Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.122
      1 /*	$NetBSD: kern_resource.c,v 1.122 2007/09/29 12:22:31 dsl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.122 2007/09/29 12:22:31 dsl Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/kauth.h>
     53 
     54 #include <sys/mount.h>
     55 #include <sys/syscallargs.h>
     56 
     57 #include <uvm/uvm_extern.h>
     58 
     59 /*
     60  * Maximum process data and stack limits.
     61  * They are variables so they are patchable.
     62  */
     63 rlim_t maxdmap = MAXDSIZ;
     64 rlim_t maxsmap = MAXSSIZ;
     65 
     66 struct uihashhead *uihashtbl;
     67 u_long uihash;		/* size of hash table - 1 */
     68 kmutex_t uihashtbl_lock;
     69 
     70 /*
     71  * Resource controls and accounting.
     72  */
     73 
     74 int
     75 sys_getpriority(struct lwp *l, void *v, register_t *retval)
     76 {
     77 	struct sys_getpriority_args /* {
     78 		syscallarg(int) which;
     79 		syscallarg(id_t) who;
     80 	} */ *uap = v;
     81 	struct proc *curp = l->l_proc, *p;
     82 	int low = NZERO + PRIO_MAX + 1;
     83 	int who = SCARG(uap, who);
     84 
     85 	mutex_enter(&proclist_lock);
     86 	switch (SCARG(uap, which)) {
     87 	case PRIO_PROCESS:
     88 		if (who == 0)
     89 			p = curp;
     90 		else
     91 			p = p_find(who, PFIND_LOCKED);
     92 		if (p != NULL)
     93 			low = p->p_nice;
     94 		break;
     95 
     96 	case PRIO_PGRP: {
     97 		struct pgrp *pg;
     98 
     99 		if (who == 0)
    100 			pg = curp->p_pgrp;
    101 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    102 			break;
    103 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    104 			if (p->p_nice < low)
    105 				low = p->p_nice;
    106 		}
    107 		break;
    108 	}
    109 
    110 	case PRIO_USER:
    111 		if (who == 0)
    112 			who = (int)kauth_cred_geteuid(l->l_cred);
    113 		PROCLIST_FOREACH(p, &allproc) {
    114 			mutex_enter(&p->p_mutex);
    115 			if (kauth_cred_geteuid(p->p_cred) ==
    116 			    (uid_t)who && p->p_nice < low)
    117 				low = p->p_nice;
    118 			mutex_exit(&p->p_mutex);
    119 		}
    120 		break;
    121 
    122 	default:
    123 		mutex_exit(&proclist_lock);
    124 		return (EINVAL);
    125 	}
    126 	mutex_exit(&proclist_lock);
    127 
    128 	if (low == NZERO + PRIO_MAX + 1)
    129 		return (ESRCH);
    130 	*retval = low - NZERO;
    131 	return (0);
    132 }
    133 
    134 /* ARGSUSED */
    135 int
    136 sys_setpriority(struct lwp *l, void *v, register_t *retval)
    137 {
    138 	struct sys_setpriority_args /* {
    139 		syscallarg(int) which;
    140 		syscallarg(id_t) who;
    141 		syscallarg(int) prio;
    142 	} */ *uap = v;
    143 	struct proc *curp = l->l_proc, *p;
    144 	int found = 0, error = 0;
    145 	int who = SCARG(uap, who);
    146 
    147 	mutex_enter(&proclist_lock);
    148 	switch (SCARG(uap, which)) {
    149 	case PRIO_PROCESS:
    150 		if (who == 0)
    151 			p = curp;
    152 		else
    153 			p = p_find(who, PFIND_LOCKED);
    154 		if (p != 0) {
    155 			mutex_enter(&p->p_mutex);
    156 			error = donice(l, p, SCARG(uap, prio));
    157 			mutex_exit(&p->p_mutex);
    158 		}
    159 		found++;
    160 		break;
    161 
    162 	case PRIO_PGRP: {
    163 		struct pgrp *pg;
    164 
    165 		if (who == 0)
    166 			pg = curp->p_pgrp;
    167 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    168 			break;
    169 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    170 			mutex_enter(&p->p_mutex);
    171 			error = donice(l, p, SCARG(uap, prio));
    172 			mutex_exit(&p->p_mutex);
    173 			found++;
    174 		}
    175 		break;
    176 	}
    177 
    178 	case PRIO_USER:
    179 		if (who == 0)
    180 			who = (int)kauth_cred_geteuid(l->l_cred);
    181 		PROCLIST_FOREACH(p, &allproc) {
    182 			mutex_enter(&p->p_mutex);
    183 			if (kauth_cred_geteuid(p->p_cred) ==
    184 			    (uid_t)SCARG(uap, who)) {
    185 				error = donice(l, p, SCARG(uap, prio));
    186 				found++;
    187 			}
    188 			mutex_exit(&p->p_mutex);
    189 		}
    190 		break;
    191 
    192 	default:
    193 		error = EINVAL;
    194 		break;
    195 	}
    196 	mutex_exit(&proclist_lock);
    197 	if (found == 0)
    198 		return (ESRCH);
    199 	return (error);
    200 }
    201 
    202 /*
    203  * Renice a process.
    204  *
    205  * Call with the target process' credentials locked.
    206  */
    207 int
    208 donice(struct lwp *l, struct proc *chgp, int n)
    209 {
    210 	kauth_cred_t cred = l->l_cred;
    211 	int onice;
    212 
    213 	KASSERT(mutex_owned(&chgp->p_mutex));
    214 
    215 	if (n > PRIO_MAX)
    216 		n = PRIO_MAX;
    217 	if (n < PRIO_MIN)
    218 		n = PRIO_MIN;
    219 	n += NZERO;
    220 	onice = chgp->p_nice;
    221 	onice = chgp->p_nice;
    222 
    223   again:
    224 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    225 	    KAUTH_ARG(n), NULL, NULL))
    226 		return (EACCES);
    227 	mutex_spin_enter(&chgp->p_stmutex);
    228 	if (onice != chgp->p_nice) {
    229 		mutex_spin_exit(&chgp->p_stmutex);
    230 		goto again;
    231 	}
    232 	sched_nice(chgp, n);
    233 	mutex_spin_exit(&chgp->p_stmutex);
    234 	return (0);
    235 }
    236 
    237 /* ARGSUSED */
    238 int
    239 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
    240 {
    241 	struct sys_setrlimit_args /* {
    242 		syscallarg(int) which;
    243 		syscallarg(const struct rlimit *) rlp;
    244 	} */ *uap = v;
    245 	int which = SCARG(uap, which);
    246 	struct rlimit alim;
    247 	int error;
    248 
    249 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    250 	if (error)
    251 		return (error);
    252 	return (dosetrlimit(l, l->l_proc, which, &alim));
    253 }
    254 
    255 int
    256 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    257 {
    258 	struct rlimit *alimp;
    259 	int error;
    260 
    261 	if ((u_int)which >= RLIM_NLIMITS)
    262 		return (EINVAL);
    263 
    264 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    265 		return (EINVAL);
    266 
    267 	if (limp->rlim_cur > limp->rlim_max) {
    268 		/*
    269 		 * This is programming error. According to SUSv2, we should
    270 		 * return error in this case.
    271 		 */
    272 		return (EINVAL);
    273 	}
    274 
    275 	alimp = &p->p_rlimit[which];
    276 	/* if we don't change the value, no need to limcopy() */
    277 	if (limp->rlim_cur == alimp->rlim_cur &&
    278 	    limp->rlim_max == alimp->rlim_max)
    279 		return 0;
    280 
    281 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    282 	    p, limp, KAUTH_ARG(which), NULL);
    283 	if (error)
    284 		return (error);
    285 
    286 	lim_privatise(p, false);
    287 	/* p->p_limit is now unchangeable */
    288 	alimp = &p->p_rlimit[which];
    289 
    290 	switch (which) {
    291 
    292 	case RLIMIT_DATA:
    293 		if (limp->rlim_cur > maxdmap)
    294 			limp->rlim_cur = maxdmap;
    295 		if (limp->rlim_max > maxdmap)
    296 			limp->rlim_max = maxdmap;
    297 		break;
    298 
    299 	case RLIMIT_STACK:
    300 		if (limp->rlim_cur > maxsmap)
    301 			limp->rlim_cur = maxsmap;
    302 		if (limp->rlim_max > maxsmap)
    303 			limp->rlim_max = maxsmap;
    304 
    305 		/*
    306 		 * Return EINVAL if the new stack size limit is lower than
    307 		 * current usage. Otherwise, the process would get SIGSEGV the
    308 		 * moment it would try to access anything on it's current stack.
    309 		 * This conforms to SUSv2.
    310 		 */
    311 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    312 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    313 			return (EINVAL);
    314 		}
    315 
    316 		/*
    317 		 * Stack is allocated to the max at exec time with
    318 		 * only "rlim_cur" bytes accessible (In other words,
    319 		 * allocates stack dividing two contiguous regions at
    320 		 * "rlim_cur" bytes boundary).
    321 		 *
    322 		 * Since allocation is done in terms of page, roundup
    323 		 * "rlim_cur" (otherwise, contiguous regions
    324 		 * overlap).  If stack limit is going up make more
    325 		 * accessible, if going down make inaccessible.
    326 		 */
    327 		limp->rlim_cur = round_page(limp->rlim_cur);
    328 		if (limp->rlim_cur != alimp->rlim_cur) {
    329 			vaddr_t addr;
    330 			vsize_t size;
    331 			vm_prot_t prot;
    332 
    333 			if (limp->rlim_cur > alimp->rlim_cur) {
    334 				prot = VM_PROT_READ | VM_PROT_WRITE;
    335 				size = limp->rlim_cur - alimp->rlim_cur;
    336 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    337 				    limp->rlim_cur;
    338 			} else {
    339 				prot = VM_PROT_NONE;
    340 				size = alimp->rlim_cur - limp->rlim_cur;
    341 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    342 				     alimp->rlim_cur;
    343 			}
    344 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    345 			    addr, addr+size, prot, false);
    346 		}
    347 		break;
    348 
    349 	case RLIMIT_NOFILE:
    350 		if (limp->rlim_cur > maxfiles)
    351 			limp->rlim_cur = maxfiles;
    352 		if (limp->rlim_max > maxfiles)
    353 			limp->rlim_max = maxfiles;
    354 		break;
    355 
    356 	case RLIMIT_NPROC:
    357 		if (limp->rlim_cur > maxproc)
    358 			limp->rlim_cur = maxproc;
    359 		if (limp->rlim_max > maxproc)
    360 			limp->rlim_max = maxproc;
    361 		break;
    362 	}
    363 
    364 	mutex_enter(&p->p_limit->pl_lock);
    365 	*alimp = *limp;
    366 	mutex_exit(&p->p_limit->pl_lock);
    367 	return (0);
    368 }
    369 
    370 /* ARGSUSED */
    371 int
    372 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
    373 {
    374 	struct sys_getrlimit_args /* {
    375 		syscallarg(int) which;
    376 		syscallarg(struct rlimit *) rlp;
    377 	} */ *uap = v;
    378 	struct proc *p = l->l_proc;
    379 	int which = SCARG(uap, which);
    380 	struct rlimit rl;
    381 
    382 	if ((u_int)which >= RLIM_NLIMITS)
    383 		return (EINVAL);
    384 
    385 	mutex_enter(&p->p_mutex);
    386 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    387 	mutex_exit(&p->p_mutex);
    388 
    389 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    390 }
    391 
    392 /*
    393  * Transform the running time and tick information in proc p into user,
    394  * system, and interrupt time usage.
    395  *
    396  * Should be called with p->p_smutex held unless called from exit1().
    397  */
    398 void
    399 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    400     struct timeval *ip, struct timeval *rp)
    401 {
    402 	u_quad_t u, st, ut, it, tot;
    403 	unsigned long sec;
    404 	long usec;
    405  	struct timeval tv;
    406 	struct lwp *l;
    407 
    408 	mutex_spin_enter(&p->p_stmutex);
    409 	st = p->p_sticks;
    410 	ut = p->p_uticks;
    411 	it = p->p_iticks;
    412 	mutex_spin_exit(&p->p_stmutex);
    413 
    414 	sec = p->p_rtime.tv_sec;
    415 	usec = p->p_rtime.tv_usec;
    416 
    417 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    418 		lwp_lock(l);
    419 		sec += l->l_rtime.tv_sec;
    420 		if ((usec += l->l_rtime.tv_usec) >= 1000000) {
    421 			sec++;
    422 			usec -= 1000000;
    423 		}
    424 		if (l->l_cpu == curcpu()) {
    425 			struct schedstate_percpu *spc;
    426 
    427 			KDASSERT(l->l_cpu != NULL);
    428 			spc = &l->l_cpu->ci_schedstate;
    429 
    430 			/*
    431 			 * Adjust for the current time slice.  This is
    432 			 * actually fairly important since the error
    433 			 * here is on the order of a time quantum,
    434 			 * which is much greater than the sampling
    435 			 * error.
    436 			 */
    437 			microtime(&tv);
    438 			sec += tv.tv_sec - spc->spc_runtime.tv_sec;
    439 			usec += tv.tv_usec - spc->spc_runtime.tv_usec;
    440 			if (usec >= 1000000) {
    441 				sec++;
    442 				usec -= 1000000;
    443 			}
    444 		}
    445 		lwp_unlock(l);
    446 	}
    447 
    448 	tot = st + ut + it;
    449 	u = sec * 1000000ull + usec;
    450 
    451 	if (tot == 0) {
    452 		/* No ticks, so can't use to share time out, split 50-50 */
    453 		st = ut = u / 2;
    454 	} else {
    455 		st = (u * st) / tot;
    456 		ut = (u * ut) / tot;
    457 	}
    458 	if (sp != NULL) {
    459 		sp->tv_sec = st / 1000000;
    460 		sp->tv_usec = st % 1000000;
    461 	}
    462 	if (up != NULL) {
    463 		up->tv_sec = ut / 1000000;
    464 		up->tv_usec = ut % 1000000;
    465 	}
    466 	if (ip != NULL) {
    467 		if (it != 0)
    468 			it = (u * it) / tot;
    469 		ip->tv_sec = it / 1000000;
    470 		ip->tv_usec = it % 1000000;
    471 	}
    472 	if (rp != NULL) {
    473 		rp->tv_sec = sec;
    474 		rp->tv_usec = usec;
    475 	}
    476 }
    477 
    478 /* ARGSUSED */
    479 int
    480 sys_getrusage(struct lwp *l, void *v, register_t *retval)
    481 {
    482 	struct sys_getrusage_args /* {
    483 		syscallarg(int) who;
    484 		syscallarg(struct rusage *) rusage;
    485 	} */ *uap = v;
    486 	struct rusage ru;
    487 	struct proc *p = l->l_proc;
    488 
    489 	switch (SCARG(uap, who)) {
    490 	case RUSAGE_SELF:
    491 		mutex_enter(&p->p_smutex);
    492 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    493 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    494 		mutex_exit(&p->p_smutex);
    495 		break;
    496 
    497 	case RUSAGE_CHILDREN:
    498 		mutex_enter(&p->p_smutex);
    499 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    500 		mutex_exit(&p->p_smutex);
    501 		break;
    502 
    503 	default:
    504 		return EINVAL;
    505 	}
    506 
    507 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    508 }
    509 
    510 void
    511 ruadd(struct rusage *ru, struct rusage *ru2)
    512 {
    513 	long *ip, *ip2;
    514 	int i;
    515 
    516 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    517 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    518 	if (ru->ru_maxrss < ru2->ru_maxrss)
    519 		ru->ru_maxrss = ru2->ru_maxrss;
    520 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    521 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    522 		*ip++ += *ip2++;
    523 }
    524 
    525 /*
    526  * Make a copy of the plimit structure.
    527  * We share these structures copy-on-write after fork,
    528  * and copy when a limit is changed.
    529  *
    530  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    531  * we are copying to change beneath our feet!
    532  */
    533 struct plimit *
    534 lim_copy(struct plimit *lim)
    535 {
    536 	struct plimit *newlim;
    537 	char *corename;
    538 	size_t alen, len;
    539 
    540 	newlim = pool_get(&plimit_pool, PR_WAITOK);
    541 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    542 	newlim->pl_flags = 0;
    543 	newlim->pl_refcnt = 1;
    544 	newlim->pl_sv_limit = NULL;
    545 
    546 	mutex_enter(&lim->pl_lock);
    547 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    548 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    549 
    550 	alen = 0;
    551 	corename = NULL;
    552 	for (;;) {
    553 		if (lim->pl_corename == defcorename) {
    554 			newlim->pl_corename = defcorename;
    555 			break;
    556 		}
    557 		len = strlen(lim->pl_corename) + 1;
    558 		if (len <= alen) {
    559 			newlim->pl_corename = corename;
    560 			memcpy(corename, lim->pl_corename, len);
    561 			corename = NULL;
    562 			break;
    563 		}
    564 		mutex_exit(&lim->pl_lock);
    565 		if (corename != NULL)
    566 			free(corename, M_TEMP);
    567 		alen = len;
    568 		corename = malloc(alen, M_TEMP, M_WAITOK);
    569 		mutex_enter(&lim->pl_lock);
    570 	}
    571 	mutex_exit(&lim->pl_lock);
    572 	if (corename != NULL)
    573 		free(corename, M_TEMP);
    574 	return newlim;
    575 }
    576 
    577 void
    578 lim_addref(struct plimit *lim)
    579 {
    580 	mutex_enter(&lim->pl_lock);
    581 	lim->pl_refcnt++;
    582 	mutex_exit(&lim->pl_lock);
    583 }
    584 
    585 /*
    586  * Give a process it's own private plimit structure.
    587  * This will only be shared (in fork) if modifications are to be shared.
    588  */
    589 void
    590 lim_privatise(struct proc *p, bool set_shared)
    591 {
    592 	struct plimit *lim, *newlim;
    593 
    594 	lim = p->p_limit;
    595 	if (lim->pl_flags & PL_WRITEABLE) {
    596 		if (set_shared)
    597 			lim->pl_flags |= PL_SHAREMOD;
    598 		return;
    599 	}
    600 
    601 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    602 		return;
    603 
    604 	newlim = lim_copy(lim);
    605 
    606 	mutex_enter(&p->p_mutex);
    607 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    608 		/* Someone crept in while we were busy */
    609 		mutex_exit(&p->p_mutex);
    610 		limfree(newlim);
    611 		if (set_shared)
    612 			p->p_limit->pl_flags |= PL_SHAREMOD;
    613 		return;
    614 	}
    615 
    616 	/*
    617 	 * Since most accesses to p->p_limit aren't locked, we must not
    618 	 * delete the old limit structure yet.
    619 	 */
    620 	newlim->pl_sv_limit = p->p_limit;
    621 	newlim->pl_flags |= PL_WRITEABLE;
    622 	if (set_shared)
    623 		newlim->pl_flags |= PL_SHAREMOD;
    624 	p->p_limit = newlim;
    625 	mutex_exit(&p->p_mutex);
    626 }
    627 
    628 void
    629 limfree(struct plimit *lim)
    630 {
    631 	struct plimit *sv_lim;
    632 	int n;
    633 
    634 	do {
    635 		mutex_enter(&lim->pl_lock);
    636 		n = --lim->pl_refcnt;
    637 		mutex_exit(&lim->pl_lock);
    638 		if (n > 0)
    639 			return;
    640 #ifdef DIAGNOSTIC
    641 		if (n < 0)
    642 			panic("limfree");
    643 #endif
    644 		if (lim->pl_corename != defcorename)
    645 			free(lim->pl_corename, M_TEMP);
    646 		sv_lim = lim->pl_sv_limit;
    647 		mutex_destroy(&lim->pl_lock);
    648 		pool_put(&plimit_pool, lim);
    649 	} while ((lim = sv_lim) != NULL);
    650 }
    651 
    652 struct pstats *
    653 pstatscopy(struct pstats *ps)
    654 {
    655 
    656 	struct pstats *newps;
    657 
    658 	newps = pool_get(&pstats_pool, PR_WAITOK);
    659 
    660 	memset(&newps->pstat_startzero, 0,
    661 	(unsigned) ((char *)&newps->pstat_endzero -
    662 		    (char *)&newps->pstat_startzero));
    663 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    664 	((char *)&newps->pstat_endcopy -
    665 	 (char *)&newps->pstat_startcopy));
    666 
    667 	return (newps);
    668 
    669 }
    670 
    671 void
    672 pstatsfree(struct pstats *ps)
    673 {
    674 
    675 	pool_put(&pstats_pool, ps);
    676 }
    677 
    678 /*
    679  * sysctl interface in five parts
    680  */
    681 
    682 /*
    683  * a routine for sysctl proc subtree helpers that need to pick a valid
    684  * process by pid.
    685  */
    686 static int
    687 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    688 {
    689 	struct proc *ptmp;
    690 	int error = 0;
    691 
    692 	if (pid == PROC_CURPROC)
    693 		ptmp = l->l_proc;
    694 	else if ((ptmp = pfind(pid)) == NULL)
    695 		error = ESRCH;
    696 
    697 	*p2 = ptmp;
    698 	return (error);
    699 }
    700 
    701 /*
    702  * sysctl helper routine for setting a process's specific corefile
    703  * name.  picks the process based on the given pid and checks the
    704  * correctness of the new value.
    705  */
    706 static int
    707 sysctl_proc_corename(SYSCTLFN_ARGS)
    708 {
    709 	struct proc *ptmp;
    710 	struct plimit *lim;
    711 	int error = 0, len;
    712 	char *cname;
    713 	char *ocore;
    714 	char *tmp;
    715 	struct sysctlnode node;
    716 
    717 	/*
    718 	 * is this all correct?
    719 	 */
    720 	if (namelen != 0)
    721 		return (EINVAL);
    722 	if (name[-1] != PROC_PID_CORENAME)
    723 		return (EINVAL);
    724 
    725 	/*
    726 	 * whom are we tweaking?
    727 	 */
    728 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    729 	if (error)
    730 		return (error);
    731 
    732 	/* XXX this should be in p_find() */
    733 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    734 	    ptmp, NULL, NULL, NULL);
    735 	if (error)
    736 		return (error);
    737 
    738 	/*
    739 	 * let them modify a temporary copy of the core name
    740 	 */
    741 	cname = PNBUF_GET();
    742 	lim = ptmp->p_limit;
    743 	mutex_enter(&lim->pl_lock);
    744 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    745 	mutex_exit(&lim->pl_lock);
    746 
    747 	node = *rnode;
    748 	node.sysctl_data = cname;
    749 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    750 
    751 	/*
    752 	 * if that failed, or they have nothing new to say, or we've
    753 	 * heard it before...
    754 	 */
    755 	if (error || newp == NULL)
    756 		goto done;
    757 	lim = ptmp->p_limit;
    758 	mutex_enter(&lim->pl_lock);
    759 	error = strcmp(cname, lim->pl_corename);
    760 	mutex_exit(&lim->pl_lock);
    761 	if (error == 0)
    762 		/* Unchanged */
    763 		goto done;
    764 
    765 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    766 	    ptmp, cname, NULL, NULL);
    767 	if (error)
    768 		return (error);
    769 
    770 	/*
    771 	 * no error yet and cname now has the new core name in it.
    772 	 * let's see if it looks acceptable.  it must be either "core"
    773 	 * or end in ".core" or "/core".
    774 	 */
    775 	len = strlen(cname);
    776 	if (len < 4) {
    777 		error = EINVAL;
    778 	} else if (strcmp(cname + len - 4, "core") != 0) {
    779 		error = EINVAL;
    780 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    781 		error = EINVAL;
    782 	}
    783 	if (error != 0) {
    784 		goto done;
    785 	}
    786 
    787 	/*
    788 	 * hmm...looks good.  now...where do we put it?
    789 	 */
    790 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    791 	if (tmp == NULL) {
    792 		error = ENOMEM;
    793 		goto done;
    794 	}
    795 	memcpy(tmp, cname, len + 1);
    796 
    797 	lim_privatise(ptmp, false);
    798 	lim = ptmp->p_limit;
    799 	mutex_enter(&lim->pl_lock);
    800 	ocore = lim->pl_corename;
    801 	lim->pl_corename = tmp;
    802 	mutex_exit(&lim->pl_lock);
    803 	if (ocore != defcorename)
    804 		free(ocore, M_TEMP);
    805 
    806 done:
    807 	PNBUF_PUT(cname);
    808 	return error;
    809 }
    810 
    811 /*
    812  * sysctl helper routine for checking/setting a process's stop flags,
    813  * one for fork and one for exec.
    814  */
    815 static int
    816 sysctl_proc_stop(SYSCTLFN_ARGS)
    817 {
    818 	struct proc *ptmp;
    819 	int i, f, error = 0;
    820 	struct sysctlnode node;
    821 
    822 	if (namelen != 0)
    823 		return (EINVAL);
    824 
    825 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    826 	if (error)
    827 		return (error);
    828 
    829 	/* XXX this should be in p_find() */
    830 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    831 	    ptmp, NULL, NULL, NULL);
    832 	if (error)
    833 		return (error);
    834 
    835 	switch (rnode->sysctl_num) {
    836 	case PROC_PID_STOPFORK:
    837 		f = PS_STOPFORK;
    838 		break;
    839 	case PROC_PID_STOPEXEC:
    840 		f = PS_STOPEXEC;
    841 		break;
    842 	case PROC_PID_STOPEXIT:
    843 		f = PS_STOPEXIT;
    844 		break;
    845 	default:
    846 		return (EINVAL);
    847 	}
    848 
    849 	i = (ptmp->p_flag & f) ? 1 : 0;
    850 	node = *rnode;
    851 	node.sysctl_data = &i;
    852 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    853 	if (error || newp == NULL)
    854 		return (error);
    855 
    856 	mutex_enter(&ptmp->p_smutex);
    857 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    858 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    859 	if (error)
    860 		return (error);
    861 	if (i)
    862 		ptmp->p_sflag |= f;
    863 	else
    864 		ptmp->p_sflag &= ~f;
    865 	mutex_exit(&ptmp->p_smutex);
    866 
    867 	return (0);
    868 }
    869 
    870 /*
    871  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    872  */
    873 static int
    874 sysctl_proc_plimit(SYSCTLFN_ARGS)
    875 {
    876 	struct proc *ptmp;
    877 	u_int limitno;
    878 	int which, error = 0;
    879         struct rlimit alim;
    880 	struct sysctlnode node;
    881 
    882 	if (namelen != 0)
    883 		return (EINVAL);
    884 
    885 	which = name[-1];
    886 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    887 	    which != PROC_PID_LIMIT_TYPE_HARD)
    888 		return (EINVAL);
    889 
    890 	limitno = name[-2] - 1;
    891 	if (limitno >= RLIM_NLIMITS)
    892 		return (EINVAL);
    893 
    894 	if (name[-3] != PROC_PID_LIMIT)
    895 		return (EINVAL);
    896 
    897 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    898 	if (error)
    899 		return (error);
    900 
    901 	/* XXX this should be in p_find() */
    902 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
    903 	    ptmp, NULL, NULL, NULL);
    904 	if (error)
    905 		return (error);
    906 
    907 	node = *rnode;
    908 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    909 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    910 		node.sysctl_data = &alim.rlim_max;
    911 	else
    912 		node.sysctl_data = &alim.rlim_cur;
    913 
    914 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    915 	if (error || newp == NULL)
    916 		return (error);
    917 
    918 	return (dosetrlimit(l, ptmp, limitno, &alim));
    919 }
    920 
    921 /*
    922  * and finally, the actually glue that sticks it to the tree
    923  */
    924 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    925 {
    926 
    927 	sysctl_createv(clog, 0, NULL, NULL,
    928 		       CTLFLAG_PERMANENT,
    929 		       CTLTYPE_NODE, "proc", NULL,
    930 		       NULL, 0, NULL, 0,
    931 		       CTL_PROC, CTL_EOL);
    932 	sysctl_createv(clog, 0, NULL, NULL,
    933 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    934 		       CTLTYPE_NODE, "curproc",
    935 		       SYSCTL_DESCR("Per-process settings"),
    936 		       NULL, 0, NULL, 0,
    937 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    938 
    939 	sysctl_createv(clog, 0, NULL, NULL,
    940 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    941 		       CTLTYPE_STRING, "corename",
    942 		       SYSCTL_DESCR("Core file name"),
    943 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    944 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    945 	sysctl_createv(clog, 0, NULL, NULL,
    946 		       CTLFLAG_PERMANENT,
    947 		       CTLTYPE_NODE, "rlimit",
    948 		       SYSCTL_DESCR("Process limits"),
    949 		       NULL, 0, NULL, 0,
    950 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    951 
    952 #define create_proc_plimit(s, n) do {					\
    953 	sysctl_createv(clog, 0, NULL, NULL,				\
    954 		       CTLFLAG_PERMANENT,				\
    955 		       CTLTYPE_NODE, s,					\
    956 		       SYSCTL_DESCR("Process " s " limits"),		\
    957 		       NULL, 0, NULL, 0,				\
    958 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    959 		       CTL_EOL);					\
    960 	sysctl_createv(clog, 0, NULL, NULL,				\
    961 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    962 		       CTLTYPE_QUAD, "soft",				\
    963 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    964 		       sysctl_proc_plimit, 0, NULL, 0,			\
    965 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    966 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    967 	sysctl_createv(clog, 0, NULL, NULL,				\
    968 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    969 		       CTLTYPE_QUAD, "hard",				\
    970 		       SYSCTL_DESCR("Process hard " s " limit"),	\
    971 		       sysctl_proc_plimit, 0, NULL, 0,			\
    972 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    973 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
    974 	} while (0/*CONSTCOND*/)
    975 
    976 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
    977 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
    978 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
    979 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
    980 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
    981 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
    982 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
    983 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
    984 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
    985 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
    986 
    987 #undef create_proc_plimit
    988 
    989 	sysctl_createv(clog, 0, NULL, NULL,
    990 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    991 		       CTLTYPE_INT, "stopfork",
    992 		       SYSCTL_DESCR("Stop process at fork(2)"),
    993 		       sysctl_proc_stop, 0, NULL, 0,
    994 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
    995 	sysctl_createv(clog, 0, NULL, NULL,
    996 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    997 		       CTLTYPE_INT, "stopexec",
    998 		       SYSCTL_DESCR("Stop process at execve(2)"),
    999 		       sysctl_proc_stop, 0, NULL, 0,
   1000 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1001 	sysctl_createv(clog, 0, NULL, NULL,
   1002 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1003 		       CTLTYPE_INT, "stopexit",
   1004 		       SYSCTL_DESCR("Stop process before completing exit"),
   1005 		       sysctl_proc_stop, 0, NULL, 0,
   1006 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1007 }
   1008 
   1009 void
   1010 uid_init(void)
   1011 {
   1012 
   1013 	/*
   1014 	 * XXXSMP This could be at IPL_SOFTNET, but for now we want
   1015 	 * to to be deadlock free, so it must be at IPL_VM.
   1016 	 */
   1017 	mutex_init(&uihashtbl_lock, MUTEX_DRIVER, IPL_VM);
   1018 
   1019 	/*
   1020 	 * Ensure that uid 0 is always in the user hash table, as
   1021 	 * sbreserve() expects it available from interrupt context.
   1022 	 */
   1023 	(void)uid_find(0);
   1024 }
   1025 
   1026 struct uidinfo *
   1027 uid_find(uid_t uid)
   1028 {
   1029 	struct uidinfo *uip;
   1030 	struct uidinfo *newuip = NULL;
   1031 	struct uihashhead *uipp;
   1032 
   1033 	uipp = UIHASH(uid);
   1034 
   1035 again:
   1036 	mutex_enter(&uihashtbl_lock);
   1037 	LIST_FOREACH(uip, uipp, ui_hash)
   1038 		if (uip->ui_uid == uid) {
   1039 			mutex_exit(&uihashtbl_lock);
   1040 			if (newuip) {
   1041 				mutex_destroy(&newuip->ui_lock);
   1042 				free(newuip, M_PROC);
   1043 			}
   1044 			return uip;
   1045 		}
   1046 	if (newuip == NULL) {
   1047 		mutex_exit(&uihashtbl_lock);
   1048 		/* Must not be called from interrupt context. */
   1049 		newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
   1050 		mutex_init(&newuip->ui_lock, MUTEX_DRIVER, IPL_SOFTNET);
   1051 		goto again;
   1052 	}
   1053 	uip = newuip;
   1054 
   1055 	LIST_INSERT_HEAD(uipp, uip, ui_hash);
   1056 	uip->ui_uid = uid;
   1057 	mutex_exit(&uihashtbl_lock);
   1058 
   1059 	return uip;
   1060 }
   1061 
   1062 /*
   1063  * Change the count associated with number of processes
   1064  * a given user is using.
   1065  */
   1066 int
   1067 chgproccnt(uid_t uid, int diff)
   1068 {
   1069 	struct uidinfo *uip;
   1070 
   1071 	if (diff == 0)
   1072 		return 0;
   1073 
   1074 	uip = uid_find(uid);
   1075 	mutex_enter(&uip->ui_lock);
   1076 	uip->ui_proccnt += diff;
   1077 	KASSERT(uip->ui_proccnt >= 0);
   1078 	mutex_exit(&uip->ui_lock);
   1079 	return uip->ui_proccnt;
   1080 }
   1081 
   1082 int
   1083 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1084 {
   1085 	rlim_t nsb;
   1086 
   1087 	mutex_enter(&uip->ui_lock);
   1088 	nsb = uip->ui_sbsize + to - *hiwat;
   1089 	if (to > *hiwat && nsb > xmax) {
   1090 		mutex_exit(&uip->ui_lock);
   1091 		return 0;
   1092 	}
   1093 	*hiwat = to;
   1094 	uip->ui_sbsize = nsb;
   1095 	KASSERT(uip->ui_sbsize >= 0);
   1096 	mutex_exit(&uip->ui_lock);
   1097 	return 1;
   1098 }
   1099