kern_resource.c revision 1.116.2.2 1 /* $NetBSD: kern_resource.c,v 1.116.2.2 2007/05/13 17:36:35 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.116.2.2 2007/05/13 17:36:35 ad Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 kmutex_t uihashtbl_lock;
69
70 /*
71 * Resource controls and accounting.
72 */
73
74 int
75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
76 {
77 struct sys_getpriority_args /* {
78 syscallarg(int) which;
79 syscallarg(id_t) who;
80 } */ *uap = v;
81 struct proc *curp = l->l_proc, *p;
82 int low = NZERO + PRIO_MAX + 1;
83 int who = SCARG(uap, who);
84
85 mutex_enter(&proclist_lock);
86 switch (SCARG(uap, which)) {
87 case PRIO_PROCESS:
88 if (who == 0)
89 p = curp;
90 else
91 p = p_find(who, PFIND_LOCKED);
92 if (p != NULL)
93 low = p->p_nice;
94 break;
95
96 case PRIO_PGRP: {
97 struct pgrp *pg;
98
99 if (who == 0)
100 pg = curp->p_pgrp;
101 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
102 break;
103 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
104 if (p->p_nice < low)
105 low = p->p_nice;
106 }
107 break;
108 }
109
110 case PRIO_USER:
111 if (who == 0)
112 who = (int)kauth_cred_geteuid(l->l_cred);
113 PROCLIST_FOREACH(p, &allproc) {
114 mutex_enter(&p->p_mutex);
115 if (kauth_cred_geteuid(p->p_cred) ==
116 (uid_t)who && p->p_nice < low)
117 low = p->p_nice;
118 mutex_exit(&p->p_mutex);
119 }
120 break;
121
122 default:
123 mutex_exit(&proclist_lock);
124 return (EINVAL);
125 }
126 mutex_exit(&proclist_lock);
127
128 if (low == NZERO + PRIO_MAX + 1)
129 return (ESRCH);
130 *retval = low - NZERO;
131 return (0);
132 }
133
134 /* ARGSUSED */
135 int
136 sys_setpriority(struct lwp *l, void *v, register_t *retval)
137 {
138 struct sys_setpriority_args /* {
139 syscallarg(int) which;
140 syscallarg(id_t) who;
141 syscallarg(int) prio;
142 } */ *uap = v;
143 struct proc *curp = l->l_proc, *p;
144 int found = 0, error = 0;
145 int who = SCARG(uap, who);
146
147 mutex_enter(&proclist_lock);
148 switch (SCARG(uap, which)) {
149 case PRIO_PROCESS:
150 if (who == 0)
151 p = curp;
152 else
153 p = p_find(who, PFIND_LOCKED);
154 if (p != 0) {
155 mutex_enter(&p->p_mutex);
156 error = donice(l, p, SCARG(uap, prio));
157 mutex_exit(&p->p_mutex);
158 }
159 found++;
160 break;
161
162 case PRIO_PGRP: {
163 struct pgrp *pg;
164
165 if (who == 0)
166 pg = curp->p_pgrp;
167 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
168 break;
169 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
170 mutex_enter(&p->p_mutex);
171 error = donice(l, p, SCARG(uap, prio));
172 mutex_exit(&p->p_mutex);
173 found++;
174 }
175 break;
176 }
177
178 case PRIO_USER:
179 if (who == 0)
180 who = (int)kauth_cred_geteuid(l->l_cred);
181 PROCLIST_FOREACH(p, &allproc) {
182 mutex_enter(&p->p_mutex);
183 if (kauth_cred_geteuid(p->p_cred) ==
184 (uid_t)SCARG(uap, who)) {
185 error = donice(l, p, SCARG(uap, prio));
186 found++;
187 }
188 mutex_exit(&p->p_mutex);
189 }
190 break;
191
192 default:
193 error = EINVAL;
194 break;
195 }
196 mutex_exit(&proclist_lock);
197 if (found == 0)
198 return (ESRCH);
199 return (error);
200 }
201
202 /*
203 * Renice a process.
204 *
205 * Call with the target process' credentials locked.
206 */
207 int
208 donice(struct lwp *l, struct proc *chgp, int n)
209 {
210 kauth_cred_t cred = l->l_cred;
211 int onice;
212
213 KASSERT(mutex_owned(&chgp->p_mutex));
214
215 if (n > PRIO_MAX)
216 n = PRIO_MAX;
217 if (n < PRIO_MIN)
218 n = PRIO_MIN;
219 n += NZERO;
220 onice = chgp->p_nice;
221 onice = chgp->p_nice;
222
223 again:
224 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
225 KAUTH_ARG(n), NULL, NULL))
226 return (EACCES);
227 mutex_spin_enter(&chgp->p_stmutex);
228 if (onice != chgp->p_nice) {
229 mutex_spin_exit(&chgp->p_stmutex);
230 goto again;
231 }
232 chgp->p_nice = n;
233 (void)resetprocpriority(chgp);
234 mutex_spin_exit(&chgp->p_stmutex);
235 return (0);
236 }
237
238 /* ARGSUSED */
239 int
240 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
241 {
242 struct sys_setrlimit_args /* {
243 syscallarg(int) which;
244 syscallarg(const struct rlimit *) rlp;
245 } */ *uap = v;
246 int which = SCARG(uap, which);
247 struct rlimit alim;
248 int error;
249
250 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
251 if (error)
252 return (error);
253 return (dosetrlimit(l, l->l_proc, which, &alim));
254 }
255
256 int
257 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
258 {
259 struct rlimit *alimp;
260 struct plimit *oldplim;
261 int error;
262
263 if ((u_int)which >= RLIM_NLIMITS)
264 return (EINVAL);
265
266 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
267 return (EINVAL);
268
269 alimp = &p->p_rlimit[which];
270 /* if we don't change the value, no need to limcopy() */
271 if (limp->rlim_cur == alimp->rlim_cur &&
272 limp->rlim_max == alimp->rlim_max)
273 return 0;
274
275 if (limp->rlim_cur > limp->rlim_max) {
276 /*
277 * This is programming error. According to SUSv2, we should
278 * return error in this case.
279 */
280 return (EINVAL);
281 }
282 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
283 p, limp, KAUTH_ARG(which), NULL);
284 if (error)
285 return (error);
286
287 mutex_enter(&p->p_mutex);
288 if (p->p_limit->p_refcnt > 1 &&
289 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
290 oldplim = p->p_limit;
291 p->p_limit = limcopy(p);
292 limfree(oldplim);
293 alimp = &p->p_rlimit[which];
294 }
295
296 switch (which) {
297
298 case RLIMIT_DATA:
299 if (limp->rlim_cur > maxdmap)
300 limp->rlim_cur = maxdmap;
301 if (limp->rlim_max > maxdmap)
302 limp->rlim_max = maxdmap;
303 break;
304
305 case RLIMIT_STACK:
306 if (limp->rlim_cur > maxsmap)
307 limp->rlim_cur = maxsmap;
308 if (limp->rlim_max > maxsmap)
309 limp->rlim_max = maxsmap;
310
311 /*
312 * Return EINVAL if the new stack size limit is lower than
313 * current usage. Otherwise, the process would get SIGSEGV the
314 * moment it would try to access anything on it's current stack.
315 * This conforms to SUSv2.
316 */
317 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
318 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
319 mutex_exit(&p->p_mutex);
320 return (EINVAL);
321 }
322
323 /*
324 * Stack is allocated to the max at exec time with
325 * only "rlim_cur" bytes accessible (In other words,
326 * allocates stack dividing two contiguous regions at
327 * "rlim_cur" bytes boundary).
328 *
329 * Since allocation is done in terms of page, roundup
330 * "rlim_cur" (otherwise, contiguous regions
331 * overlap). If stack limit is going up make more
332 * accessible, if going down make inaccessible.
333 */
334 limp->rlim_cur = round_page(limp->rlim_cur);
335 if (limp->rlim_cur != alimp->rlim_cur) {
336 vaddr_t addr;
337 vsize_t size;
338 vm_prot_t prot;
339
340 if (limp->rlim_cur > alimp->rlim_cur) {
341 prot = VM_PROT_READ | VM_PROT_WRITE;
342 size = limp->rlim_cur - alimp->rlim_cur;
343 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
344 limp->rlim_cur;
345 } else {
346 prot = VM_PROT_NONE;
347 size = alimp->rlim_cur - limp->rlim_cur;
348 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
349 alimp->rlim_cur;
350 }
351 (void) uvm_map_protect(&p->p_vmspace->vm_map,
352 addr, addr+size, prot, false);
353 }
354 break;
355
356 case RLIMIT_NOFILE:
357 if (limp->rlim_cur > maxfiles)
358 limp->rlim_cur = maxfiles;
359 if (limp->rlim_max > maxfiles)
360 limp->rlim_max = maxfiles;
361 break;
362
363 case RLIMIT_NPROC:
364 if (limp->rlim_cur > maxproc)
365 limp->rlim_cur = maxproc;
366 if (limp->rlim_max > maxproc)
367 limp->rlim_max = maxproc;
368 break;
369 }
370 *alimp = *limp;
371 mutex_exit(&p->p_mutex);
372 return (0);
373 }
374
375 /* ARGSUSED */
376 int
377 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
378 {
379 struct sys_getrlimit_args /* {
380 syscallarg(int) which;
381 syscallarg(struct rlimit *) rlp;
382 } */ *uap = v;
383 struct proc *p = l->l_proc;
384 int which = SCARG(uap, which);
385
386 if ((u_int)which >= RLIM_NLIMITS)
387 return (EINVAL);
388 return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
389 sizeof(struct rlimit)));
390 }
391
392 /*
393 * Transform the running time and tick information in proc p into user,
394 * system, and interrupt time usage.
395 *
396 * Should be called with p->p_smutex held unless called from exit1().
397 */
398 void
399 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
400 struct timeval *ip, struct timeval *rp)
401 {
402 u_quad_t u, st, ut, it, tot;
403 unsigned long sec;
404 long usec;
405 struct timeval tv;
406 struct lwp *l;
407
408 mutex_spin_enter(&p->p_stmutex);
409 st = p->p_sticks;
410 ut = p->p_uticks;
411 it = p->p_iticks;
412 mutex_spin_exit(&p->p_stmutex);
413
414 sec = p->p_rtime.tv_sec;
415 usec = p->p_rtime.tv_usec;
416
417 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
418 lwp_lock(l);
419 sec += l->l_rtime.tv_sec;
420 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
421 sec++;
422 usec -= 1000000;
423 }
424 if (l->l_cpu == curcpu()) {
425 struct schedstate_percpu *spc;
426
427 KDASSERT(l->l_cpu != NULL);
428 spc = &l->l_cpu->ci_schedstate;
429
430 /*
431 * Adjust for the current time slice. This is
432 * actually fairly important since the error
433 * here is on the order of a time quantum,
434 * which is much greater than the sampling
435 * error.
436 */
437 microtime(&tv);
438 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
439 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
440 if (usec >= 1000000) {
441 sec++;
442 usec -= 1000000;
443 }
444 }
445 lwp_unlock(l);
446 }
447
448 tot = st + ut + it;
449 u = sec * 1000000ull + usec;
450
451 if (tot == 0) {
452 /* No ticks, so can't use to share time out, split 50-50 */
453 st = ut = u / 2;
454 } else {
455 st = (u * st) / tot;
456 ut = (u * ut) / tot;
457 }
458 if (sp != NULL) {
459 sp->tv_sec = st / 1000000;
460 sp->tv_usec = st % 1000000;
461 }
462 if (up != NULL) {
463 up->tv_sec = ut / 1000000;
464 up->tv_usec = ut % 1000000;
465 }
466 if (ip != NULL) {
467 if (it != 0)
468 it = (u * it) / tot;
469 ip->tv_sec = it / 1000000;
470 ip->tv_usec = it % 1000000;
471 }
472 if (rp != NULL) {
473 rp->tv_sec = sec;
474 rp->tv_usec = usec;
475 }
476 }
477
478 /* ARGSUSED */
479 int
480 sys_getrusage(struct lwp *l, void *v, register_t *retval)
481 {
482 struct sys_getrusage_args /* {
483 syscallarg(int) who;
484 syscallarg(struct rusage *) rusage;
485 } */ *uap = v;
486 struct rusage *rup;
487 struct proc *p = l->l_proc;
488
489 switch (SCARG(uap, who)) {
490
491 case RUSAGE_SELF:
492 rup = &p->p_stats->p_ru;
493 mutex_enter(&p->p_smutex);
494 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL, NULL);
495 mutex_exit(&p->p_smutex);
496 break;
497
498 case RUSAGE_CHILDREN:
499 rup = &p->p_stats->p_cru;
500 break;
501
502 default:
503 return (EINVAL);
504 }
505 return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
506 }
507
508 void
509 ruadd(struct rusage *ru, struct rusage *ru2)
510 {
511 long *ip, *ip2;
512 int i;
513
514 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
515 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
516 if (ru->ru_maxrss < ru2->ru_maxrss)
517 ru->ru_maxrss = ru2->ru_maxrss;
518 ip = &ru->ru_first; ip2 = &ru2->ru_first;
519 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
520 *ip++ += *ip2++;
521 }
522
523 /*
524 * Make a copy of the plimit structure.
525 * We share these structures copy-on-write after fork,
526 * and copy when a limit is changed.
527 *
528 * XXXSMP This is atrocious, need to simplify.
529 */
530 struct plimit *
531 limcopy(struct proc *p)
532 {
533 struct plimit *lim, *newlim;
534 char *corename;
535 size_t l;
536
537 KASSERT(mutex_owned(&p->p_mutex));
538
539 mutex_exit(&p->p_mutex);
540 newlim = pool_get(&plimit_pool, PR_WAITOK);
541 mutex_init(&newlim->p_lock, MUTEX_DEFAULT, IPL_NONE);
542 newlim->p_lflags = 0;
543 newlim->p_refcnt = 1;
544 mutex_enter(&p->p_mutex);
545
546 for (;;) {
547 lim = p->p_limit;
548 mutex_enter(&lim->p_lock);
549 if (lim->pl_corename != defcorename) {
550 l = strlen(lim->pl_corename) + 1;
551
552 mutex_exit(&lim->p_lock);
553 mutex_exit(&p->p_mutex);
554 corename = malloc(l, M_TEMP, M_WAITOK);
555 mutex_enter(&p->p_mutex);
556 mutex_enter(&lim->p_lock);
557
558 if (l != strlen(lim->pl_corename) + 1) {
559 mutex_exit(&lim->p_lock);
560 mutex_exit(&p->p_mutex);
561 free(corename, M_TEMP);
562 mutex_enter(&p->p_mutex);
563 continue;
564 }
565 } else
566 l = 0;
567
568 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
569 sizeof(struct rlimit) * RLIM_NLIMITS);
570 if (l != 0)
571 strlcpy(newlim->pl_corename, lim->pl_corename, l);
572 else
573 newlim->pl_corename = defcorename;
574 mutex_exit(&lim->p_lock);
575 break;
576 }
577
578 return (newlim);
579 }
580
581 void
582 limfree(struct plimit *lim)
583 {
584 int n;
585
586 mutex_enter(&lim->p_lock);
587 n = --lim->p_refcnt;
588 mutex_exit(&lim->p_lock);
589 if (n > 0)
590 return;
591 #ifdef DIAGNOSTIC
592 if (n < 0)
593 panic("limfree");
594 #endif
595 if (lim->pl_corename != defcorename)
596 free(lim->pl_corename, M_TEMP);
597 mutex_destroy(&lim->p_lock);
598 pool_put(&plimit_pool, lim);
599 }
600
601 struct pstats *
602 pstatscopy(struct pstats *ps)
603 {
604
605 struct pstats *newps;
606
607 newps = pool_get(&pstats_pool, PR_WAITOK);
608
609 memset(&newps->pstat_startzero, 0,
610 (unsigned) ((char *)&newps->pstat_endzero -
611 (char *)&newps->pstat_startzero));
612 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
613 ((char *)&newps->pstat_endcopy -
614 (char *)&newps->pstat_startcopy));
615
616 return (newps);
617
618 }
619
620 void
621 pstatsfree(struct pstats *ps)
622 {
623
624 pool_put(&pstats_pool, ps);
625 }
626
627 /*
628 * sysctl interface in five parts
629 */
630
631 /*
632 * a routine for sysctl proc subtree helpers that need to pick a valid
633 * process by pid.
634 */
635 static int
636 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
637 {
638 struct proc *ptmp;
639 int error = 0;
640
641 if (pid == PROC_CURPROC)
642 ptmp = l->l_proc;
643 else if ((ptmp = pfind(pid)) == NULL)
644 error = ESRCH;
645
646 *p2 = ptmp;
647 return (error);
648 }
649
650 /*
651 * sysctl helper routine for setting a process's specific corefile
652 * name. picks the process based on the given pid and checks the
653 * correctness of the new value.
654 */
655 static int
656 sysctl_proc_corename(SYSCTLFN_ARGS)
657 {
658 struct proc *ptmp;
659 struct plimit *lim;
660 int error = 0, len;
661 char *cname;
662 char *tmp;
663 struct sysctlnode node;
664
665 /*
666 * is this all correct?
667 */
668 if (namelen != 0)
669 return (EINVAL);
670 if (name[-1] != PROC_PID_CORENAME)
671 return (EINVAL);
672
673 /*
674 * whom are we tweaking?
675 */
676 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
677 if (error)
678 return (error);
679
680 /* XXX this should be in p_find() */
681 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
682 ptmp, NULL, NULL, NULL);
683 if (error)
684 return (error);
685
686 cname = PNBUF_GET();
687 /*
688 * let them modify a temporary copy of the core name
689 */
690 node = *rnode;
691 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
692 node.sysctl_data = cname;
693 error = sysctl_lookup(SYSCTLFN_CALL(&node));
694
695 /*
696 * if that failed, or they have nothing new to say, or we've
697 * heard it before...
698 */
699 if (error || newp == NULL ||
700 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
701 goto done;
702 }
703
704 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
705 ptmp, cname, NULL, NULL);
706 if (error)
707 return (error);
708
709 /*
710 * no error yet and cname now has the new core name in it.
711 * let's see if it looks acceptable. it must be either "core"
712 * or end in ".core" or "/core".
713 */
714 len = strlen(cname);
715 if (len < 4) {
716 error = EINVAL;
717 } else if (strcmp(cname + len - 4, "core") != 0) {
718 error = EINVAL;
719 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
720 error = EINVAL;
721 }
722 if (error != 0) {
723 goto done;
724 }
725
726 /*
727 * hmm...looks good. now...where do we put it?
728 */
729 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
730 if (tmp == NULL) {
731 error = ENOMEM;
732 goto done;
733 }
734 strlcpy(tmp, cname, len + 1);
735
736 mutex_enter(&ptmp->p_mutex);
737 lim = ptmp->p_limit;
738 if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
739 ptmp->p_limit = limcopy(ptmp);
740 limfree(lim);
741 lim = ptmp->p_limit;
742 }
743 if (lim->pl_corename != defcorename)
744 free(lim->pl_corename, M_TEMP);
745 lim->pl_corename = tmp;
746 mutex_exit(&ptmp->p_mutex);
747 done:
748 PNBUF_PUT(cname);
749 return error;
750 }
751
752 /*
753 * sysctl helper routine for checking/setting a process's stop flags,
754 * one for fork and one for exec.
755 */
756 static int
757 sysctl_proc_stop(SYSCTLFN_ARGS)
758 {
759 struct proc *ptmp;
760 int i, f, error = 0;
761 struct sysctlnode node;
762
763 if (namelen != 0)
764 return (EINVAL);
765
766 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
767 if (error)
768 return (error);
769
770 /* XXX this should be in p_find() */
771 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
772 ptmp, NULL, NULL, NULL);
773 if (error)
774 return (error);
775
776 switch (rnode->sysctl_num) {
777 case PROC_PID_STOPFORK:
778 f = PS_STOPFORK;
779 break;
780 case PROC_PID_STOPEXEC:
781 f = PS_STOPEXEC;
782 break;
783 case PROC_PID_STOPEXIT:
784 f = PS_STOPEXIT;
785 break;
786 default:
787 return (EINVAL);
788 }
789
790 i = (ptmp->p_flag & f) ? 1 : 0;
791 node = *rnode;
792 node.sysctl_data = &i;
793 error = sysctl_lookup(SYSCTLFN_CALL(&node));
794 if (error || newp == NULL)
795 return (error);
796
797 mutex_enter(&ptmp->p_smutex);
798 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
799 ptmp, KAUTH_ARG(f), NULL, NULL);
800 if (error)
801 return (error);
802 if (i)
803 ptmp->p_sflag |= f;
804 else
805 ptmp->p_sflag &= ~f;
806 mutex_exit(&ptmp->p_smutex);
807
808 return (0);
809 }
810
811 /*
812 * sysctl helper routine for a process's rlimits as exposed by sysctl.
813 */
814 static int
815 sysctl_proc_plimit(SYSCTLFN_ARGS)
816 {
817 struct proc *ptmp;
818 u_int limitno;
819 int which, error = 0;
820 struct rlimit alim;
821 struct sysctlnode node;
822
823 if (namelen != 0)
824 return (EINVAL);
825
826 which = name[-1];
827 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
828 which != PROC_PID_LIMIT_TYPE_HARD)
829 return (EINVAL);
830
831 limitno = name[-2] - 1;
832 if (limitno >= RLIM_NLIMITS)
833 return (EINVAL);
834
835 if (name[-3] != PROC_PID_LIMIT)
836 return (EINVAL);
837
838 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
839 if (error)
840 return (error);
841
842 /* XXX this should be in p_find() */
843 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
844 ptmp, NULL, NULL, NULL);
845 if (error)
846 return (error);
847
848 node = *rnode;
849 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
850 if (which == PROC_PID_LIMIT_TYPE_HARD)
851 node.sysctl_data = &alim.rlim_max;
852 else
853 node.sysctl_data = &alim.rlim_cur;
854
855 error = sysctl_lookup(SYSCTLFN_CALL(&node));
856 if (error || newp == NULL)
857 return (error);
858
859 return (dosetrlimit(l, ptmp, limitno, &alim));
860 }
861
862 /*
863 * and finally, the actually glue that sticks it to the tree
864 */
865 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
866 {
867
868 sysctl_createv(clog, 0, NULL, NULL,
869 CTLFLAG_PERMANENT,
870 CTLTYPE_NODE, "proc", NULL,
871 NULL, 0, NULL, 0,
872 CTL_PROC, CTL_EOL);
873 sysctl_createv(clog, 0, NULL, NULL,
874 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
875 CTLTYPE_NODE, "curproc",
876 SYSCTL_DESCR("Per-process settings"),
877 NULL, 0, NULL, 0,
878 CTL_PROC, PROC_CURPROC, CTL_EOL);
879
880 sysctl_createv(clog, 0, NULL, NULL,
881 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
882 CTLTYPE_STRING, "corename",
883 SYSCTL_DESCR("Core file name"),
884 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
885 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
886 sysctl_createv(clog, 0, NULL, NULL,
887 CTLFLAG_PERMANENT,
888 CTLTYPE_NODE, "rlimit",
889 SYSCTL_DESCR("Process limits"),
890 NULL, 0, NULL, 0,
891 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
892
893 #define create_proc_plimit(s, n) do { \
894 sysctl_createv(clog, 0, NULL, NULL, \
895 CTLFLAG_PERMANENT, \
896 CTLTYPE_NODE, s, \
897 SYSCTL_DESCR("Process " s " limits"), \
898 NULL, 0, NULL, 0, \
899 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
900 CTL_EOL); \
901 sysctl_createv(clog, 0, NULL, NULL, \
902 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
903 CTLTYPE_QUAD, "soft", \
904 SYSCTL_DESCR("Process soft " s " limit"), \
905 sysctl_proc_plimit, 0, NULL, 0, \
906 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
907 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
908 sysctl_createv(clog, 0, NULL, NULL, \
909 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
910 CTLTYPE_QUAD, "hard", \
911 SYSCTL_DESCR("Process hard " s " limit"), \
912 sysctl_proc_plimit, 0, NULL, 0, \
913 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
914 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
915 } while (0/*CONSTCOND*/)
916
917 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
918 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
919 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
920 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
921 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
922 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
923 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
924 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
925 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
926 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
927
928 #undef create_proc_plimit
929
930 sysctl_createv(clog, 0, NULL, NULL,
931 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
932 CTLTYPE_INT, "stopfork",
933 SYSCTL_DESCR("Stop process at fork(2)"),
934 sysctl_proc_stop, 0, NULL, 0,
935 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
936 sysctl_createv(clog, 0, NULL, NULL,
937 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
938 CTLTYPE_INT, "stopexec",
939 SYSCTL_DESCR("Stop process at execve(2)"),
940 sysctl_proc_stop, 0, NULL, 0,
941 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
942 sysctl_createv(clog, 0, NULL, NULL,
943 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
944 CTLTYPE_INT, "stopexit",
945 SYSCTL_DESCR("Stop process before completing exit"),
946 sysctl_proc_stop, 0, NULL, 0,
947 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
948 }
949
950 void
951 uid_init(void)
952 {
953
954 /*
955 * XXXSMP This could be at IPL_SOFTNET, but for now we want
956 * to to be deadlock free, so it must be at IPL_VM.
957 */
958 mutex_init(&uihashtbl_lock, MUTEX_DRIVER, IPL_VM);
959
960 /*
961 * Ensure that uid 0 is always in the user hash table, as
962 * sbreserve() expects it available from interrupt context.
963 */
964 (void)uid_find(0);
965 }
966
967 struct uidinfo *
968 uid_find(uid_t uid)
969 {
970 struct uidinfo *uip;
971 struct uidinfo *newuip = NULL;
972 struct uihashhead *uipp;
973
974 uipp = UIHASH(uid);
975
976 again:
977 mutex_enter(&uihashtbl_lock);
978 LIST_FOREACH(uip, uipp, ui_hash)
979 if (uip->ui_uid == uid) {
980 mutex_exit(&uihashtbl_lock);
981 if (newuip) {
982 free(newuip, M_PROC);
983 mutex_destroy(&newuip->ui_lock);
984 }
985 return uip;
986 }
987 if (newuip == NULL) {
988 mutex_exit(&uihashtbl_lock);
989 /* Must not be called from interrupt context. */
990 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
991 mutex_init(&newuip->ui_lock, MUTEX_DRIVER, IPL_SOFTNET);
992 goto again;
993 }
994 uip = newuip;
995
996 LIST_INSERT_HEAD(uipp, uip, ui_hash);
997 uip->ui_uid = uid;
998 mutex_exit(&uihashtbl_lock);
999
1000 return uip;
1001 }
1002
1003 /*
1004 * Change the count associated with number of processes
1005 * a given user is using.
1006 */
1007 int
1008 chgproccnt(uid_t uid, int diff)
1009 {
1010 struct uidinfo *uip;
1011
1012 if (diff == 0)
1013 return 0;
1014
1015 uip = uid_find(uid);
1016 mutex_enter(&uip->ui_lock);
1017 uip->ui_proccnt += diff;
1018 KASSERT(uip->ui_proccnt >= 0);
1019 mutex_exit(&uip->ui_lock);
1020 return uip->ui_proccnt;
1021 }
1022
1023 int
1024 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1025 {
1026 rlim_t nsb;
1027
1028 mutex_enter(&uip->ui_lock);
1029 nsb = uip->ui_sbsize + to - *hiwat;
1030 if (to > *hiwat && nsb > xmax) {
1031 mutex_exit(&uip->ui_lock);
1032 return 0;
1033 }
1034 *hiwat = to;
1035 uip->ui_sbsize = nsb;
1036 KASSERT(uip->ui_sbsize >= 0);
1037 mutex_exit(&uip->ui_lock);
1038 return 1;
1039 }
1040