kern_resource.c revision 1.118.6.5 1 /* $NetBSD: kern_resource.c,v 1.118.6.5 2007/12/03 16:14:51 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.118.6.5 2007/12/03 16:14:51 joerg Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53 #include <sys/atomic.h>
54 #include <sys/mount.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 kmutex_t uihashtbl_lock;
69
70 /*
71 * Resource controls and accounting.
72 */
73
74 int
75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
76 {
77 struct sys_getpriority_args /* {
78 syscallarg(int) which;
79 syscallarg(id_t) who;
80 } */ *uap = v;
81 struct proc *curp = l->l_proc, *p;
82 int low = NZERO + PRIO_MAX + 1;
83 int who = SCARG(uap, who);
84
85 mutex_enter(&proclist_lock);
86 switch (SCARG(uap, which)) {
87 case PRIO_PROCESS:
88 if (who == 0)
89 p = curp;
90 else
91 p = p_find(who, PFIND_LOCKED);
92 if (p != NULL)
93 low = p->p_nice;
94 break;
95
96 case PRIO_PGRP: {
97 struct pgrp *pg;
98
99 if (who == 0)
100 pg = curp->p_pgrp;
101 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
102 break;
103 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
104 if (p->p_nice < low)
105 low = p->p_nice;
106 }
107 break;
108 }
109
110 case PRIO_USER:
111 if (who == 0)
112 who = (int)kauth_cred_geteuid(l->l_cred);
113 PROCLIST_FOREACH(p, &allproc) {
114 mutex_enter(&p->p_mutex);
115 if (kauth_cred_geteuid(p->p_cred) ==
116 (uid_t)who && p->p_nice < low)
117 low = p->p_nice;
118 mutex_exit(&p->p_mutex);
119 }
120 break;
121
122 default:
123 mutex_exit(&proclist_lock);
124 return (EINVAL);
125 }
126 mutex_exit(&proclist_lock);
127
128 if (low == NZERO + PRIO_MAX + 1)
129 return (ESRCH);
130 *retval = low - NZERO;
131 return (0);
132 }
133
134 /* ARGSUSED */
135 int
136 sys_setpriority(struct lwp *l, void *v, register_t *retval)
137 {
138 struct sys_setpriority_args /* {
139 syscallarg(int) which;
140 syscallarg(id_t) who;
141 syscallarg(int) prio;
142 } */ *uap = v;
143 struct proc *curp = l->l_proc, *p;
144 int found = 0, error = 0;
145 int who = SCARG(uap, who);
146
147 mutex_enter(&proclist_lock);
148 switch (SCARG(uap, which)) {
149 case PRIO_PROCESS:
150 if (who == 0)
151 p = curp;
152 else
153 p = p_find(who, PFIND_LOCKED);
154 if (p != 0) {
155 mutex_enter(&p->p_mutex);
156 error = donice(l, p, SCARG(uap, prio));
157 mutex_exit(&p->p_mutex);
158 }
159 found++;
160 break;
161
162 case PRIO_PGRP: {
163 struct pgrp *pg;
164
165 if (who == 0)
166 pg = curp->p_pgrp;
167 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
168 break;
169 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
170 mutex_enter(&p->p_mutex);
171 error = donice(l, p, SCARG(uap, prio));
172 mutex_exit(&p->p_mutex);
173 found++;
174 }
175 break;
176 }
177
178 case PRIO_USER:
179 if (who == 0)
180 who = (int)kauth_cred_geteuid(l->l_cred);
181 PROCLIST_FOREACH(p, &allproc) {
182 mutex_enter(&p->p_mutex);
183 if (kauth_cred_geteuid(p->p_cred) ==
184 (uid_t)SCARG(uap, who)) {
185 error = donice(l, p, SCARG(uap, prio));
186 found++;
187 }
188 mutex_exit(&p->p_mutex);
189 }
190 break;
191
192 default:
193 error = EINVAL;
194 break;
195 }
196 mutex_exit(&proclist_lock);
197 if (found == 0)
198 return (ESRCH);
199 return (error);
200 }
201
202 /*
203 * Renice a process.
204 *
205 * Call with the target process' credentials locked.
206 */
207 int
208 donice(struct lwp *l, struct proc *chgp, int n)
209 {
210 kauth_cred_t cred = l->l_cred;
211 int onice;
212
213 KASSERT(mutex_owned(&chgp->p_mutex));
214
215 if (n > PRIO_MAX)
216 n = PRIO_MAX;
217 if (n < PRIO_MIN)
218 n = PRIO_MIN;
219 n += NZERO;
220 onice = chgp->p_nice;
221 onice = chgp->p_nice;
222
223 again:
224 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
225 KAUTH_ARG(n), NULL, NULL))
226 return (EACCES);
227 mutex_spin_enter(&chgp->p_smutex);
228 if (onice != chgp->p_nice) {
229 mutex_spin_exit(&chgp->p_smutex);
230 goto again;
231 }
232 sched_nice(chgp, n);
233 mutex_spin_exit(&chgp->p_smutex);
234 return (0);
235 }
236
237 /* ARGSUSED */
238 int
239 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
240 {
241 struct sys_setrlimit_args /* {
242 syscallarg(int) which;
243 syscallarg(const struct rlimit *) rlp;
244 } */ *uap = v;
245 int which = SCARG(uap, which);
246 struct rlimit alim;
247 int error;
248
249 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
250 if (error)
251 return (error);
252 return (dosetrlimit(l, l->l_proc, which, &alim));
253 }
254
255 int
256 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
257 {
258 struct rlimit *alimp;
259 int error;
260
261 if ((u_int)which >= RLIM_NLIMITS)
262 return (EINVAL);
263
264 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
265 return (EINVAL);
266
267 if (limp->rlim_cur > limp->rlim_max) {
268 /*
269 * This is programming error. According to SUSv2, we should
270 * return error in this case.
271 */
272 return (EINVAL);
273 }
274
275 alimp = &p->p_rlimit[which];
276 /* if we don't change the value, no need to limcopy() */
277 if (limp->rlim_cur == alimp->rlim_cur &&
278 limp->rlim_max == alimp->rlim_max)
279 return 0;
280
281 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
282 p, limp, KAUTH_ARG(which), NULL);
283 if (error)
284 return (error);
285
286 lim_privatise(p, false);
287 /* p->p_limit is now unchangeable */
288 alimp = &p->p_rlimit[which];
289
290 switch (which) {
291
292 case RLIMIT_DATA:
293 if (limp->rlim_cur > maxdmap)
294 limp->rlim_cur = maxdmap;
295 if (limp->rlim_max > maxdmap)
296 limp->rlim_max = maxdmap;
297 break;
298
299 case RLIMIT_STACK:
300 if (limp->rlim_cur > maxsmap)
301 limp->rlim_cur = maxsmap;
302 if (limp->rlim_max > maxsmap)
303 limp->rlim_max = maxsmap;
304
305 /*
306 * Return EINVAL if the new stack size limit is lower than
307 * current usage. Otherwise, the process would get SIGSEGV the
308 * moment it would try to access anything on it's current stack.
309 * This conforms to SUSv2.
310 */
311 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
312 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
313 return (EINVAL);
314 }
315
316 /*
317 * Stack is allocated to the max at exec time with
318 * only "rlim_cur" bytes accessible (In other words,
319 * allocates stack dividing two contiguous regions at
320 * "rlim_cur" bytes boundary).
321 *
322 * Since allocation is done in terms of page, roundup
323 * "rlim_cur" (otherwise, contiguous regions
324 * overlap). If stack limit is going up make more
325 * accessible, if going down make inaccessible.
326 */
327 limp->rlim_cur = round_page(limp->rlim_cur);
328 if (limp->rlim_cur != alimp->rlim_cur) {
329 vaddr_t addr;
330 vsize_t size;
331 vm_prot_t prot;
332
333 if (limp->rlim_cur > alimp->rlim_cur) {
334 prot = VM_PROT_READ | VM_PROT_WRITE;
335 size = limp->rlim_cur - alimp->rlim_cur;
336 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
337 limp->rlim_cur;
338 } else {
339 prot = VM_PROT_NONE;
340 size = alimp->rlim_cur - limp->rlim_cur;
341 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
342 alimp->rlim_cur;
343 }
344 (void) uvm_map_protect(&p->p_vmspace->vm_map,
345 addr, addr+size, prot, false);
346 }
347 break;
348
349 case RLIMIT_NOFILE:
350 if (limp->rlim_cur > maxfiles)
351 limp->rlim_cur = maxfiles;
352 if (limp->rlim_max > maxfiles)
353 limp->rlim_max = maxfiles;
354 break;
355
356 case RLIMIT_NPROC:
357 if (limp->rlim_cur > maxproc)
358 limp->rlim_cur = maxproc;
359 if (limp->rlim_max > maxproc)
360 limp->rlim_max = maxproc;
361 break;
362 }
363
364 mutex_enter(&p->p_limit->pl_lock);
365 *alimp = *limp;
366 mutex_exit(&p->p_limit->pl_lock);
367 return (0);
368 }
369
370 /* ARGSUSED */
371 int
372 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
373 {
374 struct sys_getrlimit_args /* {
375 syscallarg(int) which;
376 syscallarg(struct rlimit *) rlp;
377 } */ *uap = v;
378 struct proc *p = l->l_proc;
379 int which = SCARG(uap, which);
380 struct rlimit rl;
381
382 if ((u_int)which >= RLIM_NLIMITS)
383 return (EINVAL);
384
385 mutex_enter(&p->p_mutex);
386 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
387 mutex_exit(&p->p_mutex);
388
389 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
390 }
391
392 /*
393 * Transform the running time and tick information in proc p into user,
394 * system, and interrupt time usage.
395 *
396 * Should be called with p->p_smutex held unless called from exit1().
397 */
398 void
399 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
400 struct timeval *ip, struct timeval *rp)
401 {
402 u_quad_t u, st, ut, it, tot;
403 unsigned long sec;
404 long usec;
405 struct timeval tv;
406 struct lwp *l;
407
408 mutex_spin_enter(&p->p_stmutex);
409 st = p->p_sticks;
410 ut = p->p_uticks;
411 it = p->p_iticks;
412 mutex_spin_exit(&p->p_stmutex);
413
414 sec = p->p_rtime.tv_sec;
415 usec = p->p_rtime.tv_usec;
416
417 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
418 lwp_lock(l);
419 sec += l->l_rtime.tv_sec;
420 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
421 sec++;
422 usec -= 1000000;
423 }
424 if ((l->l_flag & LW_RUNNING) != 0) {
425 /*
426 * Adjust for the current time slice. This is
427 * actually fairly important since the error
428 * here is on the order of a time quantum,
429 * which is much greater than the sampling
430 * error.
431 */
432 microtime(&tv);
433 sec += tv.tv_sec - l->l_stime.tv_sec;
434 usec += tv.tv_usec - l->l_stime.tv_usec;
435 if (usec >= 1000000) {
436 sec++;
437 usec -= 1000000;
438 }
439 }
440 lwp_unlock(l);
441 }
442
443 tot = st + ut + it;
444 u = sec * 1000000ull + usec;
445
446 if (tot == 0) {
447 /* No ticks, so can't use to share time out, split 50-50 */
448 st = ut = u / 2;
449 } else {
450 st = (u * st) / tot;
451 ut = (u * ut) / tot;
452 }
453 if (sp != NULL) {
454 sp->tv_sec = st / 1000000;
455 sp->tv_usec = st % 1000000;
456 }
457 if (up != NULL) {
458 up->tv_sec = ut / 1000000;
459 up->tv_usec = ut % 1000000;
460 }
461 if (ip != NULL) {
462 if (it != 0)
463 it = (u * it) / tot;
464 ip->tv_sec = it / 1000000;
465 ip->tv_usec = it % 1000000;
466 }
467 if (rp != NULL) {
468 rp->tv_sec = sec;
469 rp->tv_usec = usec;
470 }
471 }
472
473 /* ARGSUSED */
474 int
475 sys_getrusage(struct lwp *l, void *v, register_t *retval)
476 {
477 struct sys_getrusage_args /* {
478 syscallarg(int) who;
479 syscallarg(struct rusage *) rusage;
480 } */ *uap = v;
481 struct rusage ru;
482 struct proc *p = l->l_proc;
483
484 switch (SCARG(uap, who)) {
485 case RUSAGE_SELF:
486 mutex_enter(&p->p_smutex);
487 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
488 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
489 mutex_exit(&p->p_smutex);
490 break;
491
492 case RUSAGE_CHILDREN:
493 mutex_enter(&p->p_smutex);
494 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
495 mutex_exit(&p->p_smutex);
496 break;
497
498 default:
499 return EINVAL;
500 }
501
502 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
503 }
504
505 void
506 ruadd(struct rusage *ru, struct rusage *ru2)
507 {
508 long *ip, *ip2;
509 int i;
510
511 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
512 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
513 if (ru->ru_maxrss < ru2->ru_maxrss)
514 ru->ru_maxrss = ru2->ru_maxrss;
515 ip = &ru->ru_first; ip2 = &ru2->ru_first;
516 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
517 *ip++ += *ip2++;
518 }
519
520 /*
521 * Make a copy of the plimit structure.
522 * We share these structures copy-on-write after fork,
523 * and copy when a limit is changed.
524 *
525 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
526 * we are copying to change beneath our feet!
527 */
528 struct plimit *
529 lim_copy(struct plimit *lim)
530 {
531 struct plimit *newlim;
532 char *corename;
533 size_t alen, len;
534
535 newlim = pool_get(&plimit_pool, PR_WAITOK);
536 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
537 newlim->pl_flags = 0;
538 newlim->pl_refcnt = 1;
539 newlim->pl_sv_limit = NULL;
540
541 mutex_enter(&lim->pl_lock);
542 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
543 sizeof(struct rlimit) * RLIM_NLIMITS);
544
545 alen = 0;
546 corename = NULL;
547 for (;;) {
548 if (lim->pl_corename == defcorename) {
549 newlim->pl_corename = defcorename;
550 break;
551 }
552 len = strlen(lim->pl_corename) + 1;
553 if (len <= alen) {
554 newlim->pl_corename = corename;
555 memcpy(corename, lim->pl_corename, len);
556 corename = NULL;
557 break;
558 }
559 mutex_exit(&lim->pl_lock);
560 if (corename != NULL)
561 free(corename, M_TEMP);
562 alen = len;
563 corename = malloc(alen, M_TEMP, M_WAITOK);
564 mutex_enter(&lim->pl_lock);
565 }
566 mutex_exit(&lim->pl_lock);
567 if (corename != NULL)
568 free(corename, M_TEMP);
569 return newlim;
570 }
571
572 void
573 lim_addref(struct plimit *lim)
574 {
575 atomic_inc_uint(&lim->pl_refcnt);
576 }
577
578 /*
579 * Give a process it's own private plimit structure.
580 * This will only be shared (in fork) if modifications are to be shared.
581 */
582 void
583 lim_privatise(struct proc *p, bool set_shared)
584 {
585 struct plimit *lim, *newlim;
586
587 lim = p->p_limit;
588 if (lim->pl_flags & PL_WRITEABLE) {
589 if (set_shared)
590 lim->pl_flags |= PL_SHAREMOD;
591 return;
592 }
593
594 if (set_shared && lim->pl_flags & PL_SHAREMOD)
595 return;
596
597 newlim = lim_copy(lim);
598
599 mutex_enter(&p->p_mutex);
600 if (p->p_limit->pl_flags & PL_WRITEABLE) {
601 /* Someone crept in while we were busy */
602 mutex_exit(&p->p_mutex);
603 limfree(newlim);
604 if (set_shared)
605 p->p_limit->pl_flags |= PL_SHAREMOD;
606 return;
607 }
608
609 /*
610 * Since most accesses to p->p_limit aren't locked, we must not
611 * delete the old limit structure yet.
612 */
613 newlim->pl_sv_limit = p->p_limit;
614 newlim->pl_flags |= PL_WRITEABLE;
615 if (set_shared)
616 newlim->pl_flags |= PL_SHAREMOD;
617 p->p_limit = newlim;
618 mutex_exit(&p->p_mutex);
619 }
620
621 void
622 limfree(struct plimit *lim)
623 {
624 struct plimit *sv_lim;
625
626 do {
627 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
628 return;
629 if (lim->pl_corename != defcorename)
630 free(lim->pl_corename, M_TEMP);
631 sv_lim = lim->pl_sv_limit;
632 mutex_destroy(&lim->pl_lock);
633 pool_put(&plimit_pool, lim);
634 } while ((lim = sv_lim) != NULL);
635 }
636
637 struct pstats *
638 pstatscopy(struct pstats *ps)
639 {
640
641 struct pstats *newps;
642
643 newps = pool_get(&pstats_pool, PR_WAITOK);
644
645 memset(&newps->pstat_startzero, 0,
646 (unsigned) ((char *)&newps->pstat_endzero -
647 (char *)&newps->pstat_startzero));
648 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
649 ((char *)&newps->pstat_endcopy -
650 (char *)&newps->pstat_startcopy));
651
652 return (newps);
653
654 }
655
656 void
657 pstatsfree(struct pstats *ps)
658 {
659
660 pool_put(&pstats_pool, ps);
661 }
662
663 /*
664 * sysctl interface in five parts
665 */
666
667 /*
668 * a routine for sysctl proc subtree helpers that need to pick a valid
669 * process by pid.
670 */
671 static int
672 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
673 {
674 struct proc *ptmp;
675 int error = 0;
676
677 if (pid == PROC_CURPROC)
678 ptmp = l->l_proc;
679 else if ((ptmp = pfind(pid)) == NULL)
680 error = ESRCH;
681
682 *p2 = ptmp;
683 return (error);
684 }
685
686 /*
687 * sysctl helper routine for setting a process's specific corefile
688 * name. picks the process based on the given pid and checks the
689 * correctness of the new value.
690 */
691 static int
692 sysctl_proc_corename(SYSCTLFN_ARGS)
693 {
694 struct proc *ptmp;
695 struct plimit *lim;
696 int error = 0, len;
697 char *cname;
698 char *ocore;
699 char *tmp;
700 struct sysctlnode node;
701
702 /*
703 * is this all correct?
704 */
705 if (namelen != 0)
706 return (EINVAL);
707 if (name[-1] != PROC_PID_CORENAME)
708 return (EINVAL);
709
710 /*
711 * whom are we tweaking?
712 */
713 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
714 if (error)
715 return (error);
716
717 /* XXX this should be in p_find() */
718 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
719 ptmp, NULL, NULL, NULL);
720 if (error)
721 return (error);
722
723 /*
724 * let them modify a temporary copy of the core name
725 */
726 cname = PNBUF_GET();
727 lim = ptmp->p_limit;
728 mutex_enter(&lim->pl_lock);
729 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
730 mutex_exit(&lim->pl_lock);
731
732 node = *rnode;
733 node.sysctl_data = cname;
734 error = sysctl_lookup(SYSCTLFN_CALL(&node));
735
736 /*
737 * if that failed, or they have nothing new to say, or we've
738 * heard it before...
739 */
740 if (error || newp == NULL)
741 goto done;
742 lim = ptmp->p_limit;
743 mutex_enter(&lim->pl_lock);
744 error = strcmp(cname, lim->pl_corename);
745 mutex_exit(&lim->pl_lock);
746 if (error == 0)
747 /* Unchanged */
748 goto done;
749
750 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
751 ptmp, cname, NULL, NULL);
752 if (error)
753 return (error);
754
755 /*
756 * no error yet and cname now has the new core name in it.
757 * let's see if it looks acceptable. it must be either "core"
758 * or end in ".core" or "/core".
759 */
760 len = strlen(cname);
761 if (len < 4) {
762 error = EINVAL;
763 } else if (strcmp(cname + len - 4, "core") != 0) {
764 error = EINVAL;
765 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
766 error = EINVAL;
767 }
768 if (error != 0) {
769 goto done;
770 }
771
772 /*
773 * hmm...looks good. now...where do we put it?
774 */
775 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
776 if (tmp == NULL) {
777 error = ENOMEM;
778 goto done;
779 }
780 memcpy(tmp, cname, len + 1);
781
782 lim_privatise(ptmp, false);
783 lim = ptmp->p_limit;
784 mutex_enter(&lim->pl_lock);
785 ocore = lim->pl_corename;
786 lim->pl_corename = tmp;
787 mutex_exit(&lim->pl_lock);
788 if (ocore != defcorename)
789 free(ocore, M_TEMP);
790
791 done:
792 PNBUF_PUT(cname);
793 return error;
794 }
795
796 /*
797 * sysctl helper routine for checking/setting a process's stop flags,
798 * one for fork and one for exec.
799 */
800 static int
801 sysctl_proc_stop(SYSCTLFN_ARGS)
802 {
803 struct proc *ptmp;
804 int i, f, error = 0;
805 struct sysctlnode node;
806
807 if (namelen != 0)
808 return (EINVAL);
809
810 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
811 if (error)
812 return (error);
813
814 /* XXX this should be in p_find() */
815 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
816 ptmp, NULL, NULL, NULL);
817 if (error)
818 return (error);
819
820 switch (rnode->sysctl_num) {
821 case PROC_PID_STOPFORK:
822 f = PS_STOPFORK;
823 break;
824 case PROC_PID_STOPEXEC:
825 f = PS_STOPEXEC;
826 break;
827 case PROC_PID_STOPEXIT:
828 f = PS_STOPEXIT;
829 break;
830 default:
831 return (EINVAL);
832 }
833
834 i = (ptmp->p_flag & f) ? 1 : 0;
835 node = *rnode;
836 node.sysctl_data = &i;
837 error = sysctl_lookup(SYSCTLFN_CALL(&node));
838 if (error || newp == NULL)
839 return (error);
840
841 mutex_enter(&ptmp->p_smutex);
842 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
843 ptmp, KAUTH_ARG(f), NULL, NULL);
844 if (error)
845 return (error);
846 if (i)
847 ptmp->p_sflag |= f;
848 else
849 ptmp->p_sflag &= ~f;
850 mutex_exit(&ptmp->p_smutex);
851
852 return (0);
853 }
854
855 /*
856 * sysctl helper routine for a process's rlimits as exposed by sysctl.
857 */
858 static int
859 sysctl_proc_plimit(SYSCTLFN_ARGS)
860 {
861 struct proc *ptmp;
862 u_int limitno;
863 int which, error = 0;
864 struct rlimit alim;
865 struct sysctlnode node;
866
867 if (namelen != 0)
868 return (EINVAL);
869
870 which = name[-1];
871 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
872 which != PROC_PID_LIMIT_TYPE_HARD)
873 return (EINVAL);
874
875 limitno = name[-2] - 1;
876 if (limitno >= RLIM_NLIMITS)
877 return (EINVAL);
878
879 if (name[-3] != PROC_PID_LIMIT)
880 return (EINVAL);
881
882 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
883 if (error)
884 return (error);
885
886 /* XXX this should be in p_find() */
887 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
888 ptmp, NULL, NULL, NULL);
889 if (error)
890 return (error);
891
892 node = *rnode;
893 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
894 if (which == PROC_PID_LIMIT_TYPE_HARD)
895 node.sysctl_data = &alim.rlim_max;
896 else
897 node.sysctl_data = &alim.rlim_cur;
898
899 error = sysctl_lookup(SYSCTLFN_CALL(&node));
900 if (error || newp == NULL)
901 return (error);
902
903 return (dosetrlimit(l, ptmp, limitno, &alim));
904 }
905
906 /*
907 * and finally, the actually glue that sticks it to the tree
908 */
909 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
910 {
911
912 sysctl_createv(clog, 0, NULL, NULL,
913 CTLFLAG_PERMANENT,
914 CTLTYPE_NODE, "proc", NULL,
915 NULL, 0, NULL, 0,
916 CTL_PROC, CTL_EOL);
917 sysctl_createv(clog, 0, NULL, NULL,
918 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
919 CTLTYPE_NODE, "curproc",
920 SYSCTL_DESCR("Per-process settings"),
921 NULL, 0, NULL, 0,
922 CTL_PROC, PROC_CURPROC, CTL_EOL);
923
924 sysctl_createv(clog, 0, NULL, NULL,
925 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
926 CTLTYPE_STRING, "corename",
927 SYSCTL_DESCR("Core file name"),
928 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
929 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
930 sysctl_createv(clog, 0, NULL, NULL,
931 CTLFLAG_PERMANENT,
932 CTLTYPE_NODE, "rlimit",
933 SYSCTL_DESCR("Process limits"),
934 NULL, 0, NULL, 0,
935 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
936
937 #define create_proc_plimit(s, n) do { \
938 sysctl_createv(clog, 0, NULL, NULL, \
939 CTLFLAG_PERMANENT, \
940 CTLTYPE_NODE, s, \
941 SYSCTL_DESCR("Process " s " limits"), \
942 NULL, 0, NULL, 0, \
943 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
944 CTL_EOL); \
945 sysctl_createv(clog, 0, NULL, NULL, \
946 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
947 CTLTYPE_QUAD, "soft", \
948 SYSCTL_DESCR("Process soft " s " limit"), \
949 sysctl_proc_plimit, 0, NULL, 0, \
950 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
951 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
952 sysctl_createv(clog, 0, NULL, NULL, \
953 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
954 CTLTYPE_QUAD, "hard", \
955 SYSCTL_DESCR("Process hard " s " limit"), \
956 sysctl_proc_plimit, 0, NULL, 0, \
957 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
958 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
959 } while (0/*CONSTCOND*/)
960
961 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
962 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
963 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
964 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
965 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
966 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
967 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
968 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
969 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
970 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
971
972 #undef create_proc_plimit
973
974 sysctl_createv(clog, 0, NULL, NULL,
975 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
976 CTLTYPE_INT, "stopfork",
977 SYSCTL_DESCR("Stop process at fork(2)"),
978 sysctl_proc_stop, 0, NULL, 0,
979 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
980 sysctl_createv(clog, 0, NULL, NULL,
981 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
982 CTLTYPE_INT, "stopexec",
983 SYSCTL_DESCR("Stop process at execve(2)"),
984 sysctl_proc_stop, 0, NULL, 0,
985 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
986 sysctl_createv(clog, 0, NULL, NULL,
987 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
988 CTLTYPE_INT, "stopexit",
989 SYSCTL_DESCR("Stop process before completing exit"),
990 sysctl_proc_stop, 0, NULL, 0,
991 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
992 }
993
994 void
995 uid_init(void)
996 {
997
998 /*
999 * XXXSMP This could be at IPL_SOFTNET, but for now we want
1000 * to to be deadlock free, so it must be at IPL_VM.
1001 */
1002 mutex_init(&uihashtbl_lock, MUTEX_DRIVER, IPL_VM);
1003
1004 /*
1005 * Ensure that uid 0 is always in the user hash table, as
1006 * sbreserve() expects it available from interrupt context.
1007 */
1008 (void)uid_find(0);
1009 }
1010
1011 struct uidinfo *
1012 uid_find(uid_t uid)
1013 {
1014 struct uidinfo *uip;
1015 struct uidinfo *newuip = NULL;
1016 struct uihashhead *uipp;
1017
1018 uipp = UIHASH(uid);
1019
1020 again:
1021 mutex_enter(&uihashtbl_lock);
1022 LIST_FOREACH(uip, uipp, ui_hash)
1023 if (uip->ui_uid == uid) {
1024 mutex_exit(&uihashtbl_lock);
1025 if (newuip) {
1026 mutex_destroy(&newuip->ui_lock);
1027 free(newuip, M_PROC);
1028 }
1029 return uip;
1030 }
1031 if (newuip == NULL) {
1032 mutex_exit(&uihashtbl_lock);
1033 /* Must not be called from interrupt context. */
1034 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
1035 /* XXX this could be IPL_SOFTNET */
1036 mutex_init(&newuip->ui_lock, MUTEX_DRIVER, IPL_VM);
1037 goto again;
1038 }
1039 uip = newuip;
1040
1041 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1042 uip->ui_uid = uid;
1043 mutex_exit(&uihashtbl_lock);
1044
1045 return uip;
1046 }
1047
1048 /*
1049 * Change the count associated with number of processes
1050 * a given user is using.
1051 */
1052 int
1053 chgproccnt(uid_t uid, int diff)
1054 {
1055 struct uidinfo *uip;
1056
1057 if (diff == 0)
1058 return 0;
1059
1060 uip = uid_find(uid);
1061 mutex_enter(&uip->ui_lock);
1062 uip->ui_proccnt += diff;
1063 KASSERT(uip->ui_proccnt >= 0);
1064 mutex_exit(&uip->ui_lock);
1065 return uip->ui_proccnt;
1066 }
1067
1068 int
1069 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1070 {
1071 rlim_t nsb;
1072
1073 mutex_enter(&uip->ui_lock);
1074 nsb = uip->ui_sbsize + to - *hiwat;
1075 if (to > *hiwat && nsb > xmax) {
1076 mutex_exit(&uip->ui_lock);
1077 return 0;
1078 }
1079 *hiwat = to;
1080 uip->ui_sbsize = nsb;
1081 KASSERT(uip->ui_sbsize >= 0);
1082 mutex_exit(&uip->ui_lock);
1083 return 1;
1084 }
1085