Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.121.2.2
      1 /*	$NetBSD: kern_resource.c,v 1.121.2.2 2007/10/14 11:48:42 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.121.2.2 2007/10/14 11:48:42 yamt Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/kauth.h>
     53 
     54 #include <sys/mount.h>
     55 #include <sys/syscallargs.h>
     56 
     57 #include <uvm/uvm_extern.h>
     58 
     59 /*
     60  * Maximum process data and stack limits.
     61  * They are variables so they are patchable.
     62  */
     63 rlim_t maxdmap = MAXDSIZ;
     64 rlim_t maxsmap = MAXSSIZ;
     65 
     66 struct uihashhead *uihashtbl;
     67 u_long uihash;		/* size of hash table - 1 */
     68 kmutex_t uihashtbl_lock;
     69 
     70 /*
     71  * Resource controls and accounting.
     72  */
     73 
     74 int
     75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
     76 {
     77 	struct sys_getpriority_args /* {
     78 		syscallarg(int) which;
     79 		syscallarg(id_t) who;
     80 	} */ *uap = v;
     81 	struct proc *curp = l->l_proc, *p;
     82 	int low = NZERO + PRIO_MAX + 1;
     83 	int who = SCARG(uap, who);
     84 
     85 	mutex_enter(&proclist_lock);
     86 	switch (SCARG(uap, which)) {
     87 	case PRIO_PROCESS:
     88 		if (who == 0)
     89 			p = curp;
     90 		else
     91 			p = p_find(who, PFIND_LOCKED);
     92 		if (p != NULL)
     93 			low = p->p_nice;
     94 		break;
     95 
     96 	case PRIO_PGRP: {
     97 		struct pgrp *pg;
     98 
     99 		if (who == 0)
    100 			pg = curp->p_pgrp;
    101 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    102 			break;
    103 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    104 			if (p->p_nice < low)
    105 				low = p->p_nice;
    106 		}
    107 		break;
    108 	}
    109 
    110 	case PRIO_USER:
    111 		if (who == 0)
    112 			who = (int)kauth_cred_geteuid(l->l_cred);
    113 		PROCLIST_FOREACH(p, &allproc) {
    114 			mutex_enter(&p->p_mutex);
    115 			if (kauth_cred_geteuid(p->p_cred) ==
    116 			    (uid_t)who && p->p_nice < low)
    117 				low = p->p_nice;
    118 			mutex_exit(&p->p_mutex);
    119 		}
    120 		break;
    121 
    122 	default:
    123 		mutex_exit(&proclist_lock);
    124 		return (EINVAL);
    125 	}
    126 	mutex_exit(&proclist_lock);
    127 
    128 	if (low == NZERO + PRIO_MAX + 1)
    129 		return (ESRCH);
    130 	*retval = low - NZERO;
    131 	return (0);
    132 }
    133 
    134 /* ARGSUSED */
    135 int
    136 sys_setpriority(struct lwp *l, void *v, register_t *retval)
    137 {
    138 	struct sys_setpriority_args /* {
    139 		syscallarg(int) which;
    140 		syscallarg(id_t) who;
    141 		syscallarg(int) prio;
    142 	} */ *uap = v;
    143 	struct proc *curp = l->l_proc, *p;
    144 	int found = 0, error = 0;
    145 	int who = SCARG(uap, who);
    146 
    147 	mutex_enter(&proclist_lock);
    148 	switch (SCARG(uap, which)) {
    149 	case PRIO_PROCESS:
    150 		if (who == 0)
    151 			p = curp;
    152 		else
    153 			p = p_find(who, PFIND_LOCKED);
    154 		if (p != 0) {
    155 			mutex_enter(&p->p_mutex);
    156 			error = donice(l, p, SCARG(uap, prio));
    157 			mutex_exit(&p->p_mutex);
    158 		}
    159 		found++;
    160 		break;
    161 
    162 	case PRIO_PGRP: {
    163 		struct pgrp *pg;
    164 
    165 		if (who == 0)
    166 			pg = curp->p_pgrp;
    167 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    168 			break;
    169 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    170 			mutex_enter(&p->p_mutex);
    171 			error = donice(l, p, SCARG(uap, prio));
    172 			mutex_exit(&p->p_mutex);
    173 			found++;
    174 		}
    175 		break;
    176 	}
    177 
    178 	case PRIO_USER:
    179 		if (who == 0)
    180 			who = (int)kauth_cred_geteuid(l->l_cred);
    181 		PROCLIST_FOREACH(p, &allproc) {
    182 			mutex_enter(&p->p_mutex);
    183 			if (kauth_cred_geteuid(p->p_cred) ==
    184 			    (uid_t)SCARG(uap, who)) {
    185 				error = donice(l, p, SCARG(uap, prio));
    186 				found++;
    187 			}
    188 			mutex_exit(&p->p_mutex);
    189 		}
    190 		break;
    191 
    192 	default:
    193 		error = EINVAL;
    194 		break;
    195 	}
    196 	mutex_exit(&proclist_lock);
    197 	if (found == 0)
    198 		return (ESRCH);
    199 	return (error);
    200 }
    201 
    202 /*
    203  * Renice a process.
    204  *
    205  * Call with the target process' credentials locked.
    206  */
    207 int
    208 donice(struct lwp *l, struct proc *chgp, int n)
    209 {
    210 	kauth_cred_t cred = l->l_cred;
    211 	int onice;
    212 
    213 	KASSERT(mutex_owned(&chgp->p_mutex));
    214 
    215 	if (n > PRIO_MAX)
    216 		n = PRIO_MAX;
    217 	if (n < PRIO_MIN)
    218 		n = PRIO_MIN;
    219 	n += NZERO;
    220 	onice = chgp->p_nice;
    221 	onice = chgp->p_nice;
    222 
    223   again:
    224 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    225 	    KAUTH_ARG(n), NULL, NULL))
    226 		return (EACCES);
    227 	mutex_spin_enter(&chgp->p_stmutex);
    228 	if (onice != chgp->p_nice) {
    229 		mutex_spin_exit(&chgp->p_stmutex);
    230 		goto again;
    231 	}
    232 	sched_nice(chgp, n);
    233 	mutex_spin_exit(&chgp->p_stmutex);
    234 	return (0);
    235 }
    236 
    237 /* ARGSUSED */
    238 int
    239 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
    240 {
    241 	struct sys_setrlimit_args /* {
    242 		syscallarg(int) which;
    243 		syscallarg(const struct rlimit *) rlp;
    244 	} */ *uap = v;
    245 	int which = SCARG(uap, which);
    246 	struct rlimit alim;
    247 	int error;
    248 
    249 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    250 	if (error)
    251 		return (error);
    252 	return (dosetrlimit(l, l->l_proc, which, &alim));
    253 }
    254 
    255 int
    256 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    257 {
    258 	struct rlimit *alimp;
    259 	int error;
    260 
    261 	if ((u_int)which >= RLIM_NLIMITS)
    262 		return (EINVAL);
    263 
    264 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    265 		return (EINVAL);
    266 
    267 	if (limp->rlim_cur > limp->rlim_max) {
    268 		/*
    269 		 * This is programming error. According to SUSv2, we should
    270 		 * return error in this case.
    271 		 */
    272 		return (EINVAL);
    273 	}
    274 
    275 	alimp = &p->p_rlimit[which];
    276 	/* if we don't change the value, no need to limcopy() */
    277 	if (limp->rlim_cur == alimp->rlim_cur &&
    278 	    limp->rlim_max == alimp->rlim_max)
    279 		return 0;
    280 
    281 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    282 	    p, limp, KAUTH_ARG(which), NULL);
    283 	if (error)
    284 		return (error);
    285 
    286 	lim_privatise(p, false);
    287 	/* p->p_limit is now unchangeable */
    288 	alimp = &p->p_rlimit[which];
    289 
    290 	switch (which) {
    291 
    292 	case RLIMIT_DATA:
    293 		if (limp->rlim_cur > maxdmap)
    294 			limp->rlim_cur = maxdmap;
    295 		if (limp->rlim_max > maxdmap)
    296 			limp->rlim_max = maxdmap;
    297 		break;
    298 
    299 	case RLIMIT_STACK:
    300 		if (limp->rlim_cur > maxsmap)
    301 			limp->rlim_cur = maxsmap;
    302 		if (limp->rlim_max > maxsmap)
    303 			limp->rlim_max = maxsmap;
    304 
    305 		/*
    306 		 * Return EINVAL if the new stack size limit is lower than
    307 		 * current usage. Otherwise, the process would get SIGSEGV the
    308 		 * moment it would try to access anything on it's current stack.
    309 		 * This conforms to SUSv2.
    310 		 */
    311 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    312 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    313 			return (EINVAL);
    314 		}
    315 
    316 		/*
    317 		 * Stack is allocated to the max at exec time with
    318 		 * only "rlim_cur" bytes accessible (In other words,
    319 		 * allocates stack dividing two contiguous regions at
    320 		 * "rlim_cur" bytes boundary).
    321 		 *
    322 		 * Since allocation is done in terms of page, roundup
    323 		 * "rlim_cur" (otherwise, contiguous regions
    324 		 * overlap).  If stack limit is going up make more
    325 		 * accessible, if going down make inaccessible.
    326 		 */
    327 		limp->rlim_cur = round_page(limp->rlim_cur);
    328 		if (limp->rlim_cur != alimp->rlim_cur) {
    329 			vaddr_t addr;
    330 			vsize_t size;
    331 			vm_prot_t prot;
    332 
    333 			if (limp->rlim_cur > alimp->rlim_cur) {
    334 				prot = VM_PROT_READ | VM_PROT_WRITE;
    335 				size = limp->rlim_cur - alimp->rlim_cur;
    336 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    337 				    limp->rlim_cur;
    338 			} else {
    339 				prot = VM_PROT_NONE;
    340 				size = alimp->rlim_cur - limp->rlim_cur;
    341 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    342 				     alimp->rlim_cur;
    343 			}
    344 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    345 			    addr, addr+size, prot, false);
    346 		}
    347 		break;
    348 
    349 	case RLIMIT_NOFILE:
    350 		if (limp->rlim_cur > maxfiles)
    351 			limp->rlim_cur = maxfiles;
    352 		if (limp->rlim_max > maxfiles)
    353 			limp->rlim_max = maxfiles;
    354 		break;
    355 
    356 	case RLIMIT_NPROC:
    357 		if (limp->rlim_cur > maxproc)
    358 			limp->rlim_cur = maxproc;
    359 		if (limp->rlim_max > maxproc)
    360 			limp->rlim_max = maxproc;
    361 		break;
    362 	}
    363 
    364 	mutex_enter(&p->p_limit->pl_lock);
    365 	*alimp = *limp;
    366 	mutex_exit(&p->p_limit->pl_lock);
    367 	return (0);
    368 }
    369 
    370 /* ARGSUSED */
    371 int
    372 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
    373 {
    374 	struct sys_getrlimit_args /* {
    375 		syscallarg(int) which;
    376 		syscallarg(struct rlimit *) rlp;
    377 	} */ *uap = v;
    378 	struct proc *p = l->l_proc;
    379 	int which = SCARG(uap, which);
    380 	struct rlimit rl;
    381 
    382 	if ((u_int)which >= RLIM_NLIMITS)
    383 		return (EINVAL);
    384 
    385 	mutex_enter(&p->p_mutex);
    386 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    387 	mutex_exit(&p->p_mutex);
    388 
    389 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    390 }
    391 
    392 /*
    393  * Transform the running time and tick information in proc p into user,
    394  * system, and interrupt time usage.
    395  *
    396  * Should be called with p->p_smutex held unless called from exit1().
    397  */
    398 void
    399 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    400     struct timeval *ip, struct timeval *rp)
    401 {
    402 	u_quad_t u, st, ut, it, tot;
    403 	unsigned long sec;
    404 	long usec;
    405  	struct timeval tv;
    406 	struct lwp *l;
    407 
    408 	mutex_spin_enter(&p->p_stmutex);
    409 	st = p->p_sticks;
    410 	ut = p->p_uticks;
    411 	it = p->p_iticks;
    412 	mutex_spin_exit(&p->p_stmutex);
    413 
    414 	sec = p->p_rtime.tv_sec;
    415 	usec = p->p_rtime.tv_usec;
    416 
    417 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    418 		lwp_lock(l);
    419 		sec += l->l_rtime.tv_sec;
    420 		if ((usec += l->l_rtime.tv_usec) >= 1000000) {
    421 			sec++;
    422 			usec -= 1000000;
    423 		}
    424 		if ((l->l_flag & LW_RUNNING) != 0) {
    425 			/*
    426 			 * Adjust for the current time slice.  This is
    427 			 * actually fairly important since the error
    428 			 * here is on the order of a time quantum,
    429 			 * which is much greater than the sampling
    430 			 * error.
    431 			 */
    432 			microtime(&tv);
    433 			sec += tv.tv_sec - l->l_stime.tv_sec;
    434 			usec += tv.tv_usec - l->l_stime.tv_usec;
    435 			if (usec >= 1000000) {
    436 				sec++;
    437 				usec -= 1000000;
    438 			}
    439 		}
    440 		lwp_unlock(l);
    441 	}
    442 
    443 	tot = st + ut + it;
    444 	u = sec * 1000000ull + usec;
    445 
    446 	if (tot == 0) {
    447 		/* No ticks, so can't use to share time out, split 50-50 */
    448 		st = ut = u / 2;
    449 	} else {
    450 		st = (u * st) / tot;
    451 		ut = (u * ut) / tot;
    452 	}
    453 	if (sp != NULL) {
    454 		sp->tv_sec = st / 1000000;
    455 		sp->tv_usec = st % 1000000;
    456 	}
    457 	if (up != NULL) {
    458 		up->tv_sec = ut / 1000000;
    459 		up->tv_usec = ut % 1000000;
    460 	}
    461 	if (ip != NULL) {
    462 		if (it != 0)
    463 			it = (u * it) / tot;
    464 		ip->tv_sec = it / 1000000;
    465 		ip->tv_usec = it % 1000000;
    466 	}
    467 	if (rp != NULL) {
    468 		rp->tv_sec = sec;
    469 		rp->tv_usec = usec;
    470 	}
    471 }
    472 
    473 /* ARGSUSED */
    474 int
    475 sys_getrusage(struct lwp *l, void *v, register_t *retval)
    476 {
    477 	struct sys_getrusage_args /* {
    478 		syscallarg(int) who;
    479 		syscallarg(struct rusage *) rusage;
    480 	} */ *uap = v;
    481 	struct rusage ru;
    482 	struct proc *p = l->l_proc;
    483 
    484 	switch (SCARG(uap, who)) {
    485 	case RUSAGE_SELF:
    486 		mutex_enter(&p->p_smutex);
    487 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    488 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    489 		mutex_exit(&p->p_smutex);
    490 		break;
    491 
    492 	case RUSAGE_CHILDREN:
    493 		mutex_enter(&p->p_smutex);
    494 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    495 		mutex_exit(&p->p_smutex);
    496 		break;
    497 
    498 	default:
    499 		return EINVAL;
    500 	}
    501 
    502 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    503 }
    504 
    505 void
    506 ruadd(struct rusage *ru, struct rusage *ru2)
    507 {
    508 	long *ip, *ip2;
    509 	int i;
    510 
    511 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    512 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    513 	if (ru->ru_maxrss < ru2->ru_maxrss)
    514 		ru->ru_maxrss = ru2->ru_maxrss;
    515 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    516 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    517 		*ip++ += *ip2++;
    518 }
    519 
    520 /*
    521  * Make a copy of the plimit structure.
    522  * We share these structures copy-on-write after fork,
    523  * and copy when a limit is changed.
    524  *
    525  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    526  * we are copying to change beneath our feet!
    527  */
    528 struct plimit *
    529 lim_copy(struct plimit *lim)
    530 {
    531 	struct plimit *newlim;
    532 	char *corename;
    533 	size_t alen, len;
    534 
    535 	newlim = pool_get(&plimit_pool, PR_WAITOK);
    536 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    537 	newlim->pl_flags = 0;
    538 	newlim->pl_refcnt = 1;
    539 	newlim->pl_sv_limit = NULL;
    540 
    541 	mutex_enter(&lim->pl_lock);
    542 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    543 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    544 
    545 	alen = 0;
    546 	corename = NULL;
    547 	for (;;) {
    548 		if (lim->pl_corename == defcorename) {
    549 			newlim->pl_corename = defcorename;
    550 			break;
    551 		}
    552 		len = strlen(lim->pl_corename) + 1;
    553 		if (len <= alen) {
    554 			newlim->pl_corename = corename;
    555 			memcpy(corename, lim->pl_corename, len);
    556 			corename = NULL;
    557 			break;
    558 		}
    559 		mutex_exit(&lim->pl_lock);
    560 		if (corename != NULL)
    561 			free(corename, M_TEMP);
    562 		alen = len;
    563 		corename = malloc(alen, M_TEMP, M_WAITOK);
    564 		mutex_enter(&lim->pl_lock);
    565 	}
    566 	mutex_exit(&lim->pl_lock);
    567 	if (corename != NULL)
    568 		free(corename, M_TEMP);
    569 	return newlim;
    570 }
    571 
    572 void
    573 lim_addref(struct plimit *lim)
    574 {
    575 	mutex_enter(&lim->pl_lock);
    576 	lim->pl_refcnt++;
    577 	mutex_exit(&lim->pl_lock);
    578 }
    579 
    580 /*
    581  * Give a process it's own private plimit structure.
    582  * This will only be shared (in fork) if modifications are to be shared.
    583  */
    584 void
    585 lim_privatise(struct proc *p, bool set_shared)
    586 {
    587 	struct plimit *lim, *newlim;
    588 
    589 	lim = p->p_limit;
    590 	if (lim->pl_flags & PL_WRITEABLE) {
    591 		if (set_shared)
    592 			lim->pl_flags |= PL_SHAREMOD;
    593 		return;
    594 	}
    595 
    596 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    597 		return;
    598 
    599 	newlim = lim_copy(lim);
    600 
    601 	mutex_enter(&p->p_mutex);
    602 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    603 		/* Someone crept in while we were busy */
    604 		mutex_exit(&p->p_mutex);
    605 		limfree(newlim);
    606 		if (set_shared)
    607 			p->p_limit->pl_flags |= PL_SHAREMOD;
    608 		return;
    609 	}
    610 
    611 	/*
    612 	 * Since most accesses to p->p_limit aren't locked, we must not
    613 	 * delete the old limit structure yet.
    614 	 */
    615 	newlim->pl_sv_limit = p->p_limit;
    616 	newlim->pl_flags |= PL_WRITEABLE;
    617 	if (set_shared)
    618 		newlim->pl_flags |= PL_SHAREMOD;
    619 	p->p_limit = newlim;
    620 	mutex_exit(&p->p_mutex);
    621 }
    622 
    623 void
    624 limfree(struct plimit *lim)
    625 {
    626 	struct plimit *sv_lim;
    627 	int n;
    628 
    629 	do {
    630 		mutex_enter(&lim->pl_lock);
    631 		n = --lim->pl_refcnt;
    632 		mutex_exit(&lim->pl_lock);
    633 		if (n > 0)
    634 			return;
    635 #ifdef DIAGNOSTIC
    636 		if (n < 0)
    637 			panic("limfree");
    638 #endif
    639 		if (lim->pl_corename != defcorename)
    640 			free(lim->pl_corename, M_TEMP);
    641 		sv_lim = lim->pl_sv_limit;
    642 		mutex_destroy(&lim->pl_lock);
    643 		pool_put(&plimit_pool, lim);
    644 	} while ((lim = sv_lim) != NULL);
    645 }
    646 
    647 struct pstats *
    648 pstatscopy(struct pstats *ps)
    649 {
    650 
    651 	struct pstats *newps;
    652 
    653 	newps = pool_get(&pstats_pool, PR_WAITOK);
    654 
    655 	memset(&newps->pstat_startzero, 0,
    656 	(unsigned) ((char *)&newps->pstat_endzero -
    657 		    (char *)&newps->pstat_startzero));
    658 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    659 	((char *)&newps->pstat_endcopy -
    660 	 (char *)&newps->pstat_startcopy));
    661 
    662 	return (newps);
    663 
    664 }
    665 
    666 void
    667 pstatsfree(struct pstats *ps)
    668 {
    669 
    670 	pool_put(&pstats_pool, ps);
    671 }
    672 
    673 /*
    674  * sysctl interface in five parts
    675  */
    676 
    677 /*
    678  * a routine for sysctl proc subtree helpers that need to pick a valid
    679  * process by pid.
    680  */
    681 static int
    682 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    683 {
    684 	struct proc *ptmp;
    685 	int error = 0;
    686 
    687 	if (pid == PROC_CURPROC)
    688 		ptmp = l->l_proc;
    689 	else if ((ptmp = pfind(pid)) == NULL)
    690 		error = ESRCH;
    691 
    692 	*p2 = ptmp;
    693 	return (error);
    694 }
    695 
    696 /*
    697  * sysctl helper routine for setting a process's specific corefile
    698  * name.  picks the process based on the given pid and checks the
    699  * correctness of the new value.
    700  */
    701 static int
    702 sysctl_proc_corename(SYSCTLFN_ARGS)
    703 {
    704 	struct proc *ptmp;
    705 	struct plimit *lim;
    706 	int error = 0, len;
    707 	char *cname;
    708 	char *ocore;
    709 	char *tmp;
    710 	struct sysctlnode node;
    711 
    712 	/*
    713 	 * is this all correct?
    714 	 */
    715 	if (namelen != 0)
    716 		return (EINVAL);
    717 	if (name[-1] != PROC_PID_CORENAME)
    718 		return (EINVAL);
    719 
    720 	/*
    721 	 * whom are we tweaking?
    722 	 */
    723 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    724 	if (error)
    725 		return (error);
    726 
    727 	/* XXX this should be in p_find() */
    728 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    729 	    ptmp, NULL, NULL, NULL);
    730 	if (error)
    731 		return (error);
    732 
    733 	/*
    734 	 * let them modify a temporary copy of the core name
    735 	 */
    736 	cname = PNBUF_GET();
    737 	lim = ptmp->p_limit;
    738 	mutex_enter(&lim->pl_lock);
    739 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    740 	mutex_exit(&lim->pl_lock);
    741 
    742 	node = *rnode;
    743 	node.sysctl_data = cname;
    744 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    745 
    746 	/*
    747 	 * if that failed, or they have nothing new to say, or we've
    748 	 * heard it before...
    749 	 */
    750 	if (error || newp == NULL)
    751 		goto done;
    752 	lim = ptmp->p_limit;
    753 	mutex_enter(&lim->pl_lock);
    754 	error = strcmp(cname, lim->pl_corename);
    755 	mutex_exit(&lim->pl_lock);
    756 	if (error == 0)
    757 		/* Unchanged */
    758 		goto done;
    759 
    760 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    761 	    ptmp, cname, NULL, NULL);
    762 	if (error)
    763 		return (error);
    764 
    765 	/*
    766 	 * no error yet and cname now has the new core name in it.
    767 	 * let's see if it looks acceptable.  it must be either "core"
    768 	 * or end in ".core" or "/core".
    769 	 */
    770 	len = strlen(cname);
    771 	if (len < 4) {
    772 		error = EINVAL;
    773 	} else if (strcmp(cname + len - 4, "core") != 0) {
    774 		error = EINVAL;
    775 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    776 		error = EINVAL;
    777 	}
    778 	if (error != 0) {
    779 		goto done;
    780 	}
    781 
    782 	/*
    783 	 * hmm...looks good.  now...where do we put it?
    784 	 */
    785 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    786 	if (tmp == NULL) {
    787 		error = ENOMEM;
    788 		goto done;
    789 	}
    790 	memcpy(tmp, cname, len + 1);
    791 
    792 	lim_privatise(ptmp, false);
    793 	lim = ptmp->p_limit;
    794 	mutex_enter(&lim->pl_lock);
    795 	ocore = lim->pl_corename;
    796 	lim->pl_corename = tmp;
    797 	mutex_exit(&lim->pl_lock);
    798 	if (ocore != defcorename)
    799 		free(ocore, M_TEMP);
    800 
    801 done:
    802 	PNBUF_PUT(cname);
    803 	return error;
    804 }
    805 
    806 /*
    807  * sysctl helper routine for checking/setting a process's stop flags,
    808  * one for fork and one for exec.
    809  */
    810 static int
    811 sysctl_proc_stop(SYSCTLFN_ARGS)
    812 {
    813 	struct proc *ptmp;
    814 	int i, f, error = 0;
    815 	struct sysctlnode node;
    816 
    817 	if (namelen != 0)
    818 		return (EINVAL);
    819 
    820 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    821 	if (error)
    822 		return (error);
    823 
    824 	/* XXX this should be in p_find() */
    825 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    826 	    ptmp, NULL, NULL, NULL);
    827 	if (error)
    828 		return (error);
    829 
    830 	switch (rnode->sysctl_num) {
    831 	case PROC_PID_STOPFORK:
    832 		f = PS_STOPFORK;
    833 		break;
    834 	case PROC_PID_STOPEXEC:
    835 		f = PS_STOPEXEC;
    836 		break;
    837 	case PROC_PID_STOPEXIT:
    838 		f = PS_STOPEXIT;
    839 		break;
    840 	default:
    841 		return (EINVAL);
    842 	}
    843 
    844 	i = (ptmp->p_flag & f) ? 1 : 0;
    845 	node = *rnode;
    846 	node.sysctl_data = &i;
    847 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    848 	if (error || newp == NULL)
    849 		return (error);
    850 
    851 	mutex_enter(&ptmp->p_smutex);
    852 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    853 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    854 	if (error)
    855 		return (error);
    856 	if (i)
    857 		ptmp->p_sflag |= f;
    858 	else
    859 		ptmp->p_sflag &= ~f;
    860 	mutex_exit(&ptmp->p_smutex);
    861 
    862 	return (0);
    863 }
    864 
    865 /*
    866  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    867  */
    868 static int
    869 sysctl_proc_plimit(SYSCTLFN_ARGS)
    870 {
    871 	struct proc *ptmp;
    872 	u_int limitno;
    873 	int which, error = 0;
    874         struct rlimit alim;
    875 	struct sysctlnode node;
    876 
    877 	if (namelen != 0)
    878 		return (EINVAL);
    879 
    880 	which = name[-1];
    881 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    882 	    which != PROC_PID_LIMIT_TYPE_HARD)
    883 		return (EINVAL);
    884 
    885 	limitno = name[-2] - 1;
    886 	if (limitno >= RLIM_NLIMITS)
    887 		return (EINVAL);
    888 
    889 	if (name[-3] != PROC_PID_LIMIT)
    890 		return (EINVAL);
    891 
    892 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    893 	if (error)
    894 		return (error);
    895 
    896 	/* XXX this should be in p_find() */
    897 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    898 	    ptmp, NULL, NULL, NULL);
    899 	if (error)
    900 		return (error);
    901 
    902 	node = *rnode;
    903 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    904 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    905 		node.sysctl_data = &alim.rlim_max;
    906 	else
    907 		node.sysctl_data = &alim.rlim_cur;
    908 
    909 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    910 	if (error || newp == NULL)
    911 		return (error);
    912 
    913 	return (dosetrlimit(l, ptmp, limitno, &alim));
    914 }
    915 
    916 /*
    917  * and finally, the actually glue that sticks it to the tree
    918  */
    919 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    920 {
    921 
    922 	sysctl_createv(clog, 0, NULL, NULL,
    923 		       CTLFLAG_PERMANENT,
    924 		       CTLTYPE_NODE, "proc", NULL,
    925 		       NULL, 0, NULL, 0,
    926 		       CTL_PROC, CTL_EOL);
    927 	sysctl_createv(clog, 0, NULL, NULL,
    928 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    929 		       CTLTYPE_NODE, "curproc",
    930 		       SYSCTL_DESCR("Per-process settings"),
    931 		       NULL, 0, NULL, 0,
    932 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    933 
    934 	sysctl_createv(clog, 0, NULL, NULL,
    935 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    936 		       CTLTYPE_STRING, "corename",
    937 		       SYSCTL_DESCR("Core file name"),
    938 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    939 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    940 	sysctl_createv(clog, 0, NULL, NULL,
    941 		       CTLFLAG_PERMANENT,
    942 		       CTLTYPE_NODE, "rlimit",
    943 		       SYSCTL_DESCR("Process limits"),
    944 		       NULL, 0, NULL, 0,
    945 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    946 
    947 #define create_proc_plimit(s, n) do {					\
    948 	sysctl_createv(clog, 0, NULL, NULL,				\
    949 		       CTLFLAG_PERMANENT,				\
    950 		       CTLTYPE_NODE, s,					\
    951 		       SYSCTL_DESCR("Process " s " limits"),		\
    952 		       NULL, 0, NULL, 0,				\
    953 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    954 		       CTL_EOL);					\
    955 	sysctl_createv(clog, 0, NULL, NULL,				\
    956 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    957 		       CTLTYPE_QUAD, "soft",				\
    958 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    959 		       sysctl_proc_plimit, 0, NULL, 0,			\
    960 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    961 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    962 	sysctl_createv(clog, 0, NULL, NULL,				\
    963 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    964 		       CTLTYPE_QUAD, "hard",				\
    965 		       SYSCTL_DESCR("Process hard " s " limit"),	\
    966 		       sysctl_proc_plimit, 0, NULL, 0,			\
    967 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    968 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
    969 	} while (0/*CONSTCOND*/)
    970 
    971 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
    972 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
    973 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
    974 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
    975 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
    976 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
    977 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
    978 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
    979 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
    980 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
    981 
    982 #undef create_proc_plimit
    983 
    984 	sysctl_createv(clog, 0, NULL, NULL,
    985 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    986 		       CTLTYPE_INT, "stopfork",
    987 		       SYSCTL_DESCR("Stop process at fork(2)"),
    988 		       sysctl_proc_stop, 0, NULL, 0,
    989 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
    990 	sysctl_createv(clog, 0, NULL, NULL,
    991 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    992 		       CTLTYPE_INT, "stopexec",
    993 		       SYSCTL_DESCR("Stop process at execve(2)"),
    994 		       sysctl_proc_stop, 0, NULL, 0,
    995 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
    996 	sysctl_createv(clog, 0, NULL, NULL,
    997 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    998 		       CTLTYPE_INT, "stopexit",
    999 		       SYSCTL_DESCR("Stop process before completing exit"),
   1000 		       sysctl_proc_stop, 0, NULL, 0,
   1001 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1002 }
   1003 
   1004 void
   1005 uid_init(void)
   1006 {
   1007 
   1008 	/*
   1009 	 * XXXSMP This could be at IPL_SOFTNET, but for now we want
   1010 	 * to to be deadlock free, so it must be at IPL_VM.
   1011 	 */
   1012 	mutex_init(&uihashtbl_lock, MUTEX_DRIVER, IPL_VM);
   1013 
   1014 	/*
   1015 	 * Ensure that uid 0 is always in the user hash table, as
   1016 	 * sbreserve() expects it available from interrupt context.
   1017 	 */
   1018 	(void)uid_find(0);
   1019 }
   1020 
   1021 struct uidinfo *
   1022 uid_find(uid_t uid)
   1023 {
   1024 	struct uidinfo *uip;
   1025 	struct uidinfo *newuip = NULL;
   1026 	struct uihashhead *uipp;
   1027 
   1028 	uipp = UIHASH(uid);
   1029 
   1030 again:
   1031 	mutex_enter(&uihashtbl_lock);
   1032 	LIST_FOREACH(uip, uipp, ui_hash)
   1033 		if (uip->ui_uid == uid) {
   1034 			mutex_exit(&uihashtbl_lock);
   1035 			if (newuip) {
   1036 				mutex_destroy(&newuip->ui_lock);
   1037 				free(newuip, M_PROC);
   1038 			}
   1039 			return uip;
   1040 		}
   1041 	if (newuip == NULL) {
   1042 		mutex_exit(&uihashtbl_lock);
   1043 		/* Must not be called from interrupt context. */
   1044 		newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
   1045 		/* XXX this could be IPL_SOFTNET */
   1046 		mutex_init(&newuip->ui_lock, MUTEX_DRIVER, IPL_VM);
   1047 		goto again;
   1048 	}
   1049 	uip = newuip;
   1050 
   1051 	LIST_INSERT_HEAD(uipp, uip, ui_hash);
   1052 	uip->ui_uid = uid;
   1053 	mutex_exit(&uihashtbl_lock);
   1054 
   1055 	return uip;
   1056 }
   1057 
   1058 /*
   1059  * Change the count associated with number of processes
   1060  * a given user is using.
   1061  */
   1062 int
   1063 chgproccnt(uid_t uid, int diff)
   1064 {
   1065 	struct uidinfo *uip;
   1066 
   1067 	if (diff == 0)
   1068 		return 0;
   1069 
   1070 	uip = uid_find(uid);
   1071 	mutex_enter(&uip->ui_lock);
   1072 	uip->ui_proccnt += diff;
   1073 	KASSERT(uip->ui_proccnt >= 0);
   1074 	mutex_exit(&uip->ui_lock);
   1075 	return uip->ui_proccnt;
   1076 }
   1077 
   1078 int
   1079 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1080 {
   1081 	rlim_t nsb;
   1082 
   1083 	mutex_enter(&uip->ui_lock);
   1084 	nsb = uip->ui_sbsize + to - *hiwat;
   1085 	if (to > *hiwat && nsb > xmax) {
   1086 		mutex_exit(&uip->ui_lock);
   1087 		return 0;
   1088 	}
   1089 	*hiwat = to;
   1090 	uip->ui_sbsize = nsb;
   1091 	KASSERT(uip->ui_sbsize >= 0);
   1092 	mutex_exit(&uip->ui_lock);
   1093 	return 1;
   1094 }
   1095