kern_resource.c revision 1.126.2.2 1 /* $NetBSD: kern_resource.c,v 1.126.2.2 2007/12/15 03:16:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.126.2.2 2007/12/15 03:16:57 ad Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/kauth.h>
53 #include <sys/atomic.h>
54 #include <sys/mount.h>
55 #include <sys/syscallargs.h>
56
57 #include <uvm/uvm_extern.h>
58
59 /*
60 * Maximum process data and stack limits.
61 * They are variables so they are patchable.
62 */
63 rlim_t maxdmap = MAXDSIZ;
64 rlim_t maxsmap = MAXSSIZ;
65
66 struct uihashhead *uihashtbl;
67 u_long uihash; /* size of hash table - 1 */
68 kmutex_t uihashtbl_lock;
69
70 static pool_cache_t plimit_cache;
71 static pool_cache_t pstats_cache;
72
73 void
74 resource_init(void)
75 {
76
77 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
78 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
79 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
80 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
81 }
82
83 /*
84 * Resource controls and accounting.
85 */
86
87 int
88 sys_getpriority(struct lwp *l, void *v, register_t *retval)
89 {
90 struct sys_getpriority_args /* {
91 syscallarg(int) which;
92 syscallarg(id_t) who;
93 } */ *uap = v;
94 struct proc *curp = l->l_proc, *p;
95 int low = NZERO + PRIO_MAX + 1;
96 int who = SCARG(uap, who);
97
98 mutex_enter(&proclist_lock);
99 switch (SCARG(uap, which)) {
100 case PRIO_PROCESS:
101 if (who == 0)
102 p = curp;
103 else
104 p = p_find(who, PFIND_LOCKED);
105 if (p != NULL)
106 low = p->p_nice;
107 break;
108
109 case PRIO_PGRP: {
110 struct pgrp *pg;
111
112 if (who == 0)
113 pg = curp->p_pgrp;
114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
115 break;
116 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
117 if (p->p_nice < low)
118 low = p->p_nice;
119 }
120 break;
121 }
122
123 case PRIO_USER:
124 if (who == 0)
125 who = (int)kauth_cred_geteuid(l->l_cred);
126 PROCLIST_FOREACH(p, &allproc) {
127 mutex_enter(&p->p_mutex);
128 if (kauth_cred_geteuid(p->p_cred) ==
129 (uid_t)who && p->p_nice < low)
130 low = p->p_nice;
131 mutex_exit(&p->p_mutex);
132 }
133 break;
134
135 default:
136 mutex_exit(&proclist_lock);
137 return (EINVAL);
138 }
139 mutex_exit(&proclist_lock);
140
141 if (low == NZERO + PRIO_MAX + 1)
142 return (ESRCH);
143 *retval = low - NZERO;
144 return (0);
145 }
146
147 /* ARGSUSED */
148 int
149 sys_setpriority(struct lwp *l, void *v, register_t *retval)
150 {
151 struct sys_setpriority_args /* {
152 syscallarg(int) which;
153 syscallarg(id_t) who;
154 syscallarg(int) prio;
155 } */ *uap = v;
156 struct proc *curp = l->l_proc, *p;
157 int found = 0, error = 0;
158 int who = SCARG(uap, who);
159
160 mutex_enter(&proclist_lock);
161 switch (SCARG(uap, which)) {
162 case PRIO_PROCESS:
163 if (who == 0)
164 p = curp;
165 else
166 p = p_find(who, PFIND_LOCKED);
167 if (p != 0) {
168 mutex_enter(&p->p_mutex);
169 error = donice(l, p, SCARG(uap, prio));
170 mutex_exit(&p->p_mutex);
171 }
172 found++;
173 break;
174
175 case PRIO_PGRP: {
176 struct pgrp *pg;
177
178 if (who == 0)
179 pg = curp->p_pgrp;
180 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
181 break;
182 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
183 mutex_enter(&p->p_mutex);
184 error = donice(l, p, SCARG(uap, prio));
185 mutex_exit(&p->p_mutex);
186 found++;
187 }
188 break;
189 }
190
191 case PRIO_USER:
192 if (who == 0)
193 who = (int)kauth_cred_geteuid(l->l_cred);
194 PROCLIST_FOREACH(p, &allproc) {
195 mutex_enter(&p->p_mutex);
196 if (kauth_cred_geteuid(p->p_cred) ==
197 (uid_t)SCARG(uap, who)) {
198 error = donice(l, p, SCARG(uap, prio));
199 found++;
200 }
201 mutex_exit(&p->p_mutex);
202 }
203 break;
204
205 default:
206 error = EINVAL;
207 break;
208 }
209 mutex_exit(&proclist_lock);
210 if (found == 0)
211 return (ESRCH);
212 return (error);
213 }
214
215 /*
216 * Renice a process.
217 *
218 * Call with the target process' credentials locked.
219 */
220 int
221 donice(struct lwp *l, struct proc *chgp, int n)
222 {
223 kauth_cred_t cred = l->l_cred;
224 int onice;
225
226 KASSERT(mutex_owned(&chgp->p_mutex));
227
228 if (n > PRIO_MAX)
229 n = PRIO_MAX;
230 if (n < PRIO_MIN)
231 n = PRIO_MIN;
232 n += NZERO;
233 onice = chgp->p_nice;
234 onice = chgp->p_nice;
235
236 again:
237 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
238 KAUTH_ARG(n), NULL, NULL))
239 return (EACCES);
240 mutex_spin_enter(&chgp->p_smutex);
241 if (onice != chgp->p_nice) {
242 mutex_spin_exit(&chgp->p_smutex);
243 goto again;
244 }
245 sched_nice(chgp, n);
246 mutex_spin_exit(&chgp->p_smutex);
247 return (0);
248 }
249
250 /* ARGSUSED */
251 int
252 sys_setrlimit(struct lwp *l, void *v, register_t *retval)
253 {
254 struct sys_setrlimit_args /* {
255 syscallarg(int) which;
256 syscallarg(const struct rlimit *) rlp;
257 } */ *uap = v;
258 int which = SCARG(uap, which);
259 struct rlimit alim;
260 int error;
261
262 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
263 if (error)
264 return (error);
265 return (dosetrlimit(l, l->l_proc, which, &alim));
266 }
267
268 int
269 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
270 {
271 struct rlimit *alimp;
272 int error;
273
274 if ((u_int)which >= RLIM_NLIMITS)
275 return (EINVAL);
276
277 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
278 return (EINVAL);
279
280 if (limp->rlim_cur > limp->rlim_max) {
281 /*
282 * This is programming error. According to SUSv2, we should
283 * return error in this case.
284 */
285 return (EINVAL);
286 }
287
288 alimp = &p->p_rlimit[which];
289 /* if we don't change the value, no need to limcopy() */
290 if (limp->rlim_cur == alimp->rlim_cur &&
291 limp->rlim_max == alimp->rlim_max)
292 return 0;
293
294 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
295 p, limp, KAUTH_ARG(which), NULL);
296 if (error)
297 return (error);
298
299 lim_privatise(p, false);
300 /* p->p_limit is now unchangeable */
301 alimp = &p->p_rlimit[which];
302
303 switch (which) {
304
305 case RLIMIT_DATA:
306 if (limp->rlim_cur > maxdmap)
307 limp->rlim_cur = maxdmap;
308 if (limp->rlim_max > maxdmap)
309 limp->rlim_max = maxdmap;
310 break;
311
312 case RLIMIT_STACK:
313 if (limp->rlim_cur > maxsmap)
314 limp->rlim_cur = maxsmap;
315 if (limp->rlim_max > maxsmap)
316 limp->rlim_max = maxsmap;
317
318 /*
319 * Return EINVAL if the new stack size limit is lower than
320 * current usage. Otherwise, the process would get SIGSEGV the
321 * moment it would try to access anything on it's current stack.
322 * This conforms to SUSv2.
323 */
324 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
325 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
326 return (EINVAL);
327 }
328
329 /*
330 * Stack is allocated to the max at exec time with
331 * only "rlim_cur" bytes accessible (In other words,
332 * allocates stack dividing two contiguous regions at
333 * "rlim_cur" bytes boundary).
334 *
335 * Since allocation is done in terms of page, roundup
336 * "rlim_cur" (otherwise, contiguous regions
337 * overlap). If stack limit is going up make more
338 * accessible, if going down make inaccessible.
339 */
340 limp->rlim_cur = round_page(limp->rlim_cur);
341 if (limp->rlim_cur != alimp->rlim_cur) {
342 vaddr_t addr;
343 vsize_t size;
344 vm_prot_t prot;
345
346 if (limp->rlim_cur > alimp->rlim_cur) {
347 prot = VM_PROT_READ | VM_PROT_WRITE;
348 size = limp->rlim_cur - alimp->rlim_cur;
349 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
350 limp->rlim_cur;
351 } else {
352 prot = VM_PROT_NONE;
353 size = alimp->rlim_cur - limp->rlim_cur;
354 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
355 alimp->rlim_cur;
356 }
357 (void) uvm_map_protect(&p->p_vmspace->vm_map,
358 addr, addr+size, prot, false);
359 }
360 break;
361
362 case RLIMIT_NOFILE:
363 if (limp->rlim_cur > maxfiles)
364 limp->rlim_cur = maxfiles;
365 if (limp->rlim_max > maxfiles)
366 limp->rlim_max = maxfiles;
367 break;
368
369 case RLIMIT_NPROC:
370 if (limp->rlim_cur > maxproc)
371 limp->rlim_cur = maxproc;
372 if (limp->rlim_max > maxproc)
373 limp->rlim_max = maxproc;
374 break;
375 }
376
377 mutex_enter(&p->p_limit->pl_lock);
378 *alimp = *limp;
379 mutex_exit(&p->p_limit->pl_lock);
380 return (0);
381 }
382
383 /* ARGSUSED */
384 int
385 sys_getrlimit(struct lwp *l, void *v, register_t *retval)
386 {
387 struct sys_getrlimit_args /* {
388 syscallarg(int) which;
389 syscallarg(struct rlimit *) rlp;
390 } */ *uap = v;
391 struct proc *p = l->l_proc;
392 int which = SCARG(uap, which);
393 struct rlimit rl;
394
395 if ((u_int)which >= RLIM_NLIMITS)
396 return (EINVAL);
397
398 mutex_enter(&p->p_mutex);
399 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
400 mutex_exit(&p->p_mutex);
401
402 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
403 }
404
405 /*
406 * Transform the running time and tick information in proc p into user,
407 * system, and interrupt time usage.
408 *
409 * Should be called with p->p_smutex held unless called from exit1().
410 */
411 void
412 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
413 struct timeval *ip, struct timeval *rp)
414 {
415 u_quad_t u, st, ut, it, tot;
416 unsigned long sec;
417 long usec;
418 struct timeval tv;
419 struct lwp *l;
420
421 mutex_spin_enter(&p->p_stmutex);
422 st = p->p_sticks;
423 ut = p->p_uticks;
424 it = p->p_iticks;
425 mutex_spin_exit(&p->p_stmutex);
426
427 sec = p->p_rtime.tv_sec;
428 usec = p->p_rtime.tv_usec;
429
430 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
431 lwp_lock(l);
432 sec += l->l_rtime.tv_sec;
433 if ((usec += l->l_rtime.tv_usec) >= 1000000) {
434 sec++;
435 usec -= 1000000;
436 }
437 if ((l->l_flag & LW_RUNNING) != 0) {
438 /*
439 * Adjust for the current time slice. This is
440 * actually fairly important since the error
441 * here is on the order of a time quantum,
442 * which is much greater than the sampling
443 * error.
444 */
445 microtime(&tv);
446 sec += tv.tv_sec - l->l_stime.tv_sec;
447 usec += tv.tv_usec - l->l_stime.tv_usec;
448 if (usec >= 1000000) {
449 sec++;
450 usec -= 1000000;
451 }
452 }
453 lwp_unlock(l);
454 }
455
456 tot = st + ut + it;
457 u = sec * 1000000ull + usec;
458
459 if (tot == 0) {
460 /* No ticks, so can't use to share time out, split 50-50 */
461 st = ut = u / 2;
462 } else {
463 st = (u * st) / tot;
464 ut = (u * ut) / tot;
465 }
466 if (sp != NULL) {
467 sp->tv_sec = st / 1000000;
468 sp->tv_usec = st % 1000000;
469 }
470 if (up != NULL) {
471 up->tv_sec = ut / 1000000;
472 up->tv_usec = ut % 1000000;
473 }
474 if (ip != NULL) {
475 if (it != 0)
476 it = (u * it) / tot;
477 ip->tv_sec = it / 1000000;
478 ip->tv_usec = it % 1000000;
479 }
480 if (rp != NULL) {
481 rp->tv_sec = sec;
482 rp->tv_usec = usec;
483 }
484 }
485
486 /* ARGSUSED */
487 int
488 sys_getrusage(struct lwp *l, void *v, register_t *retval)
489 {
490 struct sys_getrusage_args /* {
491 syscallarg(int) who;
492 syscallarg(struct rusage *) rusage;
493 } */ *uap = v;
494 struct rusage ru;
495 struct proc *p = l->l_proc;
496
497 switch (SCARG(uap, who)) {
498 case RUSAGE_SELF:
499 mutex_enter(&p->p_smutex);
500 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
501 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
502 mutex_exit(&p->p_smutex);
503 break;
504
505 case RUSAGE_CHILDREN:
506 mutex_enter(&p->p_smutex);
507 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
508 mutex_exit(&p->p_smutex);
509 break;
510
511 default:
512 return EINVAL;
513 }
514
515 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
516 }
517
518 void
519 ruadd(struct rusage *ru, struct rusage *ru2)
520 {
521 long *ip, *ip2;
522 int i;
523
524 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
525 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
526 if (ru->ru_maxrss < ru2->ru_maxrss)
527 ru->ru_maxrss = ru2->ru_maxrss;
528 ip = &ru->ru_first; ip2 = &ru2->ru_first;
529 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
530 *ip++ += *ip2++;
531 }
532
533 /*
534 * Make a copy of the plimit structure.
535 * We share these structures copy-on-write after fork,
536 * and copy when a limit is changed.
537 *
538 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
539 * we are copying to change beneath our feet!
540 */
541 struct plimit *
542 lim_copy(struct plimit *lim)
543 {
544 struct plimit *newlim;
545 char *corename;
546 size_t alen, len;
547
548 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
549 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
550 newlim->pl_flags = 0;
551 newlim->pl_refcnt = 1;
552 newlim->pl_sv_limit = NULL;
553
554 mutex_enter(&lim->pl_lock);
555 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
556 sizeof(struct rlimit) * RLIM_NLIMITS);
557
558 alen = 0;
559 corename = NULL;
560 for (;;) {
561 if (lim->pl_corename == defcorename) {
562 newlim->pl_corename = defcorename;
563 break;
564 }
565 len = strlen(lim->pl_corename) + 1;
566 if (len <= alen) {
567 newlim->pl_corename = corename;
568 memcpy(corename, lim->pl_corename, len);
569 corename = NULL;
570 break;
571 }
572 mutex_exit(&lim->pl_lock);
573 if (corename != NULL)
574 free(corename, M_TEMP);
575 alen = len;
576 corename = malloc(alen, M_TEMP, M_WAITOK);
577 mutex_enter(&lim->pl_lock);
578 }
579 mutex_exit(&lim->pl_lock);
580 if (corename != NULL)
581 free(corename, M_TEMP);
582 return newlim;
583 }
584
585 void
586 lim_addref(struct plimit *lim)
587 {
588 atomic_inc_uint(&lim->pl_refcnt);
589 }
590
591 /*
592 * Give a process it's own private plimit structure.
593 * This will only be shared (in fork) if modifications are to be shared.
594 */
595 void
596 lim_privatise(struct proc *p, bool set_shared)
597 {
598 struct plimit *lim, *newlim;
599
600 lim = p->p_limit;
601 if (lim->pl_flags & PL_WRITEABLE) {
602 if (set_shared)
603 lim->pl_flags |= PL_SHAREMOD;
604 return;
605 }
606
607 if (set_shared && lim->pl_flags & PL_SHAREMOD)
608 return;
609
610 newlim = lim_copy(lim);
611
612 mutex_enter(&p->p_mutex);
613 if (p->p_limit->pl_flags & PL_WRITEABLE) {
614 /* Someone crept in while we were busy */
615 mutex_exit(&p->p_mutex);
616 limfree(newlim);
617 if (set_shared)
618 p->p_limit->pl_flags |= PL_SHAREMOD;
619 return;
620 }
621
622 /*
623 * Since most accesses to p->p_limit aren't locked, we must not
624 * delete the old limit structure yet.
625 */
626 newlim->pl_sv_limit = p->p_limit;
627 newlim->pl_flags |= PL_WRITEABLE;
628 if (set_shared)
629 newlim->pl_flags |= PL_SHAREMOD;
630 p->p_limit = newlim;
631 mutex_exit(&p->p_mutex);
632 }
633
634 void
635 limfree(struct plimit *lim)
636 {
637 struct plimit *sv_lim;
638
639 do {
640 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
641 return;
642 if (lim->pl_corename != defcorename)
643 free(lim->pl_corename, M_TEMP);
644 sv_lim = lim->pl_sv_limit;
645 mutex_destroy(&lim->pl_lock);
646 pool_cache_put(plimit_cache, lim);
647 } while ((lim = sv_lim) != NULL);
648 }
649
650 struct pstats *
651 pstatscopy(struct pstats *ps)
652 {
653
654 struct pstats *newps;
655
656 newps = pool_cache_get(pstats_cache, PR_WAITOK);
657
658 memset(&newps->pstat_startzero, 0,
659 (unsigned) ((char *)&newps->pstat_endzero -
660 (char *)&newps->pstat_startzero));
661 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
662 ((char *)&newps->pstat_endcopy -
663 (char *)&newps->pstat_startcopy));
664
665 return (newps);
666
667 }
668
669 void
670 pstatsfree(struct pstats *ps)
671 {
672
673 pool_cache_put(pstats_cache, ps);
674 }
675
676 /*
677 * sysctl interface in five parts
678 */
679
680 /*
681 * a routine for sysctl proc subtree helpers that need to pick a valid
682 * process by pid.
683 */
684 static int
685 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
686 {
687 struct proc *ptmp;
688 int error = 0;
689
690 if (pid == PROC_CURPROC)
691 ptmp = l->l_proc;
692 else if ((ptmp = pfind(pid)) == NULL)
693 error = ESRCH;
694
695 *p2 = ptmp;
696 return (error);
697 }
698
699 /*
700 * sysctl helper routine for setting a process's specific corefile
701 * name. picks the process based on the given pid and checks the
702 * correctness of the new value.
703 */
704 static int
705 sysctl_proc_corename(SYSCTLFN_ARGS)
706 {
707 struct proc *ptmp;
708 struct plimit *lim;
709 int error = 0, len;
710 char *cname;
711 char *ocore;
712 char *tmp;
713 struct sysctlnode node;
714
715 /*
716 * is this all correct?
717 */
718 if (namelen != 0)
719 return (EINVAL);
720 if (name[-1] != PROC_PID_CORENAME)
721 return (EINVAL);
722
723 /*
724 * whom are we tweaking?
725 */
726 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
727 if (error)
728 return (error);
729
730 /* XXX this should be in p_find() */
731 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
732 ptmp, NULL, NULL, NULL);
733 if (error)
734 return (error);
735
736 /*
737 * let them modify a temporary copy of the core name
738 */
739 cname = PNBUF_GET();
740 lim = ptmp->p_limit;
741 mutex_enter(&lim->pl_lock);
742 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
743 mutex_exit(&lim->pl_lock);
744
745 node = *rnode;
746 node.sysctl_data = cname;
747 error = sysctl_lookup(SYSCTLFN_CALL(&node));
748
749 /*
750 * if that failed, or they have nothing new to say, or we've
751 * heard it before...
752 */
753 if (error || newp == NULL)
754 goto done;
755 lim = ptmp->p_limit;
756 mutex_enter(&lim->pl_lock);
757 error = strcmp(cname, lim->pl_corename);
758 mutex_exit(&lim->pl_lock);
759 if (error == 0)
760 /* Unchanged */
761 goto done;
762
763 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
764 ptmp, cname, NULL, NULL);
765 if (error)
766 return (error);
767
768 /*
769 * no error yet and cname now has the new core name in it.
770 * let's see if it looks acceptable. it must be either "core"
771 * or end in ".core" or "/core".
772 */
773 len = strlen(cname);
774 if (len < 4) {
775 error = EINVAL;
776 } else if (strcmp(cname + len - 4, "core") != 0) {
777 error = EINVAL;
778 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
779 error = EINVAL;
780 }
781 if (error != 0) {
782 goto done;
783 }
784
785 /*
786 * hmm...looks good. now...where do we put it?
787 */
788 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
789 if (tmp == NULL) {
790 error = ENOMEM;
791 goto done;
792 }
793 memcpy(tmp, cname, len + 1);
794
795 lim_privatise(ptmp, false);
796 lim = ptmp->p_limit;
797 mutex_enter(&lim->pl_lock);
798 ocore = lim->pl_corename;
799 lim->pl_corename = tmp;
800 mutex_exit(&lim->pl_lock);
801 if (ocore != defcorename)
802 free(ocore, M_TEMP);
803
804 done:
805 PNBUF_PUT(cname);
806 return error;
807 }
808
809 /*
810 * sysctl helper routine for checking/setting a process's stop flags,
811 * one for fork and one for exec.
812 */
813 static int
814 sysctl_proc_stop(SYSCTLFN_ARGS)
815 {
816 struct proc *ptmp;
817 int i, f, error = 0;
818 struct sysctlnode node;
819
820 if (namelen != 0)
821 return (EINVAL);
822
823 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
824 if (error)
825 return (error);
826
827 /* XXX this should be in p_find() */
828 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
829 ptmp, NULL, NULL, NULL);
830 if (error)
831 return (error);
832
833 switch (rnode->sysctl_num) {
834 case PROC_PID_STOPFORK:
835 f = PS_STOPFORK;
836 break;
837 case PROC_PID_STOPEXEC:
838 f = PS_STOPEXEC;
839 break;
840 case PROC_PID_STOPEXIT:
841 f = PS_STOPEXIT;
842 break;
843 default:
844 return (EINVAL);
845 }
846
847 i = (ptmp->p_flag & f) ? 1 : 0;
848 node = *rnode;
849 node.sysctl_data = &i;
850 error = sysctl_lookup(SYSCTLFN_CALL(&node));
851 if (error || newp == NULL)
852 return (error);
853
854 mutex_enter(&ptmp->p_smutex);
855 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
856 ptmp, KAUTH_ARG(f), NULL, NULL);
857 if (error)
858 return (error);
859 if (i)
860 ptmp->p_sflag |= f;
861 else
862 ptmp->p_sflag &= ~f;
863 mutex_exit(&ptmp->p_smutex);
864
865 return (0);
866 }
867
868 /*
869 * sysctl helper routine for a process's rlimits as exposed by sysctl.
870 */
871 static int
872 sysctl_proc_plimit(SYSCTLFN_ARGS)
873 {
874 struct proc *ptmp;
875 u_int limitno;
876 int which, error = 0;
877 struct rlimit alim;
878 struct sysctlnode node;
879
880 if (namelen != 0)
881 return (EINVAL);
882
883 which = name[-1];
884 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
885 which != PROC_PID_LIMIT_TYPE_HARD)
886 return (EINVAL);
887
888 limitno = name[-2] - 1;
889 if (limitno >= RLIM_NLIMITS)
890 return (EINVAL);
891
892 if (name[-3] != PROC_PID_LIMIT)
893 return (EINVAL);
894
895 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
896 if (error)
897 return (error);
898
899 /* XXX this should be in p_find() */
900 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
901 ptmp, NULL, NULL, NULL);
902 if (error)
903 return (error);
904
905 node = *rnode;
906 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
907 if (which == PROC_PID_LIMIT_TYPE_HARD)
908 node.sysctl_data = &alim.rlim_max;
909 else
910 node.sysctl_data = &alim.rlim_cur;
911
912 error = sysctl_lookup(SYSCTLFN_CALL(&node));
913 if (error || newp == NULL)
914 return (error);
915
916 return (dosetrlimit(l, ptmp, limitno, &alim));
917 }
918
919 /*
920 * and finally, the actually glue that sticks it to the tree
921 */
922 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
923 {
924
925 sysctl_createv(clog, 0, NULL, NULL,
926 CTLFLAG_PERMANENT,
927 CTLTYPE_NODE, "proc", NULL,
928 NULL, 0, NULL, 0,
929 CTL_PROC, CTL_EOL);
930 sysctl_createv(clog, 0, NULL, NULL,
931 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
932 CTLTYPE_NODE, "curproc",
933 SYSCTL_DESCR("Per-process settings"),
934 NULL, 0, NULL, 0,
935 CTL_PROC, PROC_CURPROC, CTL_EOL);
936
937 sysctl_createv(clog, 0, NULL, NULL,
938 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
939 CTLTYPE_STRING, "corename",
940 SYSCTL_DESCR("Core file name"),
941 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
942 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
943 sysctl_createv(clog, 0, NULL, NULL,
944 CTLFLAG_PERMANENT,
945 CTLTYPE_NODE, "rlimit",
946 SYSCTL_DESCR("Process limits"),
947 NULL, 0, NULL, 0,
948 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
949
950 #define create_proc_plimit(s, n) do { \
951 sysctl_createv(clog, 0, NULL, NULL, \
952 CTLFLAG_PERMANENT, \
953 CTLTYPE_NODE, s, \
954 SYSCTL_DESCR("Process " s " limits"), \
955 NULL, 0, NULL, 0, \
956 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
957 CTL_EOL); \
958 sysctl_createv(clog, 0, NULL, NULL, \
959 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
960 CTLTYPE_QUAD, "soft", \
961 SYSCTL_DESCR("Process soft " s " limit"), \
962 sysctl_proc_plimit, 0, NULL, 0, \
963 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
964 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
965 sysctl_createv(clog, 0, NULL, NULL, \
966 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
967 CTLTYPE_QUAD, "hard", \
968 SYSCTL_DESCR("Process hard " s " limit"), \
969 sysctl_proc_plimit, 0, NULL, 0, \
970 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
971 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
972 } while (0/*CONSTCOND*/)
973
974 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
975 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
976 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
977 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
978 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
979 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
980 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
981 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
982 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
983 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
984
985 #undef create_proc_plimit
986
987 sysctl_createv(clog, 0, NULL, NULL,
988 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
989 CTLTYPE_INT, "stopfork",
990 SYSCTL_DESCR("Stop process at fork(2)"),
991 sysctl_proc_stop, 0, NULL, 0,
992 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
993 sysctl_createv(clog, 0, NULL, NULL,
994 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
995 CTLTYPE_INT, "stopexec",
996 SYSCTL_DESCR("Stop process at execve(2)"),
997 sysctl_proc_stop, 0, NULL, 0,
998 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
999 sysctl_createv(clog, 0, NULL, NULL,
1000 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1001 CTLTYPE_INT, "stopexit",
1002 SYSCTL_DESCR("Stop process before completing exit"),
1003 sysctl_proc_stop, 0, NULL, 0,
1004 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1005 }
1006
1007 void
1008 uid_init(void)
1009 {
1010
1011 /*
1012 * XXXSMP This could be at IPL_SOFTNET, but for now we want
1013 * to to be deadlock free, so it must be at IPL_VM.
1014 */
1015 mutex_init(&uihashtbl_lock, MUTEX_DEFAULT, IPL_VM);
1016
1017 /*
1018 * Ensure that uid 0 is always in the user hash table, as
1019 * sbreserve() expects it available from interrupt context.
1020 */
1021 (void)uid_find(0);
1022 }
1023
1024 struct uidinfo *
1025 uid_find(uid_t uid)
1026 {
1027 struct uidinfo *uip;
1028 struct uidinfo *newuip = NULL;
1029 struct uihashhead *uipp;
1030
1031 uipp = UIHASH(uid);
1032
1033 again:
1034 mutex_enter(&uihashtbl_lock);
1035 LIST_FOREACH(uip, uipp, ui_hash)
1036 if (uip->ui_uid == uid) {
1037 mutex_exit(&uihashtbl_lock);
1038 if (newuip) {
1039 mutex_destroy(&newuip->ui_lock);
1040 free(newuip, M_PROC);
1041 }
1042 return uip;
1043 }
1044 if (newuip == NULL) {
1045 mutex_exit(&uihashtbl_lock);
1046 /* Must not be called from interrupt context. */
1047 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
1048 /* XXX this could be IPL_SOFTNET */
1049 mutex_init(&newuip->ui_lock, MUTEX_DEFAULT, IPL_VM);
1050 goto again;
1051 }
1052 uip = newuip;
1053
1054 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1055 uip->ui_uid = uid;
1056 mutex_exit(&uihashtbl_lock);
1057
1058 return uip;
1059 }
1060
1061 /*
1062 * Change the count associated with number of processes
1063 * a given user is using.
1064 */
1065 int
1066 chgproccnt(uid_t uid, int diff)
1067 {
1068 struct uidinfo *uip;
1069
1070 if (diff == 0)
1071 return 0;
1072
1073 uip = uid_find(uid);
1074 mutex_enter(&uip->ui_lock);
1075 uip->ui_proccnt += diff;
1076 KASSERT(uip->ui_proccnt >= 0);
1077 mutex_exit(&uip->ui_lock);
1078 return uip->ui_proccnt;
1079 }
1080
1081 int
1082 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1083 {
1084 rlim_t nsb;
1085
1086 mutex_enter(&uip->ui_lock);
1087 nsb = uip->ui_sbsize + to - *hiwat;
1088 if (to > *hiwat && nsb > xmax) {
1089 mutex_exit(&uip->ui_lock);
1090 return 0;
1091 }
1092 *hiwat = to;
1093 uip->ui_sbsize = nsb;
1094 KASSERT(uip->ui_sbsize >= 0);
1095 mutex_exit(&uip->ui_lock);
1096 return 1;
1097 }
1098