kern_resource.c revision 1.127.4.2 1 /* $NetBSD: kern_resource.c,v 1.127.4.2 2008/01/23 19:27:40 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.127.4.2 2008/01/23 19:27:40 bouyer Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Maximum process data and stack limits.
62 * They are variables so they are patchable.
63 */
64 rlim_t maxdmap = MAXDSIZ;
65 rlim_t maxsmap = MAXSSIZ;
66
67 struct uihashhead *uihashtbl;
68 u_long uihash; /* size of hash table - 1 */
69 kmutex_t uihashtbl_lock;
70
71 static pool_cache_t plimit_cache;
72 static pool_cache_t pstats_cache;
73
74 void
75 resource_init(void)
76 {
77
78 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
79 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
80 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
81 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
82 }
83
84 /*
85 * Resource controls and accounting.
86 */
87
88 int
89 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, register_t *retval)
90 {
91 /* {
92 syscallarg(int) which;
93 syscallarg(id_t) who;
94 } */
95 struct proc *curp = l->l_proc, *p;
96 int low = NZERO + PRIO_MAX + 1;
97 int who = SCARG(uap, who);
98
99 mutex_enter(&proclist_lock);
100 switch (SCARG(uap, which)) {
101 case PRIO_PROCESS:
102 if (who == 0)
103 p = curp;
104 else
105 p = p_find(who, PFIND_LOCKED);
106 if (p != NULL)
107 low = p->p_nice;
108 break;
109
110 case PRIO_PGRP: {
111 struct pgrp *pg;
112
113 if (who == 0)
114 pg = curp->p_pgrp;
115 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
116 break;
117 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
118 if (p->p_nice < low)
119 low = p->p_nice;
120 }
121 break;
122 }
123
124 case PRIO_USER:
125 if (who == 0)
126 who = (int)kauth_cred_geteuid(l->l_cred);
127 PROCLIST_FOREACH(p, &allproc) {
128 mutex_enter(&p->p_mutex);
129 if (kauth_cred_geteuid(p->p_cred) ==
130 (uid_t)who && p->p_nice < low)
131 low = p->p_nice;
132 mutex_exit(&p->p_mutex);
133 }
134 break;
135
136 default:
137 mutex_exit(&proclist_lock);
138 return (EINVAL);
139 }
140 mutex_exit(&proclist_lock);
141
142 if (low == NZERO + PRIO_MAX + 1)
143 return (ESRCH);
144 *retval = low - NZERO;
145 return (0);
146 }
147
148 /* ARGSUSED */
149 int
150 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, register_t *retval)
151 {
152 /* {
153 syscallarg(int) which;
154 syscallarg(id_t) who;
155 syscallarg(int) prio;
156 } */
157 struct proc *curp = l->l_proc, *p;
158 int found = 0, error = 0;
159 int who = SCARG(uap, who);
160
161 mutex_enter(&proclist_lock);
162 switch (SCARG(uap, which)) {
163 case PRIO_PROCESS:
164 if (who == 0)
165 p = curp;
166 else
167 p = p_find(who, PFIND_LOCKED);
168 if (p != 0) {
169 mutex_enter(&p->p_mutex);
170 error = donice(l, p, SCARG(uap, prio));
171 mutex_exit(&p->p_mutex);
172 }
173 found++;
174 break;
175
176 case PRIO_PGRP: {
177 struct pgrp *pg;
178
179 if (who == 0)
180 pg = curp->p_pgrp;
181 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
182 break;
183 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
184 mutex_enter(&p->p_mutex);
185 error = donice(l, p, SCARG(uap, prio));
186 mutex_exit(&p->p_mutex);
187 found++;
188 }
189 break;
190 }
191
192 case PRIO_USER:
193 if (who == 0)
194 who = (int)kauth_cred_geteuid(l->l_cred);
195 PROCLIST_FOREACH(p, &allproc) {
196 mutex_enter(&p->p_mutex);
197 if (kauth_cred_geteuid(p->p_cred) ==
198 (uid_t)SCARG(uap, who)) {
199 error = donice(l, p, SCARG(uap, prio));
200 found++;
201 }
202 mutex_exit(&p->p_mutex);
203 }
204 break;
205
206 default:
207 error = EINVAL;
208 break;
209 }
210 mutex_exit(&proclist_lock);
211 if (found == 0)
212 return (ESRCH);
213 return (error);
214 }
215
216 /*
217 * Renice a process.
218 *
219 * Call with the target process' credentials locked.
220 */
221 int
222 donice(struct lwp *l, struct proc *chgp, int n)
223 {
224 kauth_cred_t cred = l->l_cred;
225 int onice;
226
227 KASSERT(mutex_owned(&chgp->p_mutex));
228
229 if (n > PRIO_MAX)
230 n = PRIO_MAX;
231 if (n < PRIO_MIN)
232 n = PRIO_MIN;
233 n += NZERO;
234 onice = chgp->p_nice;
235 onice = chgp->p_nice;
236
237 again:
238 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
239 KAUTH_ARG(n), NULL, NULL))
240 return (EACCES);
241 mutex_spin_enter(&chgp->p_smutex);
242 if (onice != chgp->p_nice) {
243 mutex_spin_exit(&chgp->p_smutex);
244 goto again;
245 }
246 sched_nice(chgp, n);
247 mutex_spin_exit(&chgp->p_smutex);
248 return (0);
249 }
250
251 /* ARGSUSED */
252 int
253 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, register_t *retval)
254 {
255 /* {
256 syscallarg(int) which;
257 syscallarg(const struct rlimit *) rlp;
258 } */
259 int which = SCARG(uap, which);
260 struct rlimit alim;
261 int error;
262
263 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
264 if (error)
265 return (error);
266 return (dosetrlimit(l, l->l_proc, which, &alim));
267 }
268
269 int
270 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
271 {
272 struct rlimit *alimp;
273 int error;
274
275 if ((u_int)which >= RLIM_NLIMITS)
276 return (EINVAL);
277
278 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
279 return (EINVAL);
280
281 if (limp->rlim_cur > limp->rlim_max) {
282 /*
283 * This is programming error. According to SUSv2, we should
284 * return error in this case.
285 */
286 return (EINVAL);
287 }
288
289 alimp = &p->p_rlimit[which];
290 /* if we don't change the value, no need to limcopy() */
291 if (limp->rlim_cur == alimp->rlim_cur &&
292 limp->rlim_max == alimp->rlim_max)
293 return 0;
294
295 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
296 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
297 if (error)
298 return (error);
299
300 lim_privatise(p, false);
301 /* p->p_limit is now unchangeable */
302 alimp = &p->p_rlimit[which];
303
304 switch (which) {
305
306 case RLIMIT_DATA:
307 if (limp->rlim_cur > maxdmap)
308 limp->rlim_cur = maxdmap;
309 if (limp->rlim_max > maxdmap)
310 limp->rlim_max = maxdmap;
311 break;
312
313 case RLIMIT_STACK:
314 if (limp->rlim_cur > maxsmap)
315 limp->rlim_cur = maxsmap;
316 if (limp->rlim_max > maxsmap)
317 limp->rlim_max = maxsmap;
318
319 /*
320 * Return EINVAL if the new stack size limit is lower than
321 * current usage. Otherwise, the process would get SIGSEGV the
322 * moment it would try to access anything on it's current stack.
323 * This conforms to SUSv2.
324 */
325 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
326 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
327 return (EINVAL);
328 }
329
330 /*
331 * Stack is allocated to the max at exec time with
332 * only "rlim_cur" bytes accessible (In other words,
333 * allocates stack dividing two contiguous regions at
334 * "rlim_cur" bytes boundary).
335 *
336 * Since allocation is done in terms of page, roundup
337 * "rlim_cur" (otherwise, contiguous regions
338 * overlap). If stack limit is going up make more
339 * accessible, if going down make inaccessible.
340 */
341 limp->rlim_cur = round_page(limp->rlim_cur);
342 if (limp->rlim_cur != alimp->rlim_cur) {
343 vaddr_t addr;
344 vsize_t size;
345 vm_prot_t prot;
346
347 if (limp->rlim_cur > alimp->rlim_cur) {
348 prot = VM_PROT_READ | VM_PROT_WRITE;
349 size = limp->rlim_cur - alimp->rlim_cur;
350 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
351 limp->rlim_cur;
352 } else {
353 prot = VM_PROT_NONE;
354 size = alimp->rlim_cur - limp->rlim_cur;
355 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
356 alimp->rlim_cur;
357 }
358 (void) uvm_map_protect(&p->p_vmspace->vm_map,
359 addr, addr+size, prot, false);
360 }
361 break;
362
363 case RLIMIT_NOFILE:
364 if (limp->rlim_cur > maxfiles)
365 limp->rlim_cur = maxfiles;
366 if (limp->rlim_max > maxfiles)
367 limp->rlim_max = maxfiles;
368 break;
369
370 case RLIMIT_NPROC:
371 if (limp->rlim_cur > maxproc)
372 limp->rlim_cur = maxproc;
373 if (limp->rlim_max > maxproc)
374 limp->rlim_max = maxproc;
375 break;
376 }
377
378 mutex_enter(&p->p_limit->pl_lock);
379 *alimp = *limp;
380 mutex_exit(&p->p_limit->pl_lock);
381 return (0);
382 }
383
384 /* ARGSUSED */
385 int
386 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, register_t *retval)
387 {
388 /* {
389 syscallarg(int) which;
390 syscallarg(struct rlimit *) rlp;
391 } */
392 struct proc *p = l->l_proc;
393 int which = SCARG(uap, which);
394 struct rlimit rl;
395
396 if ((u_int)which >= RLIM_NLIMITS)
397 return (EINVAL);
398
399 mutex_enter(&p->p_mutex);
400 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
401 mutex_exit(&p->p_mutex);
402
403 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
404 }
405
406 /*
407 * Transform the running time and tick information in proc p into user,
408 * system, and interrupt time usage.
409 *
410 * Should be called with p->p_smutex held unless called from exit1().
411 */
412 void
413 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
414 struct timeval *ip, struct timeval *rp)
415 {
416 uint64_t u, st, ut, it, tot;
417 struct lwp *l;
418 struct bintime tm;
419 struct timeval tv;
420
421 mutex_spin_enter(&p->p_stmutex);
422 st = p->p_sticks;
423 ut = p->p_uticks;
424 it = p->p_iticks;
425 mutex_spin_exit(&p->p_stmutex);
426
427 tm = p->p_rtime;
428
429 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
430 lwp_lock(l);
431 bintime_add(&tm, &l->l_rtime);
432 if ((l->l_flag & LW_RUNNING) != 0) {
433 struct bintime diff;
434 /*
435 * Adjust for the current time slice. This is
436 * actually fairly important since the error
437 * here is on the order of a time quantum,
438 * which is much greater than the sampling
439 * error.
440 */
441 binuptime(&diff);
442 bintime_sub(&diff, &l->l_stime);
443 bintime_add(&tm, &diff);
444 }
445 lwp_unlock(l);
446 }
447
448 tot = st + ut + it;
449 bintime2timeval(&tm, &tv);
450 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
451
452 if (tot == 0) {
453 /* No ticks, so can't use to share time out, split 50-50 */
454 st = ut = u / 2;
455 } else {
456 st = (u * st) / tot;
457 ut = (u * ut) / tot;
458 }
459 if (sp != NULL) {
460 sp->tv_sec = st / 1000000;
461 sp->tv_usec = st % 1000000;
462 }
463 if (up != NULL) {
464 up->tv_sec = ut / 1000000;
465 up->tv_usec = ut % 1000000;
466 }
467 if (ip != NULL) {
468 if (it != 0)
469 it = (u * it) / tot;
470 ip->tv_sec = it / 1000000;
471 ip->tv_usec = it % 1000000;
472 }
473 if (rp != NULL) {
474 *rp = tv;
475 }
476 }
477
478 /* ARGSUSED */
479 int
480 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap, register_t *retval)
481 {
482 /* {
483 syscallarg(int) who;
484 syscallarg(struct rusage *) rusage;
485 } */
486 struct rusage ru;
487 struct proc *p = l->l_proc;
488
489 switch (SCARG(uap, who)) {
490 case RUSAGE_SELF:
491 mutex_enter(&p->p_smutex);
492 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
493 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
494 mutex_exit(&p->p_smutex);
495 break;
496
497 case RUSAGE_CHILDREN:
498 mutex_enter(&p->p_smutex);
499 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
500 mutex_exit(&p->p_smutex);
501 break;
502
503 default:
504 return EINVAL;
505 }
506
507 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
508 }
509
510 void
511 ruadd(struct rusage *ru, struct rusage *ru2)
512 {
513 long *ip, *ip2;
514 int i;
515
516 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
517 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
518 if (ru->ru_maxrss < ru2->ru_maxrss)
519 ru->ru_maxrss = ru2->ru_maxrss;
520 ip = &ru->ru_first; ip2 = &ru2->ru_first;
521 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
522 *ip++ += *ip2++;
523 }
524
525 /*
526 * Make a copy of the plimit structure.
527 * We share these structures copy-on-write after fork,
528 * and copy when a limit is changed.
529 *
530 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
531 * we are copying to change beneath our feet!
532 */
533 struct plimit *
534 lim_copy(struct plimit *lim)
535 {
536 struct plimit *newlim;
537 char *corename;
538 size_t alen, len;
539
540 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
541 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
542 newlim->pl_flags = 0;
543 newlim->pl_refcnt = 1;
544 newlim->pl_sv_limit = NULL;
545
546 mutex_enter(&lim->pl_lock);
547 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
548 sizeof(struct rlimit) * RLIM_NLIMITS);
549
550 alen = 0;
551 corename = NULL;
552 for (;;) {
553 if (lim->pl_corename == defcorename) {
554 newlim->pl_corename = defcorename;
555 break;
556 }
557 len = strlen(lim->pl_corename) + 1;
558 if (len <= alen) {
559 newlim->pl_corename = corename;
560 memcpy(corename, lim->pl_corename, len);
561 corename = NULL;
562 break;
563 }
564 mutex_exit(&lim->pl_lock);
565 if (corename != NULL)
566 free(corename, M_TEMP);
567 alen = len;
568 corename = malloc(alen, M_TEMP, M_WAITOK);
569 mutex_enter(&lim->pl_lock);
570 }
571 mutex_exit(&lim->pl_lock);
572 if (corename != NULL)
573 free(corename, M_TEMP);
574 return newlim;
575 }
576
577 void
578 lim_addref(struct plimit *lim)
579 {
580 atomic_inc_uint(&lim->pl_refcnt);
581 }
582
583 /*
584 * Give a process it's own private plimit structure.
585 * This will only be shared (in fork) if modifications are to be shared.
586 */
587 void
588 lim_privatise(struct proc *p, bool set_shared)
589 {
590 struct plimit *lim, *newlim;
591
592 lim = p->p_limit;
593 if (lim->pl_flags & PL_WRITEABLE) {
594 if (set_shared)
595 lim->pl_flags |= PL_SHAREMOD;
596 return;
597 }
598
599 if (set_shared && lim->pl_flags & PL_SHAREMOD)
600 return;
601
602 newlim = lim_copy(lim);
603
604 mutex_enter(&p->p_mutex);
605 if (p->p_limit->pl_flags & PL_WRITEABLE) {
606 /* Someone crept in while we were busy */
607 mutex_exit(&p->p_mutex);
608 limfree(newlim);
609 if (set_shared)
610 p->p_limit->pl_flags |= PL_SHAREMOD;
611 return;
612 }
613
614 /*
615 * Since most accesses to p->p_limit aren't locked, we must not
616 * delete the old limit structure yet.
617 */
618 newlim->pl_sv_limit = p->p_limit;
619 newlim->pl_flags |= PL_WRITEABLE;
620 if (set_shared)
621 newlim->pl_flags |= PL_SHAREMOD;
622 p->p_limit = newlim;
623 mutex_exit(&p->p_mutex);
624 }
625
626 void
627 limfree(struct plimit *lim)
628 {
629 struct plimit *sv_lim;
630
631 do {
632 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
633 return;
634 if (lim->pl_corename != defcorename)
635 free(lim->pl_corename, M_TEMP);
636 sv_lim = lim->pl_sv_limit;
637 mutex_destroy(&lim->pl_lock);
638 pool_cache_put(plimit_cache, lim);
639 } while ((lim = sv_lim) != NULL);
640 }
641
642 struct pstats *
643 pstatscopy(struct pstats *ps)
644 {
645
646 struct pstats *newps;
647
648 newps = pool_cache_get(pstats_cache, PR_WAITOK);
649
650 memset(&newps->pstat_startzero, 0,
651 (unsigned) ((char *)&newps->pstat_endzero -
652 (char *)&newps->pstat_startzero));
653 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
654 ((char *)&newps->pstat_endcopy -
655 (char *)&newps->pstat_startcopy));
656
657 return (newps);
658
659 }
660
661 void
662 pstatsfree(struct pstats *ps)
663 {
664
665 pool_cache_put(pstats_cache, ps);
666 }
667
668 /*
669 * sysctl interface in five parts
670 */
671
672 /*
673 * a routine for sysctl proc subtree helpers that need to pick a valid
674 * process by pid.
675 */
676 static int
677 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
678 {
679 struct proc *ptmp;
680 int error = 0;
681
682 if (pid == PROC_CURPROC)
683 ptmp = l->l_proc;
684 else if ((ptmp = pfind(pid)) == NULL)
685 error = ESRCH;
686
687 *p2 = ptmp;
688 return (error);
689 }
690
691 /*
692 * sysctl helper routine for setting a process's specific corefile
693 * name. picks the process based on the given pid and checks the
694 * correctness of the new value.
695 */
696 static int
697 sysctl_proc_corename(SYSCTLFN_ARGS)
698 {
699 struct proc *ptmp;
700 struct plimit *lim;
701 int error = 0, len;
702 char *cname;
703 char *ocore;
704 char *tmp;
705 struct sysctlnode node;
706
707 /*
708 * is this all correct?
709 */
710 if (namelen != 0)
711 return (EINVAL);
712 if (name[-1] != PROC_PID_CORENAME)
713 return (EINVAL);
714
715 /*
716 * whom are we tweaking?
717 */
718 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
719 if (error)
720 return (error);
721
722 /* XXX-elad */
723 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
724 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
725 if (error)
726 return (error);
727
728 if (newp == NULL) {
729 error = kauth_authorize_process(l->l_cred,
730 KAUTH_PROCESS_CORENAME, ptmp,
731 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
732 if (error)
733 return (error);
734 }
735
736 /*
737 * let them modify a temporary copy of the core name
738 */
739 cname = PNBUF_GET();
740 lim = ptmp->p_limit;
741 mutex_enter(&lim->pl_lock);
742 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
743 mutex_exit(&lim->pl_lock);
744
745 node = *rnode;
746 node.sysctl_data = cname;
747 error = sysctl_lookup(SYSCTLFN_CALL(&node));
748
749 /*
750 * if that failed, or they have nothing new to say, or we've
751 * heard it before...
752 */
753 if (error || newp == NULL)
754 goto done;
755 lim = ptmp->p_limit;
756 mutex_enter(&lim->pl_lock);
757 error = strcmp(cname, lim->pl_corename);
758 mutex_exit(&lim->pl_lock);
759 if (error == 0)
760 /* Unchanged */
761 goto done;
762
763 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
764 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
765 if (error)
766 return (error);
767
768 /*
769 * no error yet and cname now has the new core name in it.
770 * let's see if it looks acceptable. it must be either "core"
771 * or end in ".core" or "/core".
772 */
773 len = strlen(cname);
774 if (len < 4) {
775 error = EINVAL;
776 } else if (strcmp(cname + len - 4, "core") != 0) {
777 error = EINVAL;
778 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
779 error = EINVAL;
780 }
781 if (error != 0) {
782 goto done;
783 }
784
785 /*
786 * hmm...looks good. now...where do we put it?
787 */
788 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
789 if (tmp == NULL) {
790 error = ENOMEM;
791 goto done;
792 }
793 memcpy(tmp, cname, len + 1);
794
795 lim_privatise(ptmp, false);
796 lim = ptmp->p_limit;
797 mutex_enter(&lim->pl_lock);
798 ocore = lim->pl_corename;
799 lim->pl_corename = tmp;
800 mutex_exit(&lim->pl_lock);
801 if (ocore != defcorename)
802 free(ocore, M_TEMP);
803
804 done:
805 PNBUF_PUT(cname);
806 return error;
807 }
808
809 /*
810 * sysctl helper routine for checking/setting a process's stop flags,
811 * one for fork and one for exec.
812 */
813 static int
814 sysctl_proc_stop(SYSCTLFN_ARGS)
815 {
816 struct proc *ptmp;
817 int i, f, error = 0;
818 struct sysctlnode node;
819
820 if (namelen != 0)
821 return (EINVAL);
822
823 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
824 if (error)
825 return (error);
826
827 /* XXX-elad */
828 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
829 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
830 if (error)
831 return (error);
832
833 switch (rnode->sysctl_num) {
834 case PROC_PID_STOPFORK:
835 f = PS_STOPFORK;
836 break;
837 case PROC_PID_STOPEXEC:
838 f = PS_STOPEXEC;
839 break;
840 case PROC_PID_STOPEXIT:
841 f = PS_STOPEXIT;
842 break;
843 default:
844 return (EINVAL);
845 }
846
847 i = (ptmp->p_flag & f) ? 1 : 0;
848 node = *rnode;
849 node.sysctl_data = &i;
850 error = sysctl_lookup(SYSCTLFN_CALL(&node));
851 if (error || newp == NULL)
852 return (error);
853
854 mutex_enter(&ptmp->p_smutex);
855 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
856 ptmp, KAUTH_ARG(f), NULL, NULL);
857 if (error)
858 return (error);
859 if (i)
860 ptmp->p_sflag |= f;
861 else
862 ptmp->p_sflag &= ~f;
863 mutex_exit(&ptmp->p_smutex);
864
865 return (0);
866 }
867
868 /*
869 * sysctl helper routine for a process's rlimits as exposed by sysctl.
870 */
871 static int
872 sysctl_proc_plimit(SYSCTLFN_ARGS)
873 {
874 struct proc *ptmp;
875 u_int limitno;
876 int which, error = 0;
877 struct rlimit alim;
878 struct sysctlnode node;
879
880 if (namelen != 0)
881 return (EINVAL);
882
883 which = name[-1];
884 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
885 which != PROC_PID_LIMIT_TYPE_HARD)
886 return (EINVAL);
887
888 limitno = name[-2] - 1;
889 if (limitno >= RLIM_NLIMITS)
890 return (EINVAL);
891
892 if (name[-3] != PROC_PID_LIMIT)
893 return (EINVAL);
894
895 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
896 if (error)
897 return (error);
898
899 /* XXX-elad */
900 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
901 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
902 if (error)
903 return (error);
904
905 /* Check if we can view limits. */
906 if (newp == NULL) {
907 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
908 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
909 KAUTH_ARG(which));
910 if (error)
911 return (error);
912 }
913
914 node = *rnode;
915 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
916 if (which == PROC_PID_LIMIT_TYPE_HARD)
917 node.sysctl_data = &alim.rlim_max;
918 else
919 node.sysctl_data = &alim.rlim_cur;
920
921 error = sysctl_lookup(SYSCTLFN_CALL(&node));
922 if (error || newp == NULL)
923 return (error);
924
925 return (dosetrlimit(l, ptmp, limitno, &alim));
926 }
927
928 /*
929 * and finally, the actually glue that sticks it to the tree
930 */
931 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
932 {
933
934 sysctl_createv(clog, 0, NULL, NULL,
935 CTLFLAG_PERMANENT,
936 CTLTYPE_NODE, "proc", NULL,
937 NULL, 0, NULL, 0,
938 CTL_PROC, CTL_EOL);
939 sysctl_createv(clog, 0, NULL, NULL,
940 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
941 CTLTYPE_NODE, "curproc",
942 SYSCTL_DESCR("Per-process settings"),
943 NULL, 0, NULL, 0,
944 CTL_PROC, PROC_CURPROC, CTL_EOL);
945
946 sysctl_createv(clog, 0, NULL, NULL,
947 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
948 CTLTYPE_STRING, "corename",
949 SYSCTL_DESCR("Core file name"),
950 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
951 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
952 sysctl_createv(clog, 0, NULL, NULL,
953 CTLFLAG_PERMANENT,
954 CTLTYPE_NODE, "rlimit",
955 SYSCTL_DESCR("Process limits"),
956 NULL, 0, NULL, 0,
957 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
958
959 #define create_proc_plimit(s, n) do { \
960 sysctl_createv(clog, 0, NULL, NULL, \
961 CTLFLAG_PERMANENT, \
962 CTLTYPE_NODE, s, \
963 SYSCTL_DESCR("Process " s " limits"), \
964 NULL, 0, NULL, 0, \
965 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
966 CTL_EOL); \
967 sysctl_createv(clog, 0, NULL, NULL, \
968 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
969 CTLTYPE_QUAD, "soft", \
970 SYSCTL_DESCR("Process soft " s " limit"), \
971 sysctl_proc_plimit, 0, NULL, 0, \
972 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
973 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
974 sysctl_createv(clog, 0, NULL, NULL, \
975 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
976 CTLTYPE_QUAD, "hard", \
977 SYSCTL_DESCR("Process hard " s " limit"), \
978 sysctl_proc_plimit, 0, NULL, 0, \
979 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
980 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
981 } while (0/*CONSTCOND*/)
982
983 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
984 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
985 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
986 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
987 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
988 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
989 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
990 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
991 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
992 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
993
994 #undef create_proc_plimit
995
996 sysctl_createv(clog, 0, NULL, NULL,
997 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
998 CTLTYPE_INT, "stopfork",
999 SYSCTL_DESCR("Stop process at fork(2)"),
1000 sysctl_proc_stop, 0, NULL, 0,
1001 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1002 sysctl_createv(clog, 0, NULL, NULL,
1003 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1004 CTLTYPE_INT, "stopexec",
1005 SYSCTL_DESCR("Stop process at execve(2)"),
1006 sysctl_proc_stop, 0, NULL, 0,
1007 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1008 sysctl_createv(clog, 0, NULL, NULL,
1009 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1010 CTLTYPE_INT, "stopexit",
1011 SYSCTL_DESCR("Stop process before completing exit"),
1012 sysctl_proc_stop, 0, NULL, 0,
1013 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1014 }
1015
1016 void
1017 uid_init(void)
1018 {
1019
1020 /*
1021 * XXXSMP This could be at IPL_SOFTNET, but for now we want
1022 * to to be deadlock free, so it must be at IPL_VM.
1023 */
1024 mutex_init(&uihashtbl_lock, MUTEX_DEFAULT, IPL_VM);
1025
1026 /*
1027 * Ensure that uid 0 is always in the user hash table, as
1028 * sbreserve() expects it available from interrupt context.
1029 */
1030 (void)uid_find(0);
1031 }
1032
1033 struct uidinfo *
1034 uid_find(uid_t uid)
1035 {
1036 struct uidinfo *uip;
1037 struct uidinfo *newuip = NULL;
1038 struct uihashhead *uipp;
1039
1040 uipp = UIHASH(uid);
1041
1042 again:
1043 mutex_enter(&uihashtbl_lock);
1044 LIST_FOREACH(uip, uipp, ui_hash)
1045 if (uip->ui_uid == uid) {
1046 mutex_exit(&uihashtbl_lock);
1047 if (newuip) {
1048 mutex_destroy(&newuip->ui_lock);
1049 free(newuip, M_PROC);
1050 }
1051 return uip;
1052 }
1053 if (newuip == NULL) {
1054 mutex_exit(&uihashtbl_lock);
1055 /* Must not be called from interrupt context. */
1056 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
1057 /* XXX this could be IPL_SOFTNET */
1058 mutex_init(&newuip->ui_lock, MUTEX_DEFAULT, IPL_VM);
1059 goto again;
1060 }
1061 uip = newuip;
1062
1063 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1064 uip->ui_uid = uid;
1065 mutex_exit(&uihashtbl_lock);
1066
1067 return uip;
1068 }
1069
1070 /*
1071 * Change the count associated with number of processes
1072 * a given user is using.
1073 */
1074 int
1075 chgproccnt(uid_t uid, int diff)
1076 {
1077 struct uidinfo *uip;
1078
1079 if (diff == 0)
1080 return 0;
1081
1082 uip = uid_find(uid);
1083 mutex_enter(&uip->ui_lock);
1084 uip->ui_proccnt += diff;
1085 KASSERT(uip->ui_proccnt >= 0);
1086 mutex_exit(&uip->ui_lock);
1087 return uip->ui_proccnt;
1088 }
1089
1090 int
1091 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1092 {
1093 rlim_t nsb;
1094
1095 mutex_enter(&uip->ui_lock);
1096 nsb = uip->ui_sbsize + to - *hiwat;
1097 if (to > *hiwat && nsb > xmax) {
1098 mutex_exit(&uip->ui_lock);
1099 return 0;
1100 }
1101 *hiwat = to;
1102 uip->ui_sbsize = nsb;
1103 KASSERT(uip->ui_sbsize >= 0);
1104 mutex_exit(&uip->ui_lock);
1105 return 1;
1106 }
1107