kern_resource.c revision 1.121 1 /* $NetBSD: kern_resource.c,v 1.121 2007/09/21 19:19:21 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.121 2007/09/21 19:19:21 dsl Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53
54 #include <sys/mount.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 kmutex_t uihashtbl_lock;
69
70 /*
71 * Resource controls and accounting.
72 */
73
74 int
75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
76 {
77 struct sys_getpriority_args /* {
78 syscallarg(int) which;
79 syscallarg(id_t) who;
80 } */ *uap = v;
81 struct proc *curp = l->l_proc, *p;
82 int low = NZERO + PRIO_MAX + 1;
83 int who = SCARG(uap, who);
84
85 mutex_enter(&proclist_lock);
86 switch (SCARG(uap, which)) {
87 case PRIO_PROCESS:
88 if (who == 0)
89 p = curp;
90 else
91 p = p_find(who, PFIND_LOCKED);
92 if (p != NULL)
93 low = p->p_nice;
94 break;
95
96 case PRIO_PGRP: {
97 struct pgrp *pg;
98
99 if (who == 0)
100 pg = curp->p_pgrp;
101 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
102 break;
103 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
104 if (p->p_nice < low)
105 low = p->p_nice;
106 }
107 break;
108 }
109
110 case PRIO_USER:
111 if (who == 0)
112 who = (int)kauth_cred_geteuid(l->l_cred);
113 PROCLIST_FOREACH(p, &allproc) {
114 mutex_enter(&p->p_mutex);
115 if (kauth_cred_geteuid(p->p_cred) ==
116 (uid_t)who && p->p_nice < low)
117 low = p->p_nice;
118 mutex_exit(&p->p_mutex);
119 }
120 break;
121
122 default:
123 mutex_exit(&proclist_lock);
124 return (EINVAL);
125 }
126 mutex_exit(&proclist_lock);
127
128 if (low == NZERO + PRIO_MAX + 1)
129 return (ESRCH);
130 *retval = low - NZERO;
131 return (0);
132 }
133
134 /* ARGSUSED */
135 int
136 sys_setpriority(struct lwp *l, void *v, register_t *retval)
137 {
138 struct sys_setpriority_args /* {
139 syscallarg(int) which;
140 syscallarg(id_t) who;
141 syscallarg(int) prio;
142 } */ *uap = v;
143 struct proc *curp = l->l_proc, *p;
144 int found = 0, error = 0;
145 int who = SCARG(uap, who);
146
147 mutex_enter(&proclist_lock);
148 switch (SCARG(uap, which)) {
149 case PRIO_PROCESS:
150 if (who == 0)
151 p = curp;
152 else
153 p = p_find(who, PFIND_LOCKED);
154 if (p != 0) {
155 mutex_enter(&p->p_mutex);
156 error = donice(l, p, SCARG(uap, prio));
157 mutex_exit(&p->p_mutex);
158 }
159 found++;
160 break;
161
162 case PRIO_PGRP: {
163 struct pgrp *pg;
164
165 if (who == 0)
166 pg = curp->p_pgrp;
167 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
168 break;
169 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
170 mutex_enter(&p->p_mutex);
171 error = donice(l, p, SCARG(uap, prio));
172 mutex_exit(&p->p_mutex);
173 found++;
174 }
175 break;
176 }
177
178 case PRIO_USER:
179 if (who == 0)
180 who = (int)kauth_cred_geteuid(l->l_cred);
181 PROCLIST_FOREACH(p, &allproc) {
182 mutex_enter(&p->p_mutex);
183 if (kauth_cred_geteuid(p->p_cred) ==
184 (uid_t)SCARG(uap, who)) {
185 error = donice(l, p, SCARG(uap, prio));
186 found++;
187 }
188 mutex_exit(&p->p_mutex);
189 }
190 break;
191
192 default:
193 error = EINVAL;
194 break;
195 }
196 mutex_exit(&proclist_lock);
197 if (found == 0)
198 return (ESRCH);
199 return (error);
200 }
201
202 /*
203 * Renice a process.
204 *
205 * Call with the target process' credentials locked.
206 */
207 int
208 donice(struct lwp *l, struct proc *chgp, int n)
209 {
210 kauth_cred_t cred = l->l_cred;
211 int onice;
212
213 KASSERT(mutex_owned(&chgp->p_mutex));
214
215 if (n > PRIO_MAX)
216 n = PRIO_MAX;
217 if (n < PRIO_MIN)
218 n = PRIO_MIN;
219 n += NZERO;
220 onice = chgp->p_nice;
221 onice = chgp->p_nice;
222
223 again:
224 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
225 KAUTH_ARG(n), NULL, NULL))
226 return (EACCES);
227 mutex_spin_enter(&chgp->p_stmutex);
228 if (onice != chgp->p_nice) {
229 mutex_spin_exit(&chgp->p_stmutex);
230 goto again;
231 }
232 sched_nice(chgp, n);
233 mutex_spin_exit(&chgp->p_stmutex);
234 return (0);
235 }
236
237 /* ARGSUSED */
238 int
239 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
240 {
241 struct sys_setrlimit_args /* {
242 syscallarg(int) which;
243 syscallarg(const struct rlimit *) rlp;
244 } */ *uap = v;
245 int which = SCARG(uap, which);
246 struct rlimit alim;
247 int error;
248
249 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
250 if (error)
251 return (error);
252 return (dosetrlimit(l, l->l_proc, which, &alim));
253 }
254
255 int
256 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
257 {
258 struct rlimit *alimp;
259 struct plimit *oldplim;
260 int error;
261
262 if ((u_int)which >= RLIM_NLIMITS)
263 return (EINVAL);
264
265 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
266 return (EINVAL);
267
268 alimp = &p->p_rlimit[which];
269 /* if we don't change the value, no need to limcopy() */
270 if (limp->rlim_cur == alimp->rlim_cur &&
271 limp->rlim_max == alimp->rlim_max)
272 return 0;
273
274 if (limp->rlim_cur > limp->rlim_max) {
275 /*
276 * This is programming error. According to SUSv2, we should
277 * return error in this case.
278 */
279 return (EINVAL);
280 }
281 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
282 p, limp, KAUTH_ARG(which), NULL);
283 if (error)
284 return (error);
285
286 mutex_enter(&p->p_mutex);
287 if (p->p_limit->pl_refcnt > 1 &&
288 (p->p_limit->pl_flags & PL_SHAREMOD) == 0) {
289 oldplim = p->p_limit;
290 p->p_limit = limcopy(p);
291 limfree(oldplim);
292 alimp = &p->p_rlimit[which];
293 }
294
295 switch (which) {
296
297 case RLIMIT_DATA:
298 if (limp->rlim_cur > maxdmap)
299 limp->rlim_cur = maxdmap;
300 if (limp->rlim_max > maxdmap)
301 limp->rlim_max = maxdmap;
302 break;
303
304 case RLIMIT_STACK:
305 if (limp->rlim_cur > maxsmap)
306 limp->rlim_cur = maxsmap;
307 if (limp->rlim_max > maxsmap)
308 limp->rlim_max = maxsmap;
309
310 /*
311 * Return EINVAL if the new stack size limit is lower than
312 * current usage. Otherwise, the process would get SIGSEGV the
313 * moment it would try to access anything on it's current stack.
314 * This conforms to SUSv2.
315 */
316 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
317 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
318 mutex_exit(&p->p_mutex);
319 return (EINVAL);
320 }
321
322 /*
323 * Stack is allocated to the max at exec time with
324 * only "rlim_cur" bytes accessible (In other words,
325 * allocates stack dividing two contiguous regions at
326 * "rlim_cur" bytes boundary).
327 *
328 * Since allocation is done in terms of page, roundup
329 * "rlim_cur" (otherwise, contiguous regions
330 * overlap). If stack limit is going up make more
331 * accessible, if going down make inaccessible.
332 */
333 limp->rlim_cur = round_page(limp->rlim_cur);
334 if (limp->rlim_cur != alimp->rlim_cur) {
335 vaddr_t addr;
336 vsize_t size;
337 vm_prot_t prot;
338
339 if (limp->rlim_cur > alimp->rlim_cur) {
340 prot = VM_PROT_READ | VM_PROT_WRITE;
341 size = limp->rlim_cur - alimp->rlim_cur;
342 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
343 limp->rlim_cur;
344 } else {
345 prot = VM_PROT_NONE;
346 size = alimp->rlim_cur - limp->rlim_cur;
347 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
348 alimp->rlim_cur;
349 }
350 (void) uvm_map_protect(&p->p_vmspace->vm_map,
351 addr, addr+size, prot, false);
352 }
353 break;
354
355 case RLIMIT_NOFILE:
356 if (limp->rlim_cur > maxfiles)
357 limp->rlim_cur = maxfiles;
358 if (limp->rlim_max > maxfiles)
359 limp->rlim_max = maxfiles;
360 break;
361
362 case RLIMIT_NPROC:
363 if (limp->rlim_cur > maxproc)
364 limp->rlim_cur = maxproc;
365 if (limp->rlim_max > maxproc)
366 limp->rlim_max = maxproc;
367 break;
368 }
369 *alimp = *limp;
370 mutex_exit(&p->p_mutex);
371 return (0);
372 }
373
374 /* ARGSUSED */
375 int
376 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
377 {
378 struct sys_getrlimit_args /* {
379 syscallarg(int) which;
380 syscallarg(struct rlimit *) rlp;
381 } */ *uap = v;
382 struct proc *p = l->l_proc;
383 int which = SCARG(uap, which);
384 struct rlimit rl;
385
386 if ((u_int)which >= RLIM_NLIMITS)
387 return (EINVAL);
388
389 mutex_enter(&p->p_mutex);
390 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
391 mutex_exit(&p->p_mutex);
392
393 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
394 }
395
396 /*
397 * Transform the running time and tick information in proc p into user,
398 * system, and interrupt time usage.
399 *
400 * Should be called with p->p_smutex held unless called from exit1().
401 */
402 void
403 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
404 struct timeval *ip, struct timeval *rp)
405 {
406 u_quad_t u, st, ut, it, tot;
407 unsigned long sec;
408 long usec;
409 struct timeval tv;
410 struct lwp *l;
411
412 mutex_spin_enter(&p->p_stmutex);
413 st = p->p_sticks;
414 ut = p->p_uticks;
415 it = p->p_iticks;
416 mutex_spin_exit(&p->p_stmutex);
417
418 sec = p->p_rtime.tv_sec;
419 usec = p->p_rtime.tv_usec;
420
421 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
422 lwp_lock(l);
423 sec += l->l_rtime.tv_sec;
424 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
425 sec++;
426 usec -= 1000000;
427 }
428 if (l->l_cpu == curcpu()) {
429 struct schedstate_percpu *spc;
430
431 KDASSERT(l->l_cpu != NULL);
432 spc = &l->l_cpu->ci_schedstate;
433
434 /*
435 * Adjust for the current time slice. This is
436 * actually fairly important since the error
437 * here is on the order of a time quantum,
438 * which is much greater than the sampling
439 * error.
440 */
441 microtime(&tv);
442 sec += tv.tv_sec - spc->spc_runtime.tv_sec;
443 usec += tv.tv_usec - spc->spc_runtime.tv_usec;
444 if (usec >= 1000000) {
445 sec++;
446 usec -= 1000000;
447 }
448 }
449 lwp_unlock(l);
450 }
451
452 tot = st + ut + it;
453 u = sec * 1000000ull + usec;
454
455 if (tot == 0) {
456 /* No ticks, so can't use to share time out, split 50-50 */
457 st = ut = u / 2;
458 } else {
459 st = (u * st) / tot;
460 ut = (u * ut) / tot;
461 }
462 if (sp != NULL) {
463 sp->tv_sec = st / 1000000;
464 sp->tv_usec = st % 1000000;
465 }
466 if (up != NULL) {
467 up->tv_sec = ut / 1000000;
468 up->tv_usec = ut % 1000000;
469 }
470 if (ip != NULL) {
471 if (it != 0)
472 it = (u * it) / tot;
473 ip->tv_sec = it / 1000000;
474 ip->tv_usec = it % 1000000;
475 }
476 if (rp != NULL) {
477 rp->tv_sec = sec;
478 rp->tv_usec = usec;
479 }
480 }
481
482 /* ARGSUSED */
483 int
484 sys_getrusage(struct lwp *l, void *v, register_t *retval)
485 {
486 struct sys_getrusage_args /* {
487 syscallarg(int) who;
488 syscallarg(struct rusage *) rusage;
489 } */ *uap = v;
490 struct rusage ru;
491 struct proc *p = l->l_proc;
492
493 switch (SCARG(uap, who)) {
494 case RUSAGE_SELF:
495 mutex_enter(&p->p_smutex);
496 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
497 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
498 mutex_exit(&p->p_smutex);
499 break;
500
501 case RUSAGE_CHILDREN:
502 mutex_enter(&p->p_smutex);
503 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
504 mutex_exit(&p->p_smutex);
505 break;
506
507 default:
508 return EINVAL;
509 }
510
511 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
512 }
513
514 void
515 ruadd(struct rusage *ru, struct rusage *ru2)
516 {
517 long *ip, *ip2;
518 int i;
519
520 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
521 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
522 if (ru->ru_maxrss < ru2->ru_maxrss)
523 ru->ru_maxrss = ru2->ru_maxrss;
524 ip = &ru->ru_first; ip2 = &ru2->ru_first;
525 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
526 *ip++ += *ip2++;
527 }
528
529 /*
530 * Make a copy of the plimit structure.
531 * We share these structures copy-on-write after fork,
532 * and copy when a limit is changed.
533 *
534 * XXXSMP This is atrocious, need to simplify.
535 */
536 struct plimit *
537 limcopy(struct proc *p)
538 {
539 struct plimit *lim, *newlim;
540 char *corename;
541 size_t l;
542
543 KASSERT(mutex_owned(&p->p_mutex));
544
545 mutex_exit(&p->p_mutex);
546 newlim = pool_get(&plimit_pool, PR_WAITOK);
547 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
548 newlim->pl_flags = 0;
549 newlim->pl_refcnt = 1;
550 mutex_enter(&p->p_mutex);
551
552 for (;;) {
553 lim = p->p_limit;
554 mutex_enter(&lim->pl_lock);
555 if (lim->pl_corename != defcorename) {
556 l = strlen(lim->pl_corename) + 1;
557
558 mutex_exit(&lim->pl_lock);
559 mutex_exit(&p->p_mutex);
560 corename = malloc(l, M_TEMP, M_WAITOK);
561 mutex_enter(&p->p_mutex);
562 mutex_enter(&lim->pl_lock);
563
564 if (l != strlen(lim->pl_corename) + 1) {
565 mutex_exit(&lim->pl_lock);
566 mutex_exit(&p->p_mutex);
567 free(corename, M_TEMP);
568 mutex_enter(&p->p_mutex);
569 continue;
570 }
571 } else
572 l = 0;
573
574 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
575 sizeof(struct rlimit) * RLIM_NLIMITS);
576 if (l != 0)
577 strlcpy(newlim->pl_corename, lim->pl_corename, l);
578 else
579 newlim->pl_corename = defcorename;
580 mutex_exit(&lim->pl_lock);
581 break;
582 }
583
584 return (newlim);
585 }
586
587 void
588 limfree(struct plimit *lim)
589 {
590 int n;
591
592 mutex_enter(&lim->pl_lock);
593 n = --lim->pl_refcnt;
594 mutex_exit(&lim->pl_lock);
595 if (n > 0)
596 return;
597 #ifdef DIAGNOSTIC
598 if (n < 0)
599 panic("limfree");
600 #endif
601 if (lim->pl_corename != defcorename)
602 free(lim->pl_corename, M_TEMP);
603 mutex_destroy(&lim->pl_lock);
604 pool_put(&plimit_pool, lim);
605 }
606
607 struct pstats *
608 pstatscopy(struct pstats *ps)
609 {
610
611 struct pstats *newps;
612
613 newps = pool_get(&pstats_pool, PR_WAITOK);
614
615 memset(&newps->pstat_startzero, 0,
616 (unsigned) ((char *)&newps->pstat_endzero -
617 (char *)&newps->pstat_startzero));
618 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
619 ((char *)&newps->pstat_endcopy -
620 (char *)&newps->pstat_startcopy));
621
622 return (newps);
623
624 }
625
626 void
627 pstatsfree(struct pstats *ps)
628 {
629
630 pool_put(&pstats_pool, ps);
631 }
632
633 /*
634 * sysctl interface in five parts
635 */
636
637 /*
638 * a routine for sysctl proc subtree helpers that need to pick a valid
639 * process by pid.
640 */
641 static int
642 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
643 {
644 struct proc *ptmp;
645 int error = 0;
646
647 if (pid == PROC_CURPROC)
648 ptmp = l->l_proc;
649 else if ((ptmp = pfind(pid)) == NULL)
650 error = ESRCH;
651
652 *p2 = ptmp;
653 return (error);
654 }
655
656 /*
657 * sysctl helper routine for setting a process's specific corefile
658 * name. picks the process based on the given pid and checks the
659 * correctness of the new value.
660 */
661 static int
662 sysctl_proc_corename(SYSCTLFN_ARGS)
663 {
664 struct proc *ptmp;
665 struct plimit *lim;
666 int error = 0, len;
667 char *cname;
668 char *tmp;
669 struct sysctlnode node;
670
671 /*
672 * is this all correct?
673 */
674 if (namelen != 0)
675 return (EINVAL);
676 if (name[-1] != PROC_PID_CORENAME)
677 return (EINVAL);
678
679 /*
680 * whom are we tweaking?
681 */
682 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
683 if (error)
684 return (error);
685
686 /* XXX this should be in p_find() */
687 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
688 ptmp, NULL, NULL, NULL);
689 if (error)
690 return (error);
691
692 cname = PNBUF_GET();
693 /*
694 * let them modify a temporary copy of the core name
695 */
696 node = *rnode;
697 strlcpy(cname, ptmp->p_limit->pl_corename, MAXPATHLEN);
698 node.sysctl_data = cname;
699 error = sysctl_lookup(SYSCTLFN_CALL(&node));
700
701 /*
702 * if that failed, or they have nothing new to say, or we've
703 * heard it before...
704 */
705 if (error || newp == NULL ||
706 strcmp(cname, ptmp->p_limit->pl_corename) == 0) {
707 goto done;
708 }
709
710 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
711 ptmp, cname, NULL, NULL);
712 if (error)
713 return (error);
714
715 /*
716 * no error yet and cname now has the new core name in it.
717 * let's see if it looks acceptable. it must be either "core"
718 * or end in ".core" or "/core".
719 */
720 len = strlen(cname);
721 if (len < 4) {
722 error = EINVAL;
723 } else if (strcmp(cname + len - 4, "core") != 0) {
724 error = EINVAL;
725 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
726 error = EINVAL;
727 }
728 if (error != 0) {
729 goto done;
730 }
731
732 /*
733 * hmm...looks good. now...where do we put it?
734 */
735 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
736 if (tmp == NULL) {
737 error = ENOMEM;
738 goto done;
739 }
740 strlcpy(tmp, cname, len + 1);
741
742 mutex_enter(&ptmp->p_mutex);
743 lim = ptmp->p_limit;
744 if (lim->pl_refcnt > 1 && (lim->pl_flags & PL_SHAREMOD) == 0) {
745 ptmp->p_limit = limcopy(ptmp);
746 limfree(lim);
747 lim = ptmp->p_limit;
748 }
749 if (lim->pl_corename != defcorename)
750 free(lim->pl_corename, M_TEMP);
751 lim->pl_corename = tmp;
752 mutex_exit(&ptmp->p_mutex);
753 done:
754 PNBUF_PUT(cname);
755 return error;
756 }
757
758 /*
759 * sysctl helper routine for checking/setting a process's stop flags,
760 * one for fork and one for exec.
761 */
762 static int
763 sysctl_proc_stop(SYSCTLFN_ARGS)
764 {
765 struct proc *ptmp;
766 int i, f, error = 0;
767 struct sysctlnode node;
768
769 if (namelen != 0)
770 return (EINVAL);
771
772 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
773 if (error)
774 return (error);
775
776 /* XXX this should be in p_find() */
777 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
778 ptmp, NULL, NULL, NULL);
779 if (error)
780 return (error);
781
782 switch (rnode->sysctl_num) {
783 case PROC_PID_STOPFORK:
784 f = PS_STOPFORK;
785 break;
786 case PROC_PID_STOPEXEC:
787 f = PS_STOPEXEC;
788 break;
789 case PROC_PID_STOPEXIT:
790 f = PS_STOPEXIT;
791 break;
792 default:
793 return (EINVAL);
794 }
795
796 i = (ptmp->p_flag & f) ? 1 : 0;
797 node = *rnode;
798 node.sysctl_data = &i;
799 error = sysctl_lookup(SYSCTLFN_CALL(&node));
800 if (error || newp == NULL)
801 return (error);
802
803 mutex_enter(&ptmp->p_smutex);
804 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
805 ptmp, KAUTH_ARG(f), NULL, NULL);
806 if (error)
807 return (error);
808 if (i)
809 ptmp->p_sflag |= f;
810 else
811 ptmp->p_sflag &= ~f;
812 mutex_exit(&ptmp->p_smutex);
813
814 return (0);
815 }
816
817 /*
818 * sysctl helper routine for a process's rlimits as exposed by sysctl.
819 */
820 static int
821 sysctl_proc_plimit(SYSCTLFN_ARGS)
822 {
823 struct proc *ptmp;
824 u_int limitno;
825 int which, error = 0;
826 struct rlimit alim;
827 struct sysctlnode node;
828
829 if (namelen != 0)
830 return (EINVAL);
831
832 which = name[-1];
833 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
834 which != PROC_PID_LIMIT_TYPE_HARD)
835 return (EINVAL);
836
837 limitno = name[-2] - 1;
838 if (limitno >= RLIM_NLIMITS)
839 return (EINVAL);
840
841 if (name[-3] != PROC_PID_LIMIT)
842 return (EINVAL);
843
844 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
845 if (error)
846 return (error);
847
848 /* XXX this should be in p_find() */
849 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
850 ptmp, NULL, NULL, NULL);
851 if (error)
852 return (error);
853
854 node = *rnode;
855 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
856 if (which == PROC_PID_LIMIT_TYPE_HARD)
857 node.sysctl_data = &alim.rlim_max;
858 else
859 node.sysctl_data = &alim.rlim_cur;
860
861 error = sysctl_lookup(SYSCTLFN_CALL(&node));
862 if (error || newp == NULL)
863 return (error);
864
865 return (dosetrlimit(l, ptmp, limitno, &alim));
866 }
867
868 /*
869 * and finally, the actually glue that sticks it to the tree
870 */
871 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
872 {
873
874 sysctl_createv(clog, 0, NULL, NULL,
875 CTLFLAG_PERMANENT,
876 CTLTYPE_NODE, "proc", NULL,
877 NULL, 0, NULL, 0,
878 CTL_PROC, CTL_EOL);
879 sysctl_createv(clog, 0, NULL, NULL,
880 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
881 CTLTYPE_NODE, "curproc",
882 SYSCTL_DESCR("Per-process settings"),
883 NULL, 0, NULL, 0,
884 CTL_PROC, PROC_CURPROC, CTL_EOL);
885
886 sysctl_createv(clog, 0, NULL, NULL,
887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
888 CTLTYPE_STRING, "corename",
889 SYSCTL_DESCR("Core file name"),
890 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
891 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
892 sysctl_createv(clog, 0, NULL, NULL,
893 CTLFLAG_PERMANENT,
894 CTLTYPE_NODE, "rlimit",
895 SYSCTL_DESCR("Process limits"),
896 NULL, 0, NULL, 0,
897 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
898
899 #define create_proc_plimit(s, n) do { \
900 sysctl_createv(clog, 0, NULL, NULL, \
901 CTLFLAG_PERMANENT, \
902 CTLTYPE_NODE, s, \
903 SYSCTL_DESCR("Process " s " limits"), \
904 NULL, 0, NULL, 0, \
905 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
906 CTL_EOL); \
907 sysctl_createv(clog, 0, NULL, NULL, \
908 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
909 CTLTYPE_QUAD, "soft", \
910 SYSCTL_DESCR("Process soft " s " limit"), \
911 sysctl_proc_plimit, 0, NULL, 0, \
912 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
913 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
914 sysctl_createv(clog, 0, NULL, NULL, \
915 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
916 CTLTYPE_QUAD, "hard", \
917 SYSCTL_DESCR("Process hard " s " limit"), \
918 sysctl_proc_plimit, 0, NULL, 0, \
919 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
920 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
921 } while (0/*CONSTCOND*/)
922
923 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
924 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
925 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
926 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
927 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
928 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
929 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
930 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
931 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
932 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
933
934 #undef create_proc_plimit
935
936 sysctl_createv(clog, 0, NULL, NULL,
937 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
938 CTLTYPE_INT, "stopfork",
939 SYSCTL_DESCR("Stop process at fork(2)"),
940 sysctl_proc_stop, 0, NULL, 0,
941 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
942 sysctl_createv(clog, 0, NULL, NULL,
943 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
944 CTLTYPE_INT, "stopexec",
945 SYSCTL_DESCR("Stop process at execve(2)"),
946 sysctl_proc_stop, 0, NULL, 0,
947 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
948 sysctl_createv(clog, 0, NULL, NULL,
949 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
950 CTLTYPE_INT, "stopexit",
951 SYSCTL_DESCR("Stop process before completing exit"),
952 sysctl_proc_stop, 0, NULL, 0,
953 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
954 }
955
956 void
957 uid_init(void)
958 {
959
960 /*
961 * XXXSMP This could be at IPL_SOFTNET, but for now we want
962 * to to be deadlock free, so it must be at IPL_VM.
963 */
964 mutex_init(&uihashtbl_lock, MUTEX_DRIVER, IPL_VM);
965
966 /*
967 * Ensure that uid 0 is always in the user hash table, as
968 * sbreserve() expects it available from interrupt context.
969 */
970 (void)uid_find(0);
971 }
972
973 struct uidinfo *
974 uid_find(uid_t uid)
975 {
976 struct uidinfo *uip;
977 struct uidinfo *newuip = NULL;
978 struct uihashhead *uipp;
979
980 uipp = UIHASH(uid);
981
982 again:
983 mutex_enter(&uihashtbl_lock);
984 LIST_FOREACH(uip, uipp, ui_hash)
985 if (uip->ui_uid == uid) {
986 mutex_exit(&uihashtbl_lock);
987 if (newuip) {
988 mutex_destroy(&newuip->ui_lock);
989 free(newuip, M_PROC);
990 }
991 return uip;
992 }
993 if (newuip == NULL) {
994 mutex_exit(&uihashtbl_lock);
995 /* Must not be called from interrupt context. */
996 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
997 mutex_init(&newuip->ui_lock, MUTEX_DRIVER, IPL_SOFTNET);
998 goto again;
999 }
1000 uip = newuip;
1001
1002 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1003 uip->ui_uid = uid;
1004 mutex_exit(&uihashtbl_lock);
1005
1006 return uip;
1007 }
1008
1009 /*
1010 * Change the count associated with number of processes
1011 * a given user is using.
1012 */
1013 int
1014 chgproccnt(uid_t uid, int diff)
1015 {
1016 struct uidinfo *uip;
1017
1018 if (diff == 0)
1019 return 0;
1020
1021 uip = uid_find(uid);
1022 mutex_enter(&uip->ui_lock);
1023 uip->ui_proccnt += diff;
1024 KASSERT(uip->ui_proccnt >= 0);
1025 mutex_exit(&uip->ui_lock);
1026 return uip->ui_proccnt;
1027 }
1028
1029 int
1030 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1031 {
1032 rlim_t nsb;
1033
1034 mutex_enter(&uip->ui_lock);
1035 nsb = uip->ui_sbsize + to - *hiwat;
1036 if (to > *hiwat && nsb > xmax) {
1037 mutex_exit(&uip->ui_lock);
1038 return 0;
1039 }
1040 *hiwat = to;
1041 uip->ui_sbsize = nsb;
1042 KASSERT(uip->ui_sbsize >= 0);
1043 mutex_exit(&uip->ui_lock);
1044 return 1;
1045 }
1046