kern_resource.c revision 1.137.2.2 1 /* $NetBSD: kern_resource.c,v 1.137.2.2 2008/04/03 13:05:14 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.137.2.2 2008/04/03 13:05:14 christos Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;
71
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73
74 static pool_cache_t plimit_cache;
75 static pool_cache_t pstats_cache;
76
77 void
78 resource_init(void)
79 {
80 /*
81 * In case of MP system, SLIST_FOREACH would force a cache line
82 * write-back for every modified 'uidinfo', thus we try to keep the
83 * lists short.
84 */
85 const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
86
87 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
88 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
89 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
90 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
91 uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
92 }
93
94 /*
95 * Resource controls and accounting.
96 */
97
98 int
99 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
100 register_t *retval)
101 {
102 /* {
103 syscallarg(int) which;
104 syscallarg(id_t) who;
105 } */
106 struct proc *curp = l->l_proc, *p;
107 int low = NZERO + PRIO_MAX + 1;
108 int who = SCARG(uap, who);
109
110 mutex_enter(&proclist_lock);
111 switch (SCARG(uap, which)) {
112 case PRIO_PROCESS:
113 if (who == 0)
114 p = curp;
115 else
116 p = p_find(who, PFIND_LOCKED);
117 if (p != NULL)
118 low = p->p_nice;
119 break;
120
121 case PRIO_PGRP: {
122 struct pgrp *pg;
123
124 if (who == 0)
125 pg = curp->p_pgrp;
126 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
127 break;
128 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 if (p->p_nice < low)
130 low = p->p_nice;
131 }
132 break;
133 }
134
135 case PRIO_USER:
136 if (who == 0)
137 who = (int)kauth_cred_geteuid(l->l_cred);
138 PROCLIST_FOREACH(p, &allproc) {
139 mutex_enter(&p->p_mutex);
140 if (kauth_cred_geteuid(p->p_cred) ==
141 (uid_t)who && p->p_nice < low)
142 low = p->p_nice;
143 mutex_exit(&p->p_mutex);
144 }
145 break;
146
147 default:
148 mutex_exit(&proclist_lock);
149 return (EINVAL);
150 }
151 mutex_exit(&proclist_lock);
152
153 if (low == NZERO + PRIO_MAX + 1)
154 return (ESRCH);
155 *retval = low - NZERO;
156 return (0);
157 }
158
159 /* ARGSUSED */
160 int
161 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
162 register_t *retval)
163 {
164 /* {
165 syscallarg(int) which;
166 syscallarg(id_t) who;
167 syscallarg(int) prio;
168 } */
169 struct proc *curp = l->l_proc, *p;
170 int found = 0, error = 0;
171 int who = SCARG(uap, who);
172
173 mutex_enter(&proclist_lock);
174 switch (SCARG(uap, which)) {
175 case PRIO_PROCESS:
176 if (who == 0)
177 p = curp;
178 else
179 p = p_find(who, PFIND_LOCKED);
180 if (p != 0) {
181 mutex_enter(&p->p_mutex);
182 error = donice(l, p, SCARG(uap, prio));
183 mutex_exit(&p->p_mutex);
184 }
185 found++;
186 break;
187
188 case PRIO_PGRP: {
189 struct pgrp *pg;
190
191 if (who == 0)
192 pg = curp->p_pgrp;
193 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
194 break;
195 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
196 mutex_enter(&p->p_mutex);
197 error = donice(l, p, SCARG(uap, prio));
198 mutex_exit(&p->p_mutex);
199 found++;
200 }
201 break;
202 }
203
204 case PRIO_USER:
205 if (who == 0)
206 who = (int)kauth_cred_geteuid(l->l_cred);
207 PROCLIST_FOREACH(p, &allproc) {
208 mutex_enter(&p->p_mutex);
209 if (kauth_cred_geteuid(p->p_cred) ==
210 (uid_t)SCARG(uap, who)) {
211 error = donice(l, p, SCARG(uap, prio));
212 found++;
213 }
214 mutex_exit(&p->p_mutex);
215 }
216 break;
217
218 default:
219 error = EINVAL;
220 break;
221 }
222 mutex_exit(&proclist_lock);
223 if (found == 0)
224 return (ESRCH);
225 return (error);
226 }
227
228 /*
229 * Renice a process.
230 *
231 * Call with the target process' credentials locked.
232 */
233 int
234 donice(struct lwp *l, struct proc *chgp, int n)
235 {
236 kauth_cred_t cred = l->l_cred;
237 int onice;
238
239 KASSERT(mutex_owned(&chgp->p_mutex));
240
241 if (n > PRIO_MAX)
242 n = PRIO_MAX;
243 if (n < PRIO_MIN)
244 n = PRIO_MIN;
245 n += NZERO;
246 onice = chgp->p_nice;
247 onice = chgp->p_nice;
248
249 again:
250 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
251 KAUTH_ARG(n), NULL, NULL))
252 return (EACCES);
253 mutex_spin_enter(&chgp->p_smutex);
254 if (onice != chgp->p_nice) {
255 mutex_spin_exit(&chgp->p_smutex);
256 goto again;
257 }
258 sched_nice(chgp, n);
259 mutex_spin_exit(&chgp->p_smutex);
260 return (0);
261 }
262
263 /* ARGSUSED */
264 int
265 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
266 register_t *retval)
267 {
268 /* {
269 syscallarg(int) which;
270 syscallarg(const struct rlimit *) rlp;
271 } */
272 int which = SCARG(uap, which);
273 struct rlimit alim;
274 int error;
275
276 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
277 if (error)
278 return (error);
279 return (dosetrlimit(l, l->l_proc, which, &alim));
280 }
281
282 int
283 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
284 {
285 struct rlimit *alimp;
286 int error;
287
288 if ((u_int)which >= RLIM_NLIMITS)
289 return (EINVAL);
290
291 if (limp->rlim_cur > limp->rlim_max) {
292 /*
293 * This is programming error. According to SUSv2, we should
294 * return error in this case.
295 */
296 return (EINVAL);
297 }
298
299 alimp = &p->p_rlimit[which];
300 /* if we don't change the value, no need to limcopy() */
301 if (limp->rlim_cur == alimp->rlim_cur &&
302 limp->rlim_max == alimp->rlim_max)
303 return 0;
304
305 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
306 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
307 if (error)
308 return (error);
309
310 lim_privatise(p, false);
311 /* p->p_limit is now unchangeable */
312 alimp = &p->p_rlimit[which];
313
314 switch (which) {
315
316 case RLIMIT_DATA:
317 if (limp->rlim_cur > maxdmap)
318 limp->rlim_cur = maxdmap;
319 if (limp->rlim_max > maxdmap)
320 limp->rlim_max = maxdmap;
321 break;
322
323 case RLIMIT_STACK:
324 if (limp->rlim_cur > maxsmap)
325 limp->rlim_cur = maxsmap;
326 if (limp->rlim_max > maxsmap)
327 limp->rlim_max = maxsmap;
328
329 /*
330 * Return EINVAL if the new stack size limit is lower than
331 * current usage. Otherwise, the process would get SIGSEGV the
332 * moment it would try to access anything on it's current stack.
333 * This conforms to SUSv2.
334 */
335 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
336 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
337 return (EINVAL);
338 }
339
340 /*
341 * Stack is allocated to the max at exec time with
342 * only "rlim_cur" bytes accessible (In other words,
343 * allocates stack dividing two contiguous regions at
344 * "rlim_cur" bytes boundary).
345 *
346 * Since allocation is done in terms of page, roundup
347 * "rlim_cur" (otherwise, contiguous regions
348 * overlap). If stack limit is going up make more
349 * accessible, if going down make inaccessible.
350 */
351 limp->rlim_cur = round_page(limp->rlim_cur);
352 if (limp->rlim_cur != alimp->rlim_cur) {
353 vaddr_t addr;
354 vsize_t size;
355 vm_prot_t prot;
356
357 if (limp->rlim_cur > alimp->rlim_cur) {
358 prot = VM_PROT_READ | VM_PROT_WRITE;
359 size = limp->rlim_cur - alimp->rlim_cur;
360 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
361 limp->rlim_cur;
362 } else {
363 prot = VM_PROT_NONE;
364 size = alimp->rlim_cur - limp->rlim_cur;
365 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
366 alimp->rlim_cur;
367 }
368 (void) uvm_map_protect(&p->p_vmspace->vm_map,
369 addr, addr+size, prot, false);
370 }
371 break;
372
373 case RLIMIT_NOFILE:
374 if (limp->rlim_cur > maxfiles)
375 limp->rlim_cur = maxfiles;
376 if (limp->rlim_max > maxfiles)
377 limp->rlim_max = maxfiles;
378 break;
379
380 case RLIMIT_NPROC:
381 if (limp->rlim_cur > maxproc)
382 limp->rlim_cur = maxproc;
383 if (limp->rlim_max > maxproc)
384 limp->rlim_max = maxproc;
385 break;
386 }
387
388 mutex_enter(&p->p_limit->pl_lock);
389 *alimp = *limp;
390 mutex_exit(&p->p_limit->pl_lock);
391 return (0);
392 }
393
394 /* ARGSUSED */
395 int
396 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
397 register_t *retval)
398 {
399 /* {
400 syscallarg(int) which;
401 syscallarg(struct rlimit *) rlp;
402 } */
403 struct proc *p = l->l_proc;
404 int which = SCARG(uap, which);
405 struct rlimit rl;
406
407 if ((u_int)which >= RLIM_NLIMITS)
408 return (EINVAL);
409
410 mutex_enter(&p->p_mutex);
411 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
412 mutex_exit(&p->p_mutex);
413
414 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
415 }
416
417 /*
418 * Transform the running time and tick information in proc p into user,
419 * system, and interrupt time usage.
420 *
421 * Should be called with p->p_smutex held unless called from exit1().
422 */
423 void
424 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
425 struct timeval *ip, struct timeval *rp)
426 {
427 uint64_t u, st, ut, it, tot;
428 struct lwp *l;
429 struct bintime tm;
430 struct timeval tv;
431
432 mutex_spin_enter(&p->p_stmutex);
433 st = p->p_sticks;
434 ut = p->p_uticks;
435 it = p->p_iticks;
436 mutex_spin_exit(&p->p_stmutex);
437
438 tm = p->p_rtime;
439
440 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
441 lwp_lock(l);
442 bintime_add(&tm, &l->l_rtime);
443 if ((l->l_flag & LW_RUNNING) != 0) {
444 struct bintime diff;
445 /*
446 * Adjust for the current time slice. This is
447 * actually fairly important since the error
448 * here is on the order of a time quantum,
449 * which is much greater than the sampling
450 * error.
451 */
452 binuptime(&diff);
453 bintime_sub(&diff, &l->l_stime);
454 bintime_add(&tm, &diff);
455 }
456 lwp_unlock(l);
457 }
458
459 tot = st + ut + it;
460 bintime2timeval(&tm, &tv);
461 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
462
463 if (tot == 0) {
464 /* No ticks, so can't use to share time out, split 50-50 */
465 st = ut = u / 2;
466 } else {
467 st = (u * st) / tot;
468 ut = (u * ut) / tot;
469 }
470 if (sp != NULL) {
471 sp->tv_sec = st / 1000000;
472 sp->tv_usec = st % 1000000;
473 }
474 if (up != NULL) {
475 up->tv_sec = ut / 1000000;
476 up->tv_usec = ut % 1000000;
477 }
478 if (ip != NULL) {
479 if (it != 0)
480 it = (u * it) / tot;
481 ip->tv_sec = it / 1000000;
482 ip->tv_usec = it % 1000000;
483 }
484 if (rp != NULL) {
485 *rp = tv;
486 }
487 }
488
489 /* ARGSUSED */
490 int
491 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
492 register_t *retval)
493 {
494 /* {
495 syscallarg(int) who;
496 syscallarg(struct rusage *) rusage;
497 } */
498 struct rusage ru;
499 struct proc *p = l->l_proc;
500
501 switch (SCARG(uap, who)) {
502 case RUSAGE_SELF:
503 mutex_enter(&p->p_smutex);
504 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
505 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
506 rulwps(p, &ru);
507 mutex_exit(&p->p_smutex);
508 break;
509
510 case RUSAGE_CHILDREN:
511 mutex_enter(&p->p_smutex);
512 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
513 mutex_exit(&p->p_smutex);
514 break;
515
516 default:
517 return EINVAL;
518 }
519
520 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
521 }
522
523 void
524 ruadd(struct rusage *ru, struct rusage *ru2)
525 {
526 long *ip, *ip2;
527 int i;
528
529 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
530 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
531 if (ru->ru_maxrss < ru2->ru_maxrss)
532 ru->ru_maxrss = ru2->ru_maxrss;
533 ip = &ru->ru_first; ip2 = &ru2->ru_first;
534 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
535 *ip++ += *ip2++;
536 }
537
538 void
539 rulwps(proc_t *p, struct rusage *ru)
540 {
541 lwp_t *l;
542
543 KASSERT(mutex_owned(&p->p_smutex));
544
545 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
546 ruadd(ru, &l->l_ru);
547 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
548 ru->ru_nivcsw += l->l_nivcsw;
549 }
550 }
551
552 /*
553 * Make a copy of the plimit structure.
554 * We share these structures copy-on-write after fork,
555 * and copy when a limit is changed.
556 *
557 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
558 * we are copying to change beneath our feet!
559 */
560 struct plimit *
561 lim_copy(struct plimit *lim)
562 {
563 struct plimit *newlim;
564 char *corename;
565 size_t alen, len;
566
567 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
568 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
569 newlim->pl_flags = 0;
570 newlim->pl_refcnt = 1;
571 newlim->pl_sv_limit = NULL;
572
573 mutex_enter(&lim->pl_lock);
574 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
575 sizeof(struct rlimit) * RLIM_NLIMITS);
576
577 alen = 0;
578 corename = NULL;
579 for (;;) {
580 if (lim->pl_corename == defcorename) {
581 newlim->pl_corename = defcorename;
582 break;
583 }
584 len = strlen(lim->pl_corename) + 1;
585 if (len <= alen) {
586 newlim->pl_corename = corename;
587 memcpy(corename, lim->pl_corename, len);
588 corename = NULL;
589 break;
590 }
591 mutex_exit(&lim->pl_lock);
592 if (corename != NULL)
593 free(corename, M_TEMP);
594 alen = len;
595 corename = malloc(alen, M_TEMP, M_WAITOK);
596 mutex_enter(&lim->pl_lock);
597 }
598 mutex_exit(&lim->pl_lock);
599 if (corename != NULL)
600 free(corename, M_TEMP);
601 return newlim;
602 }
603
604 void
605 lim_addref(struct plimit *lim)
606 {
607 atomic_inc_uint(&lim->pl_refcnt);
608 }
609
610 /*
611 * Give a process it's own private plimit structure.
612 * This will only be shared (in fork) if modifications are to be shared.
613 */
614 void
615 lim_privatise(struct proc *p, bool set_shared)
616 {
617 struct plimit *lim, *newlim;
618
619 lim = p->p_limit;
620 if (lim->pl_flags & PL_WRITEABLE) {
621 if (set_shared)
622 lim->pl_flags |= PL_SHAREMOD;
623 return;
624 }
625
626 if (set_shared && lim->pl_flags & PL_SHAREMOD)
627 return;
628
629 newlim = lim_copy(lim);
630
631 mutex_enter(&p->p_mutex);
632 if (p->p_limit->pl_flags & PL_WRITEABLE) {
633 /* Someone crept in while we were busy */
634 mutex_exit(&p->p_mutex);
635 limfree(newlim);
636 if (set_shared)
637 p->p_limit->pl_flags |= PL_SHAREMOD;
638 return;
639 }
640
641 /*
642 * Since most accesses to p->p_limit aren't locked, we must not
643 * delete the old limit structure yet.
644 */
645 newlim->pl_sv_limit = p->p_limit;
646 newlim->pl_flags |= PL_WRITEABLE;
647 if (set_shared)
648 newlim->pl_flags |= PL_SHAREMOD;
649 p->p_limit = newlim;
650 mutex_exit(&p->p_mutex);
651 }
652
653 void
654 limfree(struct plimit *lim)
655 {
656 struct plimit *sv_lim;
657
658 do {
659 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
660 return;
661 if (lim->pl_corename != defcorename)
662 free(lim->pl_corename, M_TEMP);
663 sv_lim = lim->pl_sv_limit;
664 mutex_destroy(&lim->pl_lock);
665 pool_cache_put(plimit_cache, lim);
666 } while ((lim = sv_lim) != NULL);
667 }
668
669 struct pstats *
670 pstatscopy(struct pstats *ps)
671 {
672
673 struct pstats *newps;
674
675 newps = pool_cache_get(pstats_cache, PR_WAITOK);
676
677 memset(&newps->pstat_startzero, 0,
678 (unsigned) ((char *)&newps->pstat_endzero -
679 (char *)&newps->pstat_startzero));
680 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
681 ((char *)&newps->pstat_endcopy -
682 (char *)&newps->pstat_startcopy));
683
684 return (newps);
685
686 }
687
688 void
689 pstatsfree(struct pstats *ps)
690 {
691
692 pool_cache_put(pstats_cache, ps);
693 }
694
695 /*
696 * sysctl interface in five parts
697 */
698
699 /*
700 * a routine for sysctl proc subtree helpers that need to pick a valid
701 * process by pid.
702 */
703 static int
704 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
705 {
706 struct proc *ptmp;
707 int error = 0;
708
709 if (pid == PROC_CURPROC)
710 ptmp = l->l_proc;
711 else if ((ptmp = pfind(pid)) == NULL)
712 error = ESRCH;
713
714 *p2 = ptmp;
715 return (error);
716 }
717
718 /*
719 * sysctl helper routine for setting a process's specific corefile
720 * name. picks the process based on the given pid and checks the
721 * correctness of the new value.
722 */
723 static int
724 sysctl_proc_corename(SYSCTLFN_ARGS)
725 {
726 struct proc *ptmp;
727 struct plimit *lim;
728 int error = 0, len;
729 char *cname;
730 char *ocore;
731 char *tmp;
732 struct sysctlnode node;
733
734 /*
735 * is this all correct?
736 */
737 if (namelen != 0)
738 return (EINVAL);
739 if (name[-1] != PROC_PID_CORENAME)
740 return (EINVAL);
741
742 /*
743 * whom are we tweaking?
744 */
745 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
746 if (error)
747 return (error);
748
749 /* XXX-elad */
750 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
751 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
752 if (error)
753 return (error);
754
755 if (newp == NULL) {
756 error = kauth_authorize_process(l->l_cred,
757 KAUTH_PROCESS_CORENAME, ptmp,
758 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
759 if (error)
760 return (error);
761 }
762
763 /*
764 * let them modify a temporary copy of the core name
765 */
766 cname = PNBUF_GET();
767 lim = ptmp->p_limit;
768 mutex_enter(&lim->pl_lock);
769 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
770 mutex_exit(&lim->pl_lock);
771
772 node = *rnode;
773 node.sysctl_data = cname;
774 error = sysctl_lookup(SYSCTLFN_CALL(&node));
775
776 /*
777 * if that failed, or they have nothing new to say, or we've
778 * heard it before...
779 */
780 if (error || newp == NULL)
781 goto done;
782 lim = ptmp->p_limit;
783 mutex_enter(&lim->pl_lock);
784 error = strcmp(cname, lim->pl_corename);
785 mutex_exit(&lim->pl_lock);
786 if (error == 0)
787 /* Unchanged */
788 goto done;
789
790 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
791 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
792 if (error)
793 return (error);
794
795 /*
796 * no error yet and cname now has the new core name in it.
797 * let's see if it looks acceptable. it must be either "core"
798 * or end in ".core" or "/core".
799 */
800 len = strlen(cname);
801 if (len < 4) {
802 error = EINVAL;
803 } else if (strcmp(cname + len - 4, "core") != 0) {
804 error = EINVAL;
805 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
806 error = EINVAL;
807 }
808 if (error != 0) {
809 goto done;
810 }
811
812 /*
813 * hmm...looks good. now...where do we put it?
814 */
815 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
816 if (tmp == NULL) {
817 error = ENOMEM;
818 goto done;
819 }
820 memcpy(tmp, cname, len + 1);
821
822 lim_privatise(ptmp, false);
823 lim = ptmp->p_limit;
824 mutex_enter(&lim->pl_lock);
825 ocore = lim->pl_corename;
826 lim->pl_corename = tmp;
827 mutex_exit(&lim->pl_lock);
828 if (ocore != defcorename)
829 free(ocore, M_TEMP);
830
831 done:
832 PNBUF_PUT(cname);
833 return error;
834 }
835
836 /*
837 * sysctl helper routine for checking/setting a process's stop flags,
838 * one for fork and one for exec.
839 */
840 static int
841 sysctl_proc_stop(SYSCTLFN_ARGS)
842 {
843 struct proc *ptmp;
844 int i, f, error = 0;
845 struct sysctlnode node;
846
847 if (namelen != 0)
848 return (EINVAL);
849
850 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
851 if (error)
852 return (error);
853
854 /* XXX-elad */
855 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
856 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
857 if (error)
858 return (error);
859
860 switch (rnode->sysctl_num) {
861 case PROC_PID_STOPFORK:
862 f = PS_STOPFORK;
863 break;
864 case PROC_PID_STOPEXEC:
865 f = PS_STOPEXEC;
866 break;
867 case PROC_PID_STOPEXIT:
868 f = PS_STOPEXIT;
869 break;
870 default:
871 return (EINVAL);
872 }
873
874 i = (ptmp->p_flag & f) ? 1 : 0;
875 node = *rnode;
876 node.sysctl_data = &i;
877 error = sysctl_lookup(SYSCTLFN_CALL(&node));
878 if (error || newp == NULL)
879 return (error);
880
881 mutex_enter(&ptmp->p_smutex);
882 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
883 ptmp, KAUTH_ARG(f), NULL, NULL);
884 if (error)
885 return (error);
886 if (i)
887 ptmp->p_sflag |= f;
888 else
889 ptmp->p_sflag &= ~f;
890 mutex_exit(&ptmp->p_smutex);
891
892 return (0);
893 }
894
895 /*
896 * sysctl helper routine for a process's rlimits as exposed by sysctl.
897 */
898 static int
899 sysctl_proc_plimit(SYSCTLFN_ARGS)
900 {
901 struct proc *ptmp;
902 u_int limitno;
903 int which, error = 0;
904 struct rlimit alim;
905 struct sysctlnode node;
906
907 if (namelen != 0)
908 return (EINVAL);
909
910 which = name[-1];
911 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
912 which != PROC_PID_LIMIT_TYPE_HARD)
913 return (EINVAL);
914
915 limitno = name[-2] - 1;
916 if (limitno >= RLIM_NLIMITS)
917 return (EINVAL);
918
919 if (name[-3] != PROC_PID_LIMIT)
920 return (EINVAL);
921
922 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
923 if (error)
924 return (error);
925
926 /* XXX-elad */
927 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
928 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
929 if (error)
930 return (error);
931
932 /* Check if we can view limits. */
933 if (newp == NULL) {
934 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
935 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
936 KAUTH_ARG(which));
937 if (error)
938 return (error);
939 }
940
941 node = *rnode;
942 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
943 if (which == PROC_PID_LIMIT_TYPE_HARD)
944 node.sysctl_data = &alim.rlim_max;
945 else
946 node.sysctl_data = &alim.rlim_cur;
947
948 error = sysctl_lookup(SYSCTLFN_CALL(&node));
949 if (error || newp == NULL)
950 return (error);
951
952 return (dosetrlimit(l, ptmp, limitno, &alim));
953 }
954
955 /*
956 * and finally, the actually glue that sticks it to the tree
957 */
958 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
959 {
960
961 sysctl_createv(clog, 0, NULL, NULL,
962 CTLFLAG_PERMANENT,
963 CTLTYPE_NODE, "proc", NULL,
964 NULL, 0, NULL, 0,
965 CTL_PROC, CTL_EOL);
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
968 CTLTYPE_NODE, "curproc",
969 SYSCTL_DESCR("Per-process settings"),
970 NULL, 0, NULL, 0,
971 CTL_PROC, PROC_CURPROC, CTL_EOL);
972
973 sysctl_createv(clog, 0, NULL, NULL,
974 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
975 CTLTYPE_STRING, "corename",
976 SYSCTL_DESCR("Core file name"),
977 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
978 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
979 sysctl_createv(clog, 0, NULL, NULL,
980 CTLFLAG_PERMANENT,
981 CTLTYPE_NODE, "rlimit",
982 SYSCTL_DESCR("Process limits"),
983 NULL, 0, NULL, 0,
984 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
985
986 #define create_proc_plimit(s, n) do { \
987 sysctl_createv(clog, 0, NULL, NULL, \
988 CTLFLAG_PERMANENT, \
989 CTLTYPE_NODE, s, \
990 SYSCTL_DESCR("Process " s " limits"), \
991 NULL, 0, NULL, 0, \
992 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
993 CTL_EOL); \
994 sysctl_createv(clog, 0, NULL, NULL, \
995 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
996 CTLTYPE_QUAD, "soft", \
997 SYSCTL_DESCR("Process soft " s " limit"), \
998 sysctl_proc_plimit, 0, NULL, 0, \
999 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1000 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1001 sysctl_createv(clog, 0, NULL, NULL, \
1002 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1003 CTLTYPE_QUAD, "hard", \
1004 SYSCTL_DESCR("Process hard " s " limit"), \
1005 sysctl_proc_plimit, 0, NULL, 0, \
1006 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1007 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1008 } while (0/*CONSTCOND*/)
1009
1010 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1011 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1012 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1013 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1014 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1015 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1016 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1017 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1018 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1019 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1020
1021 #undef create_proc_plimit
1022
1023 sysctl_createv(clog, 0, NULL, NULL,
1024 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1025 CTLTYPE_INT, "stopfork",
1026 SYSCTL_DESCR("Stop process at fork(2)"),
1027 sysctl_proc_stop, 0, NULL, 0,
1028 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1029 sysctl_createv(clog, 0, NULL, NULL,
1030 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1031 CTLTYPE_INT, "stopexec",
1032 SYSCTL_DESCR("Stop process at execve(2)"),
1033 sysctl_proc_stop, 0, NULL, 0,
1034 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1035 sysctl_createv(clog, 0, NULL, NULL,
1036 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1037 CTLTYPE_INT, "stopexit",
1038 SYSCTL_DESCR("Stop process before completing exit"),
1039 sysctl_proc_stop, 0, NULL, 0,
1040 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1041 }
1042
1043 void
1044 uid_init(void)
1045 {
1046
1047 /*
1048 * Ensure that uid 0 is always in the user hash table, as
1049 * sbreserve() expects it available from interrupt context.
1050 */
1051 (void)uid_find(0);
1052 }
1053
1054 struct uidinfo *
1055 uid_find(uid_t uid)
1056 {
1057 struct uidinfo *uip, *uip_first, *newuip;
1058 struct uihashhead *uipp;
1059
1060 uipp = UIHASH(uid);
1061 newuip = NULL;
1062
1063 /*
1064 * To make insertion atomic, abstraction of SLIST will be violated.
1065 */
1066 uip_first = uipp->slh_first;
1067 again:
1068 SLIST_FOREACH(uip, uipp, ui_hash) {
1069 if (uip->ui_uid != uid)
1070 continue;
1071 if (newuip != NULL)
1072 kmem_free(newuip, sizeof(*newuip));
1073 return uip;
1074 }
1075 if (newuip == NULL)
1076 newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
1077 newuip->ui_uid = uid;
1078
1079 /*
1080 * If atomic insert is unsuccessful, another thread might be
1081 * allocated this 'uid', thus full re-check is needed.
1082 */
1083 newuip->ui_hash.sle_next = uip_first;
1084 membar_producer();
1085 uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
1086 if (uip != uip_first) {
1087 uip_first = uip;
1088 goto again;
1089 }
1090
1091 return newuip;
1092 }
1093
1094 /*
1095 * Change the count associated with number of processes
1096 * a given user is using.
1097 */
1098 int
1099 chgproccnt(uid_t uid, int diff)
1100 {
1101 struct uidinfo *uip;
1102 long proccnt;
1103
1104 uip = uid_find(uid);
1105 proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
1106 KASSERT(proccnt >= 0);
1107 return proccnt;
1108 }
1109
1110 int
1111 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1112 {
1113 rlim_t nsb;
1114 const long diff = to - *hiwat;
1115
1116 nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
1117 if (diff > 0 && nsb > xmax) {
1118 atomic_add_long((long *)&uip->ui_sbsize, -diff);
1119 return 0;
1120 }
1121 *hiwat = to;
1122 KASSERT(nsb >= 0);
1123 return 1;
1124 }
1125