = name[-1];
805 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
806 which != PROC_PID_LIMIT_TYPE_HARD)
807 return (EINVAL);
808
809 limitno = name[-2] - 1;
810 if (limitno >= RLIM_NLIMITS)
811 return (EINVAL);
812
813 if (name[-3] != PROC_PID_LIMIT)
814 return (EINVAL);
815
816 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
817 if (error)
818 return (error);
819
820 /* XXX this should be in p_find() */
821 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
822 ptmp, NULL, NULL, NULL);
823 if (error)
824 return (error);
825
826 node = *rnode;
827 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
828 if (which == PROC_PID_LIMIT_TYPE_HARD)
829 node.sysctl_data = &alim.rlim_max;
830 else
831 node.sysctl_data = &alim.rlim_cur;
832
833 error = sysctl_lookup(SYSCTLFN_CALL(&node));
834 if (error || newp == NULL)
835 return (error);
836
837 return (dosetrlimit(l, ptmp, limitno, &alim));
838 }
839
840 /*
841 * and finally, the actually glue that sticks it to the tree
842 */
843 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
844 {
845
846 sysctl_createv(clog, 0, NULL, NULL,
847 CTLFLAG_PERMANENT,
848 CTLTYPE_NODE, "proc", NULL,
849 NULL, 0, NULL, 0,
850 CTL_PROC, CTL_EOL);
851 sysctl_createv(clog, 0, NULL, NULL,
852 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
853 CTLTYPE_NODE, "curproc",
854 SYSCTL_DESCR("Per-process settings"),
855 NULL, 0, NULL, 0,
856 CTL_PROC, PROC_CURPROC, CTL_EOL);
857
858 sysctl_createv(clog, 0, NULL, NULL,
859 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
860 CTLTYPE_STRING, "corename",
861 SYSCTL_DESCR("Core file name"),
862 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
863 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
864 sysctl_createv(clog, 0, NULL, NULL,
865 CTLFLAG_PERMANENT,
866 CTLTYPE_NODE, "rlimit",
867 SYSCTL_DESCR("Process limits"),
868 NULL, 0, NULL, 0,
869 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
870
871 #define create_proc_plimit(s, n) do { \
872 sysctl_createv(clog, 0, NULL, NULL, \
873 CTLFLAG_PERMANENT, \
874 CTLTYPE_NODE, s, \
875 SYSCTL_DESCR("Process " s " limits"), \
876 NULL, 0, NULL, 0, \
877 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
878 CTL_EOL); \
879 sysctl_createv(clog, 0, NULL, NULL, \
880 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
881 CTLTYPE_QUAD, "soft", \
882 SYSCTL_DESCR("Process soft " s " limit"), \
883 sysctl_proc_plimit, 0, NULL, 0, \
884 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
885 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
886 sysctl_createv(clog, 0, NULL, NULL, \
887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
888 CTLTYPE_QUAD, "hard", \
889 SYSCTL_DESCR("Process hard " s " limit"), \
890 sysctl_proc_plimit, 0, NULL, 0, \
891 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
892 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
893 } while (0/*CONSTCOND*/)
894
895 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
896 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
897 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
898 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
899 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
900 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
901 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
902 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
903 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
904 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
905
906 #undef create_proc_plimit
907
908 sysctl_createv(clog, 0, NULL, NULL,
909 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
910 CTLTYPE_INT, "stopfork",
911 SYSCTL_DESCR("Stop process at fork(2)"),
912 sysctl_proc_stop, 0, NULL, 0,
913 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
914 sysctl_createv(clog, 0, NULL, NULL,
915 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
916 CTLTYPE_INT, "stopexec",
917 SYSCTL_DESCR("Stop process at execve(2)"),
918 sysctl_proc_stop, 0, NULL, 0,
919 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
920 sysctl_createv(clog, 0, NULL, NULL,
921 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
922 CTLTYPE_INT, "stopexit",
923 SYSCTL_DESCR("Stop process before completing exit"),
924 sysctl_proc_stop, 0, NULL, 0,
925 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
926 }
927
928 struct uidinfo *
929 uid_find(uid_t uid)
930 {
931 struct uidinfo *uip;
932 struct uidinfo *newuip = NULL;
933 struct uihashhead *uipp;
934
935 uipp = UIHASH(uid);
936
937 again:
938 simple_lock(&uihashtbl_slock);
939 LIST_FOREACH(uip, uipp, ui_hash)
940 if (uip->ui_uid == uid) {
941 simple_unlock(&uihashtbl_slock);
942 if (newuip)
943 free(newuip, M_PROC);
944 return uip;
945 }
946
947 if (newuip == NULL) {
948 simple_unlock(&uihashtbl_slock);
949 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
950 goto again;
951 }
952 uip = newuip;
953
954 LIST_INSERT_HEAD(uipp, uip, ui_hash);
955 uip->ui_uid = uid;
956 simple_lock_init(&uip->ui_slock);
957 simple_unlock(&uihashtbl_slock);
958
959 return uip;
960 }
961
962 /*
963 * Change the count associated with number of processes
964 * a given user is using.
965 */
966 int
967 chgproccnt(uid_t uid, int diff)
968 {
969 struct uidinfo *uip;
970 int s;
971
972 if (diff == 0)
973 return 0;
974
975 uip = uid_find(uid);
976 UILOCK(uip, s);
977 uip->ui_proccnt += diff;
978 KASSERT(uip->ui_proccnt >= 0);
979 UIUNLOCK(uip, s);
980 return uip->ui_proccnt;
981 }
982
983 int
984 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
985 {
986 rlim_t nsb;
987 int s;
988
989 UILOCK(uip, s);
990 nsb = uip->ui_sbsize + to - *hiwat;
991 if (to > *hiwat && nsb > xmax) {
992 UIUNLOCK(uip, s);
993 splx(s);
994 return 0;
995 }
996 *hiwat = to;
997 uip->ui_sbsize = nsb;
998 KASSERT(uip->ui_sbsize >= 0);
999 UIUNLOCK(uip, s);
1000 return 1;
1001 }
1002