kern_resource.c revision 1.137.2.1 1 /* $NetBSD: kern_resource.c,v 1.137.2.1 2008/03/29 20:47:00 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.137.2.1 2008/03/29 20:47:00 christos Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;
71
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73
74 static pool_cache_t plimit_cache;
75 static pool_cache_t pstats_cache;
76
77 void
78 resource_init(void)
79 {
80 /*
81 * In case of MP system, SLIST_FOREACH would force a cache line
82 * write-back for every modified 'uidinfo', thus we try to keep the
83 * lists short.
84 */
85 const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
86
87 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
88 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
89 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
90 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
91 uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
92 }
93
94 /*
95 * Resource controls and accounting.
96 */
97
98 int
99 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
100 register_t *retval)
101 {
102 /* {
103 syscallarg(int) which;
104 syscallarg(id_t) who;
105 } */
106 struct proc *curp = l->l_proc, *p;
107 int low = NZERO + PRIO_MAX + 1;
108 int who = SCARG(uap, who);
109
110 mutex_enter(&proclist_lock);
111 switch (SCARG(uap, which)) {
112 case PRIO_PROCESS:
113 if (who == 0)
114 p = curp;
115 else
116 p = p_find(who, PFIND_LOCKED);
117 if (p != NULL)
118 low = p->p_nice;
119 break;
120
121 case PRIO_PGRP: {
122 struct pgrp *pg;
123
124 if (who == 0)
125 pg = curp->p_pgrp;
126 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
127 break;
128 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 if (p->p_nice < low)
130 low = p->p_nice;
131 }
132 break;
133 }
134
135 case PRIO_USER:
136 if (who == 0)
137 who = (int)kauth_cred_geteuid(l->l_cred);
138 PROCLIST_FOREACH(p, &allproc) {
139 mutex_enter(&p->p_mutex);
140 if (kauth_cred_geteuid(p->p_cred) ==
141 (uid_t)who && p->p_nice < low)
142 low = p->p_nice;
143 mutex_exit(&p->p_mutex);
144 }
145 break;
146
147 default:
148 mutex_exit(&proclist_lock);
149 return (EINVAL);
150 }
151 mutex_exit(&proclist_lock);
152
153 if (low == NZERO + PRIO_MAX + 1)
154 return (ESRCH);
155 *retval = low - NZERO;
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
162 register_t *retval)
163 {
164 /* {
165 syscallarg(int) which;
166 syscallarg(id_t) who;
167 syscallarg(int) prio;
168 } */
169 struct proc *curp = l->l_proc, *p;
170 int found = 0, error = 0;
171 int who = SCARG(uap, who);
172
173 mutex_enter(&proclist_lock);
174 switch (SCARG(uap, which)) {
175 case PRIO_PROCESS:
176 if (who == 0)
177 p = curp;
178 else
179 p = p_find(who, PFIND_LOCKED);
180 if (p != 0) {
181 mutex_enter(&p->p_mutex);
182 error = donice(l, p, SCARG(uap, prio));
183 mutex_exit(&p->p_mutex);
184 }
185 found++;
186 break;
187
188 case PRIO_PGRP: {
189 struct pgrp *pg;
190
191 if (who == 0)
192 pg = curp->p_pgrp;
193 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
194 break;
195 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
196 mutex_enter(&p->p_mutex);
197 error = donice(l, p, SCARG(uap, prio));
198 mutex_exit(&p->p_mutex);
199 found++;
200 }
201 break;
202 }
203
204 case PRIO_USER:
205 if (who == 0)
206 who = (int)kauth_cred_geteuid(l->l_cred);
207 PROCLIST_FOREACH(p, &allproc) {
208 mutex_enter(&p->p_mutex);
209 if (kauth_cred_geteuid(p->p_cred) ==
210 (uid_t)SCARG(uap, who)) {
211 error = donice(l, p, SCARG(uap, prio));
212 found++;
213 }
214 mutex_exit(&p->p_mutex);
215 }
216 break;
217
218 default:
219 error = EINVAL;
220 break;
221 }
222 mutex_exit(&proclist_lock);
223 if (found == 0)
224 return (ESRCH);
225 return (error);
226 }
227
228 /*
229 * Renice a process.
230 *
231 * Call with the target process' credentials locked.
232 */
233 int
234 donice(struct lwp *l, struct proc *chgp, int n)
235 {
236 kauth_cred_t cred = l->l_cred;
237 int onice;
238
239 KASSERT(mutex_owned(&chgp->p_mutex));
240
241 if (n > PRIO_MAX)
242 n = PRIO_MAX;
243 if (n < PRIO_MIN)
244 n = PRIO_MIN;
245 n += NZERO;
246 onice = chgp->p_nice;
247 onice = chgp->p_nice;
248
249 again:
250 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
251 KAUTH_ARG(n), NULL, NULL))
252 return (EACCES);
253 mutex_spin_enter(&chgp->p_smutex);
254 if (onice != chgp->p_nice) {
255 mutex_spin_exit(&chgp->p_smutex);
256 goto again;
257 }
258 sched_nice(chgp, n);
259 mutex_spin_exit(&chgp->p_smutex);
260 return (0);
261 }
262
263 /* ARGSUSED */
264 int
265 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
266 register_t *retval)
267 {
268 /* {
269 syscallarg(int) which;
270 syscallarg(const struct rlimit *) rlp;
271 } */
272 int which = SCARG(uap, which);
273 struct rlimit alim;
274 int error;
275
276 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
277 if (error)
278 return (error);
279 return (dosetrlimit(l, l->l_proc, which, &alim));
280 }
281
282 int
283 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
284 {
285 struct rlimit *alimp;
286 int error;
287
288 if ((u_int)which >= RLIM_NLIMITS)
289 return (EINVAL);
290
291 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
292 return (EINVAL);
293
294 if (limp->rlim_cur > limp->rlim_max) {
295 /*
296 * This is programming error. According to SUSv2, we should
297 * return error in this case.
298 */
299 return (EINVAL);
300 }
301
302 alimp = &p->p_rlimit[which];
303 /* if we don't change the value, no need to limcopy() */
304 if (limp->rlim_cur == alimp->rlim_cur &&
305 limp->rlim_max == alimp->rlim_max)
306 return 0;
307
308 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
309 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
310 if (error)
311 return (error);
312
313 lim_privatise(p, false);
314 /* p->p_limit is now unchangeable */
315 alimp = &p->p_rlimit[which];
316
317 switch (which) {
318
319 case RLIMIT_DATA:
320 if (limp->rlim_cur > maxdmap)
321 limp->rlim_cur = maxdmap;
322 if (limp->rlim_max > maxdmap)
323 limp->rlim_max = maxdmap;
324 break;
325
326 case RLIMIT_STACK:
327 if (limp->rlim_cur > maxsmap)
328 limp->rlim_cur = maxsmap;
329 if (limp->rlim_max > maxsmap)
330 limp->rlim_max = maxsmap;
331
332 /*
333 * Return EINVAL if the new stack size limit is lower than
334 * current usage. Otherwise, the process would get SIGSEGV the
335 * moment it would try to access anything on it's current stack.
336 * This conforms to SUSv2.
337 */
338 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
339 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
340 return (EINVAL);
341 }
342
343 /*
344 * Stack is allocated to the max at exec time with
345 * only "rlim_cur" bytes accessible (In other words,
346 * allocates stack dividing two contiguous regions at
347 * "rlim_cur" bytes boundary).
348 *
349 * Since allocation is done in terms of page, roundup
350 * "rlim_cur" (otherwise, contiguous regions
351 * overlap). If stack limit is going up make more
352 * accessible, if going down make inaccessible.
353 */
354 limp->rlim_cur = round_page(limp->rlim_cur);
355 if (limp->rlim_cur != alimp->rlim_cur) {
356 vaddr_t addr;
357 vsize_t size;
358 vm_prot_t prot;
359
360 if (limp->rlim_cur > alimp->rlim_cur) {
361 prot = VM_PROT_READ | VM_PROT_WRITE;
362 size = limp->rlim_cur - alimp->rlim_cur;
363 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
364 limp->rlim_cur;
365 } else {
366 prot = VM_PROT_NONE;
367 size = alimp->rlim_cur - limp->rlim_cur;
368 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
369 alimp->rlim_cur;
370 }
371 (void) uvm_map_protect(&p->p_vmspace->vm_map,
372 addr, addr+size, prot, false);
373 }
374 break;
375
376 case RLIMIT_NOFILE:
377 if (limp->rlim_cur > maxfiles)
378 limp->rlim_cur = maxfiles;
379 if (limp->rlim_max > maxfiles)
380 limp->rlim_max = maxfiles;
381 break;
382
383 case RLIMIT_NPROC:
384 if (limp->rlim_cur > maxproc)
385 limp->rlim_cur = maxproc;
386 if (limp->rlim_max > maxproc)
387 limp->rlim_max = maxproc;
388 break;
389 }
390
391 mutex_enter(&p->p_limit->pl_lock);
392 *alimp = *limp;
393 mutex_exit(&p->p_limit->pl_lock);
394 return (0);
395 }
396
397 /* ARGSUSED */
398 int
399 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
400 register_t *retval)
401 {
402 /* {
403 syscallarg(int) which;
404 syscallarg(struct rlimit *) rlp;
405 } */
406 struct proc *p = l->l_proc;
407 int which = SCARG(uap, which);
408 struct rlimit rl;
409
410 if ((u_int)which >= RLIM_NLIMITS)
411 return (EINVAL);
412
413 mutex_enter(&p->p_mutex);
414 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
415 mutex_exit(&p->p_mutex);
416
417 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
418 }
419
420 /*
421 * Transform the running time and tick information in proc p into user,
422 * system, and interrupt time usage.
423 *
424 * Should be called with p->p_smutex held unless called from exit1().
425 */
426 void
427 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
428 struct timeval *ip, struct timeval *rp)
429 {
430 uint64_t u, st, ut, it, tot;
431 struct lwp *l;
432 struct bintime tm;
433 struct timeval tv;
434
435 mutex_spin_enter(&p->p_stmutex);
436 st = p->p_sticks;
437 ut = p->p_uticks;
438 it = p->p_iticks;
439 mutex_spin_exit(&p->p_stmutex);
440
441 tm = p->p_rtime;
442
443 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
444 lwp_lock(l);
445 bintime_add(&tm, &l->l_rtime);
446 if ((l->l_flag & LW_RUNNING) != 0) {
447 struct bintime diff;
448 /*
449 * Adjust for the current time slice. This is
450 * actually fairly important since the error
451 * here is on the order of a time quantum,
452 * which is much greater than the sampling
453 * error.
454 */
455 binuptime(&diff);
456 bintime_sub(&diff, &l->l_stime);
457 bintime_add(&tm, &diff);
458 }
459 lwp_unlock(l);
460 }
461
462 tot = st + ut + it;
463 bintime2timeval(&tm, &tv);
464 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
465
466 if (tot == 0) {
467 /* No ticks, so can't use to share time out, split 50-50 */
468 st = ut = u / 2;
469 } else {
470 st = (u * st) / tot;
471 ut = (u * ut) / tot;
472 }
473 if (sp != NULL) {
474 sp->tv_sec = st / 1000000;
475 sp->tv_usec = st % 1000000;
476 }
477 if (up != NULL) {
478 up->tv_sec = ut / 1000000;
479 up->tv_usec = ut % 1000000;
480 }
481 if (ip != NULL) {
482 if (it != 0)
483 it = (u * it) / tot;
484 ip->tv_sec = it / 1000000;
485 ip->tv_usec = it % 1000000;
486 }
487 if (rp != NULL) {
488 *rp = tv;
489 }
490 }
491
492 /* ARGSUSED */
493 int
494 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
495 register_t *retval)
496 {
497 /* {
498 syscallarg(int) who;
499 syscallarg(struct rusage *) rusage;
500 } */
501 struct rusage ru;
502 struct proc *p = l->l_proc;
503
504 switch (SCARG(uap, who)) {
505 case RUSAGE_SELF:
506 mutex_enter(&p->p_smutex);
507 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
508 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
509 rulwps(p, &ru);
510 mutex_exit(&p->p_smutex);
511 break;
512
513 case RUSAGE_CHILDREN:
514 mutex_enter(&p->p_smutex);
515 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
516 mutex_exit(&p->p_smutex);
517 break;
518
519 default:
520 return EINVAL;
521 }
522
523 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
524 }
525
526 void
527 ruadd(struct rusage *ru, struct rusage *ru2)
528 {
529 long *ip, *ip2;
530 int i;
531
532 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
533 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
534 if (ru->ru_maxrss < ru2->ru_maxrss)
535 ru->ru_maxrss = ru2->ru_maxrss;
536 ip = &ru->ru_first; ip2 = &ru2->ru_first;
537 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
538 *ip++ += *ip2++;
539 }
540
541 void
542 rulwps(proc_t *p, struct rusage *ru)
543 {
544 lwp_t *l;
545
546 KASSERT(mutex_owned(&p->p_smutex));
547
548 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
549 ruadd(ru, &l->l_ru);
550 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
551 ru->ru_nivcsw += l->l_nivcsw;
552 }
553 }
554
555 /*
556 * Make a copy of the plimit structure.
557 * We share these structures copy-on-write after fork,
558 * and copy when a limit is changed.
559 *
560 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
561 * we are copying to change beneath our feet!
562 */
563 struct plimit *
564 lim_copy(struct plimit *lim)
565 {
566 struct plimit *newlim;
567 char *corename;
568 size_t alen, len;
569
570 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
571 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
572 newlim->pl_flags = 0;
573 newlim->pl_refcnt = 1;
574 newlim->pl_sv_limit = NULL;
575
576 mutex_enter(&lim->pl_lock);
577 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
578 sizeof(struct rlimit) * RLIM_NLIMITS);
579
580 alen = 0;
581 corename = NULL;
582 for (;;) {
583 if (lim->pl_corename == defcorename) {
584 newlim->pl_corename = defcorename;
585 break;
586 }
587 len = strlen(lim->pl_corename) + 1;
588 if (len <= alen) {
589 newlim->pl_corename = corename;
590 memcpy(corename, lim->pl_corename, len);
591 corename = NULL;
592 break;
593 }
594 mutex_exit(&lim->pl_lock);
595 if (corename != NULL)
596 free(corename, M_TEMP);
597 alen = len;
598 corename = malloc(alen, M_TEMP, M_WAITOK);
599 mutex_enter(&lim->pl_lock);
600 }
601 mutex_exit(&lim->pl_lock);
602 if (corename != NULL)
603 free(corename, M_TEMP);
604 return newlim;
605 }
606
607 void
608 lim_addref(struct plimit *lim)
609 {
610 atomic_inc_uint(&lim->pl_refcnt);
611 }
612
613 /*
614 * Give a process it's own private plimit structure.
615 * This will only be shared (in fork) if modifications are to be shared.
616 */
617 void
618 lim_privatise(struct proc *p, bool set_shared)
619 {
620 struct plimit *lim, *newlim;
621
622 lim = p->p_limit;
623 if (lim->pl_flags & PL_WRITEABLE) {
624 if (set_shared)
625 lim->pl_flags |= PL_SHAREMOD;
626 return;
627 }
628
629 if (set_shared && lim->pl_flags & PL_SHAREMOD)
630 return;
631
632 newlim = lim_copy(lim);
633
634 mutex_enter(&p->p_mutex);
635 if (p->p_limit->pl_flags & PL_WRITEABLE) {
636 /* Someone crept in while we were busy */
637 mutex_exit(&p->p_mutex);
638 limfree(newlim);
639 if (set_shared)
640 p->p_limit->pl_flags |= PL_SHAREMOD;
641 return;
642 }
643
644 /*
645 * Since most accesses to p->p_limit aren't locked, we must not
646 * delete the old limit structure yet.
647 */
648 newlim->pl_sv_limit = p->p_limit;
649 newlim->pl_flags |= PL_WRITEABLE;
650 if (set_shared)
651 newlim->pl_flags |= PL_SHAREMOD;
652 p->p_limit = newlim;
653 mutex_exit(&p->p_mutex);
654 }
655
656 void
657 limfree(struct plimit *lim)
658 {
659 struct plimit *sv_lim;
660
661 do {
662 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
663 return;
664 if (lim->pl_corename != defcorename)
665 free(lim->pl_corename, M_TEMP);
666 sv_lim = lim->pl_sv_limit;
667 mutex_destroy(&lim->pl_lock);
668 pool_cache_put(plimit_cache, lim);
669 } while ((lim = sv_lim) != NULL);
670 }
671
672 struct pstats *
673 pstatscopy(struct pstats *ps)
674 {
675
676 struct pstats *newps;
677
678 newps = pool_cache_get(pstats_cache, PR_WAITOK);
679
680 memset(&newps->pstat_startzero, 0,
681 (unsigned) ((char *)&newps->pstat_endzero -
682 (char *)&newps->pstat_startzero));
683 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
684 ((char *)&newps->pstat_endcopy -
685 (char *)&newps->pstat_startcopy));
686
687 return (newps);
688
689 }
690
691 void
692 pstatsfree(struct pstats *ps)
693 {
694
695 pool_cache_put(pstats_cache, ps);
696 }
697
698 /*
699 * sysctl interface in five parts
700 */
701
702 /*
703 * a routine for sysctl proc subtree helpers that need to pick a valid
704 * process by pid.
705 */
706 static int
707 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
708 {
709 struct proc *ptmp;
710 int error = 0;
711
712 if (pid == PROC_CURPROC)
713 ptmp = l->l_proc;
714 else if ((ptmp = pfind(pid)) == NULL)
715 error = ESRCH;
716
717 *p2 = ptmp;
718 return (error);
719 }
720
721 /*
722 * sysctl helper routine for setting a process's specific corefile
723 * name. picks the process based on the given pid and checks the
724 * correctness of the new value.
725 */
726 static int
727 sysctl_proc_corename(SYSCTLFN_ARGS)
728 {
729 struct proc *ptmp;
730 struct plimit *lim;
731 int error = 0, len;
732 char *cname;
733 char *ocore;
734 char *tmp;
735 struct sysctlnode node;
736
737 /*
738 * is this all correct?
739 */
740 if (namelen != 0)
741 return (EINVAL);
742 if (name[-1] != PROC_PID_CORENAME)
743 return (EINVAL);
744
745 /*
746 * whom are we tweaking?
747 */
748 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
749 if (error)
750 return (error);
751
752 /* XXX-elad */
753 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
754 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
755 if (error)
756 return (error);
757
758 if (newp == NULL) {
759 error = kauth_authorize_process(l->l_cred,
760 KAUTH_PROCESS_CORENAME, ptmp,
761 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
762 if (error)
763 return (error);
764 }
765
766 /*
767 * let them modify a temporary copy of the core name
768 */
769 cname = PNBUF_GET();
770 lim = ptmp->p_limit;
771 mutex_enter(&lim->pl_lock);
772 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
773 mutex_exit(&lim->pl_lock);
774
775 node = *rnode;
776 node.sysctl_data = cname;
777 error = sysctl_lookup(SYSCTLFN_CALL(&node));
778
779 /*
780 * if that failed, or they have nothing new to say, or we've
781 * heard it before...
782 */
783 if (error || newp == NULL)
784 goto done;
785 lim = ptmp->p_limit;
786 mutex_enter(&lim->pl_lock);
787 error = strcmp(cname, lim->pl_corename);
788 mutex_exit(&lim->pl_lock);
789 if (error == 0)
790 /* Unchanged */
791 goto done;
792
793 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
794 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
795 if (error)
796 return (error);
797
798 /*
799 * no error yet and cname now has the new core name in it.
800 * let's see if it looks acceptable. it must be either "core"
801 * or end in ".core" or "/core".
802 */
803 len = strlen(cname);
804 if (len < 4) {
805 error = EINVAL;
806 } else if (strcmp(cname + len - 4, "core") != 0) {
807 error = EINVAL;
808 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
809 error = EINVAL;
810 }
811 if (error != 0) {
812 goto done;
813 }
814
815 /*
816 * hmm...looks good. now...where do we put it?
817 */
818 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
819 if (tmp == NULL) {
820 error = ENOMEM;
821 goto done;
822 }
823 memcpy(tmp, cname, len + 1);
824
825 lim_privatise(ptmp, false);
826 lim = ptmp->p_limit;
827 mutex_enter(&lim->pl_lock);
828 ocore = lim->pl_corename;
829 lim->pl_corename = tmp;
830 mutex_exit(&lim->pl_lock);
831 if (ocore != defcorename)
832 free(ocore, M_TEMP);
833
834 done:
835 PNBUF_PUT(cname);
836 return error;
837 }
838
839 /*
840 * sysctl helper routine for checking/setting a process's stop flags,
841 * one for fork and one for exec.
842 */
843 static int
844 sysctl_proc_stop(SYSCTLFN_ARGS)
845 {
846 struct proc *ptmp;
847 int i, f, error = 0;
848 struct sysctlnode node;
849
850 if (namelen != 0)
851 return (EINVAL);
852
853 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
854 if (error)
855 return (error);
856
857 /* XXX-elad */
858 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
859 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
860 if (error)
861 return (error);
862
863 switch (rnode->sysctl_num) {
864 case PROC_PID_STOPFORK:
865 f = PS_STOPFORK;
866 break;
867 case PROC_PID_STOPEXEC:
868 f = PS_STOPEXEC;
869 break;
870 case PROC_PID_STOPEXIT:
871 f = PS_STOPEXIT;
872 break;
873 default:
874 return (EINVAL);
875 }
876
877 i = (ptmp->p_flag & f) ? 1 : 0;
878 node = *rnode;
879 node.sysctl_data = &i;
880 error = sysctl_lookup(SYSCTLFN_CALL(&node));
881 if (error || newp == NULL)
882 return (error);
883
884 mutex_enter(&ptmp->p_smutex);
885 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
886 ptmp, KAUTH_ARG(f), NULL, NULL);
887 if (error)
888 return (error);
889 if (i)
890 ptmp->p_sflag |= f;
891 else
892 ptmp->p_sflag &= ~f;
893 mutex_exit(&ptmp->p_smutex);
894
895 return (0);
896 }
897
898 /*
899 * sysctl helper routine for a process's rlimits as exposed by sysctl.
900 */
901 static int
902 sysctl_proc_plimit(SYSCTLFN_ARGS)
903 {
904 struct proc *ptmp;
905 u_int limitno;
906 int which, error = 0;
907 struct rlimit alim;
908 struct sysctlnode node;
909
910 if (namelen != 0)
911 return (EINVAL);
912
913 which = name[-1];
914 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
915 which != PROC_PID_LIMIT_TYPE_HARD)
916 return (EINVAL);
917
918 limitno = name[-2] - 1;
919 if (limitno >= RLIM_NLIMITS)
920 return (EINVAL);
921
922 if (name[-3] != PROC_PID_LIMIT)
923 return (EINVAL);
924
925 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
926 if (error)
927 return (error);
928
929 /* XXX-elad */
930 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
931 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
932 if (error)
933 return (error);
934
935 /* Check if we can view limits. */
936 if (newp == NULL) {
937 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
938 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
939 KAUTH_ARG(which));
940 if (error)
941 return (error);
942 }
943
944 node = *rnode;
945 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
946 if (which == PROC_PID_LIMIT_TYPE_HARD)
947 node.sysctl_data = &alim.rlim_max;
948 else
949 node.sysctl_data = &alim.rlim_cur;
950
951 error = sysctl_lookup(SYSCTLFN_CALL(&node));
952 if (error || newp == NULL)
953 return (error);
954
955 return (dosetrlimit(l, ptmp, limitno, &alim));
956 }
957
958 /*
959 * and finally, the actually glue that sticks it to the tree
960 */
961 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
962 {
963
964 sysctl_createv(clog, 0, NULL, NULL,
965 CTLFLAG_PERMANENT,
966 CTLTYPE_NODE, "proc", NULL,
967 NULL, 0, NULL, 0,
968 CTL_PROC, CTL_EOL);
969 sysctl_createv(clog, 0, NULL, NULL,
970 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
971 CTLTYPE_NODE, "curproc",
972 SYSCTL_DESCR("Per-process settings"),
973 NULL, 0, NULL, 0,
974 CTL_PROC, PROC_CURPROC, CTL_EOL);
975
976 sysctl_createv(clog, 0, NULL, NULL,
977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
978 CTLTYPE_STRING, "corename",
979 SYSCTL_DESCR("Core file name"),
980 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
981 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
982 sysctl_createv(clog, 0, NULL, NULL,
983 CTLFLAG_PERMANENT,
984 CTLTYPE_NODE, "rlimit",
985 SYSCTL_DESCR("Process limits"),
986 NULL, 0, NULL, 0,
987 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
988
989 #define create_proc_plimit(s, n) do { \
990 sysctl_createv(clog, 0, NULL, NULL, \
991 CTLFLAG_PERMANENT, \
992 CTLTYPE_NODE, s, \
993 SYSCTL_DESCR("Process " s " limits"), \
994 NULL, 0, NULL, 0, \
995 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
996 CTL_EOL); \
997 sysctl_createv(clog, 0, NULL, NULL, \
998 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
999 CTLTYPE_QUAD, "soft", \
1000 SYSCTL_DESCR("Process soft " s " limit"), \
1001 sysctl_proc_plimit, 0, NULL, 0, \
1002 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1003 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1004 sysctl_createv(clog, 0, NULL, NULL, \
1005 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1006 CTLTYPE_QUAD, "hard", \
1007 SYSCTL_DESCR("Process hard " s " limit"), \
1008 sysctl_proc_plimit, 0, NULL, 0, \
1009 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1010 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1011 } while (0/*CONSTCOND*/)
1012
1013 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1014 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1015 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1016 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1017 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1018 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1019 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1020 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1021 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1022 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1023
1024 #undef create_proc_plimit
1025
1026 sysctl_createv(clog, 0, NULL, NULL,
1027 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1028 CTLTYPE_INT, "stopfork",
1029 SYSCTL_DESCR("Stop process at fork(2)"),
1030 sysctl_proc_stop, 0, NULL, 0,
1031 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1032 sysctl_createv(clog, 0, NULL, NULL,
1033 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1034 CTLTYPE_INT, "stopexec",
1035 SYSCTL_DESCR("Stop process at execve(2)"),
1036 sysctl_proc_stop, 0, NULL, 0,
1037 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1038 sysctl_createv(clog, 0, NULL, NULL,
1039 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1040 CTLTYPE_INT, "stopexit",
1041 SYSCTL_DESCR("Stop process before completing exit"),
1042 sysctl_proc_stop, 0, NULL, 0,
1043 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1044 }
1045
1046 void
1047 uid_init(void)
1048 {
1049
1050 /*
1051 * Ensure that uid 0 is always in the user hash table, as
1052 * sbreserve() expects it available from interrupt context.
1053 */
1054 (void)uid_find(0);
1055 }
1056
1057 struct uidinfo *
1058 uid_find(uid_t uid)
1059 {
1060 struct uidinfo *uip, *uip_first, *newuip;
1061 struct uihashhead *uipp;
1062
1063 uipp = UIHASH(uid);
1064 newuip = NULL;
1065
1066 /*
1067 * To make insertion atomic, abstraction of SLIST will be violated.
1068 */
1069 uip_first = uipp->slh_first;
1070 again:
1071 SLIST_FOREACH(uip, uipp, ui_hash) {
1072 if (uip->ui_uid != uid)
1073 continue;
1074 if (newuip != NULL)
1075 kmem_free(newuip, sizeof(*newuip));
1076 return uip;
1077 }
1078 if (newuip == NULL)
1079 newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
1080 newuip->ui_uid = uid;
1081
1082 /*
1083 * If atomic insert is unsuccessful, another thread might be
1084 * allocated this 'uid', thus full re-check is needed.
1085 */
1086 newuip->ui_hash.sle_next = uip_first;
1087 membar_producer();
1088 uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
1089 if (uip != uip_first) {
1090 uip_first = uip;
1091 goto again;
1092 }
1093
1094 return newuip;
1095 }
1096
1097 /*
1098 * Change the count associated with number of processes
1099 * a given user is using.
1100 */
1101 int
1102 chgproccnt(uid_t uid, int diff)
1103 {
1104 struct uidinfo *uip;
1105 long proccnt;
1106
1107 uip = uid_find(uid);
1108 proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
1109 KASSERT(proccnt >= 0);
1110 return proccnt;
1111 }
1112
1113 int
1114 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1115 {
1116 rlim_t nsb;
1117 const long diff = to - *hiwat;
1118
1119 nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
1120 if (diff > 0 && nsb > xmax) {
1121 atomic_add_long((long *)&uip->ui_sbsize, -diff);
1122 return 0;
1123 }
1124 *hiwat = to;
1125 KASSERT(nsb >= 0);
1126 return 1;
1127 }
1128