kern_resource.c revision 1.129 1 /* $NetBSD: kern_resource.c,v 1.129 2007/12/22 01:14:54 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.129 2007/12/22 01:14:54 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Maximum process data and stack limits.
62 * They are variables so they are patchable.
63 */
64 rlim_t maxdmap = MAXDSIZ;
65 rlim_t maxsmap = MAXSSIZ;
66
67 struct uihashhead *uihashtbl;
68 u_long uihash; /* size of hash table - 1 */
69 kmutex_t uihashtbl_lock;
70
71 /*
72 * Resource controls and accounting.
73 */
74
75 int
76 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, register_t *retval)
77 {
78 /* {
79 syscallarg(int) which;
80 syscallarg(id_t) who;
81 } */
82 struct proc *curp = l->l_proc, *p;
83 int low = NZERO + PRIO_MAX + 1;
84 int who = SCARG(uap, who);
85
86 mutex_enter(&proclist_lock);
87 switch (SCARG(uap, which)) {
88 case PRIO_PROCESS:
89 if (who == 0)
90 p = curp;
91 else
92 p = p_find(who, PFIND_LOCKED);
93 if (p != NULL)
94 low = p->p_nice;
95 break;
96
97 case PRIO_PGRP: {
98 struct pgrp *pg;
99
100 if (who == 0)
101 pg = curp->p_pgrp;
102 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
103 break;
104 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
105 if (p->p_nice < low)
106 low = p->p_nice;
107 }
108 break;
109 }
110
111 case PRIO_USER:
112 if (who == 0)
113 who = (int)kauth_cred_geteuid(l->l_cred);
114 PROCLIST_FOREACH(p, &allproc) {
115 mutex_enter(&p->p_mutex);
116 if (kauth_cred_geteuid(p->p_cred) ==
117 (uid_t)who && p->p_nice < low)
118 low = p->p_nice;
119 mutex_exit(&p->p_mutex);
120 }
121 break;
122
123 default:
124 mutex_exit(&proclist_lock);
125 return (EINVAL);
126 }
127 mutex_exit(&proclist_lock);
128
129 if (low == NZERO + PRIO_MAX + 1)
130 return (ESRCH);
131 *retval = low - NZERO;
132 return (0);
133 }
134
135 /* ARGSUSED */
136 int
137 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, register_t *retval)
138 {
139 /* {
140 syscallarg(int) which;
141 syscallarg(id_t) who;
142 syscallarg(int) prio;
143 } */
144 struct proc *curp = l->l_proc, *p;
145 int found = 0, error = 0;
146 int who = SCARG(uap, who);
147
148 mutex_enter(&proclist_lock);
149 switch (SCARG(uap, which)) {
150 case PRIO_PROCESS:
151 if (who == 0)
152 p = curp;
153 else
154 p = p_find(who, PFIND_LOCKED);
155 if (p != 0) {
156 mutex_enter(&p->p_mutex);
157 error = donice(l, p, SCARG(uap, prio));
158 mutex_exit(&p->p_mutex);
159 }
160 found++;
161 break;
162
163 case PRIO_PGRP: {
164 struct pgrp *pg;
165
166 if (who == 0)
167 pg = curp->p_pgrp;
168 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
169 break;
170 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
171 mutex_enter(&p->p_mutex);
172 error = donice(l, p, SCARG(uap, prio));
173 mutex_exit(&p->p_mutex);
174 found++;
175 }
176 break;
177 }
178
179 case PRIO_USER:
180 if (who == 0)
181 who = (int)kauth_cred_geteuid(l->l_cred);
182 PROCLIST_FOREACH(p, &allproc) {
183 mutex_enter(&p->p_mutex);
184 if (kauth_cred_geteuid(p->p_cred) ==
185 (uid_t)SCARG(uap, who)) {
186 error = donice(l, p, SCARG(uap, prio));
187 found++;
188 }
189 mutex_exit(&p->p_mutex);
190 }
191 break;
192
193 default:
194 error = EINVAL;
195 break;
196 }
197 mutex_exit(&proclist_lock);
198 if (found == 0)
199 return (ESRCH);
200 return (error);
201 }
202
203 /*
204 * Renice a process.
205 *
206 * Call with the target process' credentials locked.
207 */
208 int
209 donice(struct lwp *l, struct proc *chgp, int n)
210 {
211 kauth_cred_t cred = l->l_cred;
212 int onice;
213
214 KASSERT(mutex_owned(&chgp->p_mutex));
215
216 if (n > PRIO_MAX)
217 n = PRIO_MAX;
218 if (n < PRIO_MIN)
219 n = PRIO_MIN;
220 n += NZERO;
221 onice = chgp->p_nice;
222 onice = chgp->p_nice;
223
224 again:
225 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
226 KAUTH_ARG(n), NULL, NULL))
227 return (EACCES);
228 mutex_spin_enter(&chgp->p_smutex);
229 if (onice != chgp->p_nice) {
230 mutex_spin_exit(&chgp->p_smutex);
231 goto again;
232 }
233 sched_nice(chgp, n);
234 mutex_spin_exit(&chgp->p_smutex);
235 return (0);
236 }
237
238 /* ARGSUSED */
239 int
240 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, register_t *retval)
241 {
242 /* {
243 syscallarg(int) which;
244 syscallarg(const struct rlimit *) rlp;
245 } */
246 int which = SCARG(uap, which);
247 struct rlimit alim;
248 int error;
249
250 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
251 if (error)
252 return (error);
253 return (dosetrlimit(l, l->l_proc, which, &alim));
254 }
255
256 int
257 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
258 {
259 struct rlimit *alimp;
260 int error;
261
262 if ((u_int)which >= RLIM_NLIMITS)
263 return (EINVAL);
264
265 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
266 return (EINVAL);
267
268 if (limp->rlim_cur > limp->rlim_max) {
269 /*
270 * This is programming error. According to SUSv2, we should
271 * return error in this case.
272 */
273 return (EINVAL);
274 }
275
276 alimp = &p->p_rlimit[which];
277 /* if we don't change the value, no need to limcopy() */
278 if (limp->rlim_cur == alimp->rlim_cur &&
279 limp->rlim_max == alimp->rlim_max)
280 return 0;
281
282 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
283 p, limp, KAUTH_ARG(which), NULL);
284 if (error)
285 return (error);
286
287 lim_privatise(p, false);
288 /* p->p_limit is now unchangeable */
289 alimp = &p->p_rlimit[which];
290
291 switch (which) {
292
293 case RLIMIT_DATA:
294 if (limp->rlim_cur > maxdmap)
295 limp->rlim_cur = maxdmap;
296 if (limp->rlim_max > maxdmap)
297 limp->rlim_max = maxdmap;
298 break;
299
300 case RLIMIT_STACK:
301 if (limp->rlim_cur > maxsmap)
302 limp->rlim_cur = maxsmap;
303 if (limp->rlim_max > maxsmap)
304 limp->rlim_max = maxsmap;
305
306 /*
307 * Return EINVAL if the new stack size limit is lower than
308 * current usage. Otherwise, the process would get SIGSEGV the
309 * moment it would try to access anything on it's current stack.
310 * This conforms to SUSv2.
311 */
312 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
313 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
314 return (EINVAL);
315 }
316
317 /*
318 * Stack is allocated to the max at exec time with
319 * only "rlim_cur" bytes accessible (In other words,
320 * allocates stack dividing two contiguous regions at
321 * "rlim_cur" bytes boundary).
322 *
323 * Since allocation is done in terms of page, roundup
324 * "rlim_cur" (otherwise, contiguous regions
325 * overlap). If stack limit is going up make more
326 * accessible, if going down make inaccessible.
327 */
328 limp->rlim_cur = round_page(limp->rlim_cur);
329 if (limp->rlim_cur != alimp->rlim_cur) {
330 vaddr_t addr;
331 vsize_t size;
332 vm_prot_t prot;
333
334 if (limp->rlim_cur > alimp->rlim_cur) {
335 prot = VM_PROT_READ | VM_PROT_WRITE;
336 size = limp->rlim_cur - alimp->rlim_cur;
337 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
338 limp->rlim_cur;
339 } else {
340 prot = VM_PROT_NONE;
341 size = alimp->rlim_cur - limp->rlim_cur;
342 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
343 alimp->rlim_cur;
344 }
345 (void) uvm_map_protect(&p->p_vmspace->vm_map,
346 addr, addr+size, prot, false);
347 }
348 break;
349
350 case RLIMIT_NOFILE:
351 if (limp->rlim_cur > maxfiles)
352 limp->rlim_cur = maxfiles;
353 if (limp->rlim_max > maxfiles)
354 limp->rlim_max = maxfiles;
355 break;
356
357 case RLIMIT_NPROC:
358 if (limp->rlim_cur > maxproc)
359 limp->rlim_cur = maxproc;
360 if (limp->rlim_max > maxproc)
361 limp->rlim_max = maxproc;
362 break;
363 }
364
365 mutex_enter(&p->p_limit->pl_lock);
366 *alimp = *limp;
367 mutex_exit(&p->p_limit->pl_lock);
368 return (0);
369 }
370
371 /* ARGSUSED */
372 int
373 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, register_t *retval)
374 {
375 /* {
376 syscallarg(int) which;
377 syscallarg(struct rlimit *) rlp;
378 } */
379 struct proc *p = l->l_proc;
380 int which = SCARG(uap, which);
381 struct rlimit rl;
382
383 if ((u_int)which >= RLIM_NLIMITS)
384 return (EINVAL);
385
386 mutex_enter(&p->p_mutex);
387 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
388 mutex_exit(&p->p_mutex);
389
390 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
391 }
392
393 /*
394 * Transform the running time and tick information in proc p into user,
395 * system, and interrupt time usage.
396 *
397 * Should be called with p->p_smutex held unless called from exit1().
398 */
399 void
400 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
401 struct timeval *ip, struct timeval *rp)
402 {
403 uint64_t u, st, ut, it, tot;
404 struct lwp *l;
405 struct bintime tm;
406 struct timeval tv;
407
408 mutex_spin_enter(&p->p_stmutex);
409 st = p->p_sticks;
410 ut = p->p_uticks;
411 it = p->p_iticks;
412 mutex_spin_exit(&p->p_stmutex);
413
414 tm = p->p_rtime;
415
416 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
417 lwp_lock(l);
418 bintime_add(&tm, &l->l_rtime);
419 if ((l->l_flag & LW_RUNNING) != 0) {
420 struct bintime diff;
421 /*
422 * Adjust for the current time slice. This is
423 * actually fairly important since the error
424 * here is on the order of a time quantum,
425 * which is much greater than the sampling
426 * error.
427 */
428 binuptime(&diff);
429 bintime_sub(&diff, &l->l_stime);
430 bintime_add(&tm, &diff);
431 }
432 lwp_unlock(l);
433 }
434
435 tot = st + ut + it;
436 bintime2timeval(&tm, &tv);
437 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
438
439 if (tot == 0) {
440 /* No ticks, so can't use to share time out, split 50-50 */
441 st = ut = u / 2;
442 } else {
443 st = (u * st) / tot;
444 ut = (u * ut) / tot;
445 }
446 if (sp != NULL) {
447 sp->tv_sec = st / 1000000;
448 sp->tv_usec = st % 1000000;
449 }
450 if (up != NULL) {
451 up->tv_sec = ut / 1000000;
452 up->tv_usec = ut % 1000000;
453 }
454 if (ip != NULL) {
455 if (it != 0)
456 it = (u * it) / tot;
457 ip->tv_sec = it / 1000000;
458 ip->tv_usec = it % 1000000;
459 }
460 if (rp != NULL) {
461 *rp = tv;
462 }
463 }
464
465 /* ARGSUSED */
466 int
467 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap, register_t *retval)
468 {
469 /* {
470 syscallarg(int) who;
471 syscallarg(struct rusage *) rusage;
472 } */
473 struct rusage ru;
474 struct proc *p = l->l_proc;
475
476 switch (SCARG(uap, who)) {
477 case RUSAGE_SELF:
478 mutex_enter(&p->p_smutex);
479 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
480 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
481 mutex_exit(&p->p_smutex);
482 break;
483
484 case RUSAGE_CHILDREN:
485 mutex_enter(&p->p_smutex);
486 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
487 mutex_exit(&p->p_smutex);
488 break;
489
490 default:
491 return EINVAL;
492 }
493
494 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
495 }
496
497 void
498 ruadd(struct rusage *ru, struct rusage *ru2)
499 {
500 long *ip, *ip2;
501 int i;
502
503 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
504 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
505 if (ru->ru_maxrss < ru2->ru_maxrss)
506 ru->ru_maxrss = ru2->ru_maxrss;
507 ip = &ru->ru_first; ip2 = &ru2->ru_first;
508 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
509 *ip++ += *ip2++;
510 }
511
512 /*
513 * Make a copy of the plimit structure.
514 * We share these structures copy-on-write after fork,
515 * and copy when a limit is changed.
516 *
517 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
518 * we are copying to change beneath our feet!
519 */
520 struct plimit *
521 lim_copy(struct plimit *lim)
522 {
523 struct plimit *newlim;
524 char *corename;
525 size_t alen, len;
526
527 newlim = pool_get(&plimit_pool, PR_WAITOK);
528 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
529 newlim->pl_flags = 0;
530 newlim->pl_refcnt = 1;
531 newlim->pl_sv_limit = NULL;
532
533 mutex_enter(&lim->pl_lock);
534 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
535 sizeof(struct rlimit) * RLIM_NLIMITS);
536
537 alen = 0;
538 corename = NULL;
539 for (;;) {
540 if (lim->pl_corename == defcorename) {
541 newlim->pl_corename = defcorename;
542 break;
543 }
544 len = strlen(lim->pl_corename) + 1;
545 if (len <= alen) {
546 newlim->pl_corename = corename;
547 memcpy(corename, lim->pl_corename, len);
548 corename = NULL;
549 break;
550 }
551 mutex_exit(&lim->pl_lock);
552 if (corename != NULL)
553 free(corename, M_TEMP);
554 alen = len;
555 corename = malloc(alen, M_TEMP, M_WAITOK);
556 mutex_enter(&lim->pl_lock);
557 }
558 mutex_exit(&lim->pl_lock);
559 if (corename != NULL)
560 free(corename, M_TEMP);
561 return newlim;
562 }
563
564 void
565 lim_addref(struct plimit *lim)
566 {
567 atomic_inc_uint(&lim->pl_refcnt);
568 }
569
570 /*
571 * Give a process it's own private plimit structure.
572 * This will only be shared (in fork) if modifications are to be shared.
573 */
574 void
575 lim_privatise(struct proc *p, bool set_shared)
576 {
577 struct plimit *lim, *newlim;
578
579 lim = p->p_limit;
580 if (lim->pl_flags & PL_WRITEABLE) {
581 if (set_shared)
582 lim->pl_flags |= PL_SHAREMOD;
583 return;
584 }
585
586 if (set_shared && lim->pl_flags & PL_SHAREMOD)
587 return;
588
589 newlim = lim_copy(lim);
590
591 mutex_enter(&p->p_mutex);
592 if (p->p_limit->pl_flags & PL_WRITEABLE) {
593 /* Someone crept in while we were busy */
594 mutex_exit(&p->p_mutex);
595 limfree(newlim);
596 if (set_shared)
597 p->p_limit->pl_flags |= PL_SHAREMOD;
598 return;
599 }
600
601 /*
602 * Since most accesses to p->p_limit aren't locked, we must not
603 * delete the old limit structure yet.
604 */
605 newlim->pl_sv_limit = p->p_limit;
606 newlim->pl_flags |= PL_WRITEABLE;
607 if (set_shared)
608 newlim->pl_flags |= PL_SHAREMOD;
609 p->p_limit = newlim;
610 mutex_exit(&p->p_mutex);
611 }
612
613 void
614 limfree(struct plimit *lim)
615 {
616 struct plimit *sv_lim;
617
618 do {
619 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
620 return;
621 if (lim->pl_corename != defcorename)
622 free(lim->pl_corename, M_TEMP);
623 sv_lim = lim->pl_sv_limit;
624 mutex_destroy(&lim->pl_lock);
625 pool_put(&plimit_pool, lim);
626 } while ((lim = sv_lim) != NULL);
627 }
628
629 struct pstats *
630 pstatscopy(struct pstats *ps)
631 {
632
633 struct pstats *newps;
634
635 newps = pool_get(&pstats_pool, PR_WAITOK);
636
637 memset(&newps->pstat_startzero, 0,
638 (unsigned) ((char *)&newps->pstat_endzero -
639 (char *)&newps->pstat_startzero));
640 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
641 ((char *)&newps->pstat_endcopy -
642 (char *)&newps->pstat_startcopy));
643
644 return (newps);
645
646 }
647
648 void
649 pstatsfree(struct pstats *ps)
650 {
651
652 pool_put(&pstats_pool, ps);
653 }
654
655 /*
656 * sysctl interface in five parts
657 */
658
659 /*
660 * a routine for sysctl proc subtree helpers that need to pick a valid
661 * process by pid.
662 */
663 static int
664 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
665 {
666 struct proc *ptmp;
667 int error = 0;
668
669 if (pid == PROC_CURPROC)
670 ptmp = l->l_proc;
671 else if ((ptmp = pfind(pid)) == NULL)
672 error = ESRCH;
673
674 *p2 = ptmp;
675 return (error);
676 }
677
678 /*
679 * sysctl helper routine for setting a process's specific corefile
680 * name. picks the process based on the given pid and checks the
681 * correctness of the new value.
682 */
683 static int
684 sysctl_proc_corename(SYSCTLFN_ARGS)
685 {
686 struct proc *ptmp;
687 struct plimit *lim;
688 int error = 0, len;
689 char *cname;
690 char *ocore;
691 char *tmp;
692 struct sysctlnode node;
693
694 /*
695 * is this all correct?
696 */
697 if (namelen != 0)
698 return (EINVAL);
699 if (name[-1] != PROC_PID_CORENAME)
700 return (EINVAL);
701
702 /*
703 * whom are we tweaking?
704 */
705 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
706 if (error)
707 return (error);
708
709 /* XXX this should be in p_find() */
710 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
711 ptmp, NULL, NULL, NULL);
712 if (error)
713 return (error);
714
715 /*
716 * let them modify a temporary copy of the core name
717 */
718 cname = PNBUF_GET();
719 lim = ptmp->p_limit;
720 mutex_enter(&lim->pl_lock);
721 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
722 mutex_exit(&lim->pl_lock);
723
724 node = *rnode;
725 node.sysctl_data = cname;
726 error = sysctl_lookup(SYSCTLFN_CALL(&node));
727
728 /*
729 * if that failed, or they have nothing new to say, or we've
730 * heard it before...
731 */
732 if (error || newp == NULL)
733 goto done;
734 lim = ptmp->p_limit;
735 mutex_enter(&lim->pl_lock);
736 error = strcmp(cname, lim->pl_corename);
737 mutex_exit(&lim->pl_lock);
738 if (error == 0)
739 /* Unchanged */
740 goto done;
741
742 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
743 ptmp, cname, NULL, NULL);
744 if (error)
745 return (error);
746
747 /*
748 * no error yet and cname now has the new core name in it.
749 * let's see if it looks acceptable. it must be either "core"
750 * or end in ".core" or "/core".
751 */
752 len = strlen(cname);
753 if (len < 4) {
754 error = EINVAL;
755 } else if (strcmp(cname + len - 4, "core") != 0) {
756 error = EINVAL;
757 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
758 error = EINVAL;
759 }
760 if (error != 0) {
761 goto done;
762 }
763
764 /*
765 * hmm...looks good. now...where do we put it?
766 */
767 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
768 if (tmp == NULL) {
769 error = ENOMEM;
770 goto done;
771 }
772 memcpy(tmp, cname, len + 1);
773
774 lim_privatise(ptmp, false);
775 lim = ptmp->p_limit;
776 mutex_enter(&lim->pl_lock);
777 ocore = lim->pl_corename;
778 lim->pl_corename = tmp;
779 mutex_exit(&lim->pl_lock);
780 if (ocore != defcorename)
781 free(ocore, M_TEMP);
782
783 done:
784 PNBUF_PUT(cname);
785 return error;
786 }
787
788 /*
789 * sysctl helper routine for checking/setting a process's stop flags,
790 * one for fork and one for exec.
791 */
792 static int
793 sysctl_proc_stop(SYSCTLFN_ARGS)
794 {
795 struct proc *ptmp;
796 int i, f, error = 0;
797 struct sysctlnode node;
798
799 if (namelen != 0)
800 return (EINVAL);
801
802 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
803 if (error)
804 return (error);
805
806 /* XXX this should be in p_find() */
807 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
808 ptmp, NULL, NULL, NULL);
809 if (error)
810 return (error);
811
812 switch (rnode->sysctl_num) {
813 case PROC_PID_STOPFORK:
814 f = PS_STOPFORK;
815 break;
816 case PROC_PID_STOPEXEC:
817 f = PS_STOPEXEC;
818 break;
819 case PROC_PID_STOPEXIT:
820 f = PS_STOPEXIT;
821 break;
822 default:
823 return (EINVAL);
824 }
825
826 i = (ptmp->p_flag & f) ? 1 : 0;
827 node = *rnode;
828 node.sysctl_data = &i;
829 error = sysctl_lookup(SYSCTLFN_CALL(&node));
830 if (error || newp == NULL)
831 return (error);
832
833 mutex_enter(&ptmp->p_smutex);
834 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
835 ptmp, KAUTH_ARG(f), NULL, NULL);
836 if (error)
837 return (error);
838 if (i)
839 ptmp->p_sflag |= f;
840 else
841 ptmp->p_sflag &= ~f;
842 mutex_exit(&ptmp->p_smutex);
843
844 return (0);
845 }
846
847 /*
848 * sysctl helper routine for a process's rlimits as exposed by sysctl.
849 */
850 static int
851 sysctl_proc_plimit(SYSCTLFN_ARGS)
852 {
853 struct proc *ptmp;
854 u_int limitno;
855 int which, error = 0;
856 struct rlimit alim;
857 struct sysctlnode node;
858
859 if (namelen != 0)
860 return (EINVAL);
861
862 which = name[-1];
863 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
864 which != PROC_PID_LIMIT_TYPE_HARD)
865 return (EINVAL);
866
867 limitno = name[-2] - 1;
868 if (limitno >= RLIM_NLIMITS)
869 return (EINVAL);
870
871 if (name[-3] != PROC_PID_LIMIT)
872 return (EINVAL);
873
874 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
875 if (error)
876 return (error);
877
878 /* XXX this should be in p_find() */
879 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
880 ptmp, NULL, NULL, NULL);
881 if (error)
882 return (error);
883
884 node = *rnode;
885 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
886 if (which == PROC_PID_LIMIT_TYPE_HARD)
887 node.sysctl_data = &alim.rlim_max;
888 else
889 node.sysctl_data = &alim.rlim_cur;
890
891 error = sysctl_lookup(SYSCTLFN_CALL(&node));
892 if (error || newp == NULL)
893 return (error);
894
895 return (dosetrlimit(l, ptmp, limitno, &alim));
896 }
897
898 /*
899 * and finally, the actually glue that sticks it to the tree
900 */
901 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
902 {
903
904 sysctl_createv(clog, 0, NULL, NULL,
905 CTLFLAG_PERMANENT,
906 CTLTYPE_NODE, "proc", NULL,
907 NULL, 0, NULL, 0,
908 CTL_PROC, CTL_EOL);
909 sysctl_createv(clog, 0, NULL, NULL,
910 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
911 CTLTYPE_NODE, "curproc",
912 SYSCTL_DESCR("Per-process settings"),
913 NULL, 0, NULL, 0,
914 CTL_PROC, PROC_CURPROC, CTL_EOL);
915
916 sysctl_createv(clog, 0, NULL, NULL,
917 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
918 CTLTYPE_STRING, "corename",
919 SYSCTL_DESCR("Core file name"),
920 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
921 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
922 sysctl_createv(clog, 0, NULL, NULL,
923 CTLFLAG_PERMANENT,
924 CTLTYPE_NODE, "rlimit",
925 SYSCTL_DESCR("Process limits"),
926 NULL, 0, NULL, 0,
927 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
928
929 #define create_proc_plimit(s, n) do { \
930 sysctl_createv(clog, 0, NULL, NULL, \
931 CTLFLAG_PERMANENT, \
932 CTLTYPE_NODE, s, \
933 SYSCTL_DESCR("Process " s " limits"), \
934 NULL, 0, NULL, 0, \
935 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
936 CTL_EOL); \
937 sysctl_createv(clog, 0, NULL, NULL, \
938 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
939 CTLTYPE_QUAD, "soft", \
940 SYSCTL_DESCR("Process soft " s " limit"), \
941 sysctl_proc_plimit, 0, NULL, 0, \
942 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
943 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
944 sysctl_createv(clog, 0, NULL, NULL, \
945 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
946 CTLTYPE_QUAD, "hard", \
947 SYSCTL_DESCR("Process hard " s " limit"), \
948 sysctl_proc_plimit, 0, NULL, 0, \
949 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
950 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
951 } while (0/*CONSTCOND*/)
952
953 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
954 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
955 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
956 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
957 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
958 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
959 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
960 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
961 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
962 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
963
964 #undef create_proc_plimit
965
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
968 CTLTYPE_INT, "stopfork",
969 SYSCTL_DESCR("Stop process at fork(2)"),
970 sysctl_proc_stop, 0, NULL, 0,
971 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
972 sysctl_createv(clog, 0, NULL, NULL,
973 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
974 CTLTYPE_INT, "stopexec",
975 SYSCTL_DESCR("Stop process at execve(2)"),
976 sysctl_proc_stop, 0, NULL, 0,
977 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
978 sysctl_createv(clog, 0, NULL, NULL,
979 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
980 CTLTYPE_INT, "stopexit",
981 SYSCTL_DESCR("Stop process before completing exit"),
982 sysctl_proc_stop, 0, NULL, 0,
983 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
984 }
985
986 void
987 uid_init(void)
988 {
989
990 /*
991 * XXXSMP This could be at IPL_SOFTNET, but for now we want
992 * to to be deadlock free, so it must be at IPL_VM.
993 */
994 mutex_init(&uihashtbl_lock, MUTEX_DEFAULT, IPL_VM);
995
996 /*
997 * Ensure that uid 0 is always in the user hash table, as
998 * sbreserve() expects it available from interrupt context.
999 */
1000 (void)uid_find(0);
1001 }
1002
1003 struct uidinfo *
1004 uid_find(uid_t uid)
1005 {
1006 struct uidinfo *uip;
1007 struct uidinfo *newuip = NULL;
1008 struct uihashhead *uipp;
1009
1010 uipp = UIHASH(uid);
1011
1012 again:
1013 mutex_enter(&uihashtbl_lock);
1014 LIST_FOREACH(uip, uipp, ui_hash)
1015 if (uip->ui_uid == uid) {
1016 mutex_exit(&uihashtbl_lock);
1017 if (newuip) {
1018 mutex_destroy(&newuip->ui_lock);
1019 free(newuip, M_PROC);
1020 }
1021 return uip;
1022 }
1023 if (newuip == NULL) {
1024 mutex_exit(&uihashtbl_lock);
1025 /* Must not be called from interrupt context. */
1026 newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
1027 /* XXX this could be IPL_SOFTNET */
1028 mutex_init(&newuip->ui_lock, MUTEX_DEFAULT, IPL_VM);
1029 goto again;
1030 }
1031 uip = newuip;
1032
1033 LIST_INSERT_HEAD(uipp, uip, ui_hash);
1034 uip->ui_uid = uid;
1035 mutex_exit(&uihashtbl_lock);
1036
1037 return uip;
1038 }
1039
1040 /*
1041 * Change the count associated with number of processes
1042 * a given user is using.
1043 */
1044 int
1045 chgproccnt(uid_t uid, int diff)
1046 {
1047 struct uidinfo *uip;
1048
1049 if (diff == 0)
1050 return 0;
1051
1052 uip = uid_find(uid);
1053 mutex_enter(&uip->ui_lock);
1054 uip->ui_proccnt += diff;
1055 KASSERT(uip->ui_proccnt >= 0);
1056 mutex_exit(&uip->ui_lock);
1057 return uip->ui_proccnt;
1058 }
1059
1060 int
1061 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1062 {
1063 rlim_t nsb;
1064
1065 mutex_enter(&uip->ui_lock);
1066 nsb = uip->ui_sbsize + to - *hiwat;
1067 if (to > *hiwat && nsb > xmax) {
1068 mutex_exit(&uip->ui_lock);
1069 return 0;
1070 }
1071 *hiwat = to;
1072 uip->ui_sbsize = nsb;
1073 KASSERT(uip->ui_sbsize >= 0);
1074 mutex_exit(&uip->ui_lock);
1075 return 1;
1076 }
1077