kern_resource.c revision 1.137.2.3 1 /* $NetBSD: kern_resource.c,v 1.137.2.3 2008/11/01 21:22:27 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.137.2.3 2008/11/01 21:22:27 christos Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static pool_cache_t plimit_cache;
70 static pool_cache_t pstats_cache;
71
72 void
73 resource_init(void)
74 {
75
76 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
77 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
78 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
79 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
80 }
81
82 /*
83 * Resource controls and accounting.
84 */
85
86 int
87 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
88 register_t *retval)
89 {
90 /* {
91 syscallarg(int) which;
92 syscallarg(id_t) who;
93 } */
94 struct proc *curp = l->l_proc, *p;
95 int low = NZERO + PRIO_MAX + 1;
96 int who = SCARG(uap, who);
97
98 mutex_enter(proc_lock);
99 switch (SCARG(uap, which)) {
100 case PRIO_PROCESS:
101 if (who == 0)
102 p = curp;
103 else
104 p = p_find(who, PFIND_LOCKED);
105 if (p != NULL)
106 low = p->p_nice;
107 break;
108
109 case PRIO_PGRP: {
110 struct pgrp *pg;
111
112 if (who == 0)
113 pg = curp->p_pgrp;
114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
115 break;
116 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
117 if (p->p_nice < low)
118 low = p->p_nice;
119 }
120 break;
121 }
122
123 case PRIO_USER:
124 if (who == 0)
125 who = (int)kauth_cred_geteuid(l->l_cred);
126 PROCLIST_FOREACH(p, &allproc) {
127 if ((p->p_flag & PK_MARKER) != 0)
128 continue;
129 mutex_enter(p->p_lock);
130 if (kauth_cred_geteuid(p->p_cred) ==
131 (uid_t)who && p->p_nice < low)
132 low = p->p_nice;
133 mutex_exit(p->p_lock);
134 }
135 break;
136
137 default:
138 mutex_exit(proc_lock);
139 return (EINVAL);
140 }
141 mutex_exit(proc_lock);
142
143 if (low == NZERO + PRIO_MAX + 1)
144 return (ESRCH);
145 *retval = low - NZERO;
146 return (0);
147 }
148
149 /* ARGSUSED */
150 int
151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
152 register_t *retval)
153 {
154 /* {
155 syscallarg(int) which;
156 syscallarg(id_t) who;
157 syscallarg(int) prio;
158 } */
159 struct proc *curp = l->l_proc, *p;
160 int found = 0, error = 0;
161 int who = SCARG(uap, who);
162
163 mutex_enter(proc_lock);
164 switch (SCARG(uap, which)) {
165 case PRIO_PROCESS:
166 if (who == 0)
167 p = curp;
168 else
169 p = p_find(who, PFIND_LOCKED);
170 if (p != 0) {
171 mutex_enter(p->p_lock);
172 error = donice(l, p, SCARG(uap, prio));
173 mutex_exit(p->p_lock);
174 found++;
175 }
176 break;
177
178 case PRIO_PGRP: {
179 struct pgrp *pg;
180
181 if (who == 0)
182 pg = curp->p_pgrp;
183 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
184 break;
185 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
186 mutex_enter(p->p_lock);
187 error = donice(l, p, SCARG(uap, prio));
188 mutex_exit(p->p_lock);
189 found++;
190 }
191 break;
192 }
193
194 case PRIO_USER:
195 if (who == 0)
196 who = (int)kauth_cred_geteuid(l->l_cred);
197 PROCLIST_FOREACH(p, &allproc) {
198 if ((p->p_flag & PK_MARKER) != 0)
199 continue;
200 mutex_enter(p->p_lock);
201 if (kauth_cred_geteuid(p->p_cred) ==
202 (uid_t)SCARG(uap, who)) {
203 error = donice(l, p, SCARG(uap, prio));
204 found++;
205 }
206 mutex_exit(p->p_lock);
207 }
208 break;
209
210 default:
211 mutex_exit(proc_lock);
212 return EINVAL;
213 }
214 mutex_exit(proc_lock);
215 if (found == 0)
216 return (ESRCH);
217 return (error);
218 }
219
220 /*
221 * Renice a process.
222 *
223 * Call with the target process' credentials locked.
224 */
225 int
226 donice(struct lwp *l, struct proc *chgp, int n)
227 {
228 kauth_cred_t cred = l->l_cred;
229
230 KASSERT(mutex_owned(chgp->p_lock));
231
232 if (n > PRIO_MAX)
233 n = PRIO_MAX;
234 if (n < PRIO_MIN)
235 n = PRIO_MIN;
236 n += NZERO;
237 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
238 KAUTH_ARG(n), NULL, NULL))
239 return (EACCES);
240 sched_nice(chgp, n);
241 return (0);
242 }
243
244 /* ARGSUSED */
245 int
246 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
247 register_t *retval)
248 {
249 /* {
250 syscallarg(int) which;
251 syscallarg(const struct rlimit *) rlp;
252 } */
253 int which = SCARG(uap, which);
254 struct rlimit alim;
255 int error;
256
257 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
258 if (error)
259 return (error);
260 return (dosetrlimit(l, l->l_proc, which, &alim));
261 }
262
263 int
264 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
265 {
266 struct rlimit *alimp;
267 int error;
268
269 if ((u_int)which >= RLIM_NLIMITS)
270 return (EINVAL);
271
272 if (limp->rlim_cur > limp->rlim_max) {
273 /*
274 * This is programming error. According to SUSv2, we should
275 * return error in this case.
276 */
277 return (EINVAL);
278 }
279
280 alimp = &p->p_rlimit[which];
281 /* if we don't change the value, no need to limcopy() */
282 if (limp->rlim_cur == alimp->rlim_cur &&
283 limp->rlim_max == alimp->rlim_max)
284 return 0;
285
286 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
287 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
288 if (error)
289 return (error);
290
291 lim_privatise(p, false);
292 /* p->p_limit is now unchangeable */
293 alimp = &p->p_rlimit[which];
294
295 switch (which) {
296
297 case RLIMIT_DATA:
298 if (limp->rlim_cur > maxdmap)
299 limp->rlim_cur = maxdmap;
300 if (limp->rlim_max > maxdmap)
301 limp->rlim_max = maxdmap;
302 break;
303
304 case RLIMIT_STACK:
305 if (limp->rlim_cur > maxsmap)
306 limp->rlim_cur = maxsmap;
307 if (limp->rlim_max > maxsmap)
308 limp->rlim_max = maxsmap;
309
310 /*
311 * Return EINVAL if the new stack size limit is lower than
312 * current usage. Otherwise, the process would get SIGSEGV the
313 * moment it would try to access anything on it's current stack.
314 * This conforms to SUSv2.
315 */
316 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
317 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
318 return (EINVAL);
319 }
320
321 /*
322 * Stack is allocated to the max at exec time with
323 * only "rlim_cur" bytes accessible (In other words,
324 * allocates stack dividing two contiguous regions at
325 * "rlim_cur" bytes boundary).
326 *
327 * Since allocation is done in terms of page, roundup
328 * "rlim_cur" (otherwise, contiguous regions
329 * overlap). If stack limit is going up make more
330 * accessible, if going down make inaccessible.
331 */
332 limp->rlim_cur = round_page(limp->rlim_cur);
333 if (limp->rlim_cur != alimp->rlim_cur) {
334 vaddr_t addr;
335 vsize_t size;
336 vm_prot_t prot;
337
338 if (limp->rlim_cur > alimp->rlim_cur) {
339 prot = VM_PROT_READ | VM_PROT_WRITE;
340 size = limp->rlim_cur - alimp->rlim_cur;
341 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
342 limp->rlim_cur;
343 } else {
344 prot = VM_PROT_NONE;
345 size = alimp->rlim_cur - limp->rlim_cur;
346 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
347 alimp->rlim_cur;
348 }
349 (void) uvm_map_protect(&p->p_vmspace->vm_map,
350 addr, addr+size, prot, false);
351 }
352 break;
353
354 case RLIMIT_NOFILE:
355 if (limp->rlim_cur > maxfiles)
356 limp->rlim_cur = maxfiles;
357 if (limp->rlim_max > maxfiles)
358 limp->rlim_max = maxfiles;
359 break;
360
361 case RLIMIT_NPROC:
362 if (limp->rlim_cur > maxproc)
363 limp->rlim_cur = maxproc;
364 if (limp->rlim_max > maxproc)
365 limp->rlim_max = maxproc;
366 break;
367 }
368
369 mutex_enter(&p->p_limit->pl_lock);
370 *alimp = *limp;
371 mutex_exit(&p->p_limit->pl_lock);
372 return (0);
373 }
374
375 /* ARGSUSED */
376 int
377 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
378 register_t *retval)
379 {
380 /* {
381 syscallarg(int) which;
382 syscallarg(struct rlimit *) rlp;
383 } */
384 struct proc *p = l->l_proc;
385 int which = SCARG(uap, which);
386 struct rlimit rl;
387
388 if ((u_int)which >= RLIM_NLIMITS)
389 return (EINVAL);
390
391 mutex_enter(p->p_lock);
392 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
393 mutex_exit(p->p_lock);
394
395 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
396 }
397
398 /*
399 * Transform the running time and tick information in proc p into user,
400 * system, and interrupt time usage.
401 *
402 * Should be called with p->p_lock held unless called from exit1().
403 */
404 void
405 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
406 struct timeval *ip, struct timeval *rp)
407 {
408 uint64_t u, st, ut, it, tot;
409 struct lwp *l;
410 struct bintime tm;
411 struct timeval tv;
412
413 mutex_spin_enter(&p->p_stmutex);
414 st = p->p_sticks;
415 ut = p->p_uticks;
416 it = p->p_iticks;
417 mutex_spin_exit(&p->p_stmutex);
418
419 tm = p->p_rtime;
420
421 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
422 lwp_lock(l);
423 bintime_add(&tm, &l->l_rtime);
424 if ((l->l_pflag & LP_RUNNING) != 0) {
425 struct bintime diff;
426 /*
427 * Adjust for the current time slice. This is
428 * actually fairly important since the error
429 * here is on the order of a time quantum,
430 * which is much greater than the sampling
431 * error.
432 */
433 binuptime(&diff);
434 bintime_sub(&diff, &l->l_stime);
435 bintime_add(&tm, &diff);
436 }
437 lwp_unlock(l);
438 }
439
440 tot = st + ut + it;
441 bintime2timeval(&tm, &tv);
442 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
443
444 if (tot == 0) {
445 /* No ticks, so can't use to share time out, split 50-50 */
446 st = ut = u / 2;
447 } else {
448 st = (u * st) / tot;
449 ut = (u * ut) / tot;
450 }
451 if (sp != NULL) {
452 sp->tv_sec = st / 1000000;
453 sp->tv_usec = st % 1000000;
454 }
455 if (up != NULL) {
456 up->tv_sec = ut / 1000000;
457 up->tv_usec = ut % 1000000;
458 }
459 if (ip != NULL) {
460 if (it != 0)
461 it = (u * it) / tot;
462 ip->tv_sec = it / 1000000;
463 ip->tv_usec = it % 1000000;
464 }
465 if (rp != NULL) {
466 *rp = tv;
467 }
468 }
469
470 /* ARGSUSED */
471 int
472 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
473 register_t *retval)
474 {
475 /* {
476 syscallarg(int) who;
477 syscallarg(struct rusage *) rusage;
478 } */
479 struct rusage ru;
480 struct proc *p = l->l_proc;
481
482 switch (SCARG(uap, who)) {
483 case RUSAGE_SELF:
484 mutex_enter(p->p_lock);
485 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
486 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
487 rulwps(p, &ru);
488 mutex_exit(p->p_lock);
489 break;
490
491 case RUSAGE_CHILDREN:
492 mutex_enter(p->p_lock);
493 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
494 mutex_exit(p->p_lock);
495 break;
496
497 default:
498 return EINVAL;
499 }
500
501 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
502 }
503
504 void
505 ruadd(struct rusage *ru, struct rusage *ru2)
506 {
507 long *ip, *ip2;
508 int i;
509
510 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
511 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
512 if (ru->ru_maxrss < ru2->ru_maxrss)
513 ru->ru_maxrss = ru2->ru_maxrss;
514 ip = &ru->ru_first; ip2 = &ru2->ru_first;
515 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
516 *ip++ += *ip2++;
517 }
518
519 void
520 rulwps(proc_t *p, struct rusage *ru)
521 {
522 lwp_t *l;
523
524 KASSERT(mutex_owned(p->p_lock));
525
526 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
527 ruadd(ru, &l->l_ru);
528 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
529 ru->ru_nivcsw += l->l_nivcsw;
530 }
531 }
532
533 /*
534 * Make a copy of the plimit structure.
535 * We share these structures copy-on-write after fork,
536 * and copy when a limit is changed.
537 *
538 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
539 * we are copying to change beneath our feet!
540 */
541 struct plimit *
542 lim_copy(struct plimit *lim)
543 {
544 struct plimit *newlim;
545 char *corename;
546 size_t alen, len;
547
548 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
549 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
550 newlim->pl_flags = 0;
551 newlim->pl_refcnt = 1;
552 newlim->pl_sv_limit = NULL;
553
554 mutex_enter(&lim->pl_lock);
555 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
556 sizeof(struct rlimit) * RLIM_NLIMITS);
557
558 alen = 0;
559 corename = NULL;
560 for (;;) {
561 if (lim->pl_corename == defcorename) {
562 newlim->pl_corename = defcorename;
563 break;
564 }
565 len = strlen(lim->pl_corename) + 1;
566 if (len <= alen) {
567 newlim->pl_corename = corename;
568 memcpy(corename, lim->pl_corename, len);
569 corename = NULL;
570 break;
571 }
572 mutex_exit(&lim->pl_lock);
573 if (corename != NULL)
574 free(corename, M_TEMP);
575 alen = len;
576 corename = malloc(alen, M_TEMP, M_WAITOK);
577 mutex_enter(&lim->pl_lock);
578 }
579 mutex_exit(&lim->pl_lock);
580 if (corename != NULL)
581 free(corename, M_TEMP);
582 return newlim;
583 }
584
585 void
586 lim_addref(struct plimit *lim)
587 {
588 atomic_inc_uint(&lim->pl_refcnt);
589 }
590
591 /*
592 * Give a process it's own private plimit structure.
593 * This will only be shared (in fork) if modifications are to be shared.
594 */
595 void
596 lim_privatise(struct proc *p, bool set_shared)
597 {
598 struct plimit *lim, *newlim;
599
600 lim = p->p_limit;
601 if (lim->pl_flags & PL_WRITEABLE) {
602 if (set_shared)
603 lim->pl_flags |= PL_SHAREMOD;
604 return;
605 }
606
607 if (set_shared && lim->pl_flags & PL_SHAREMOD)
608 return;
609
610 newlim = lim_copy(lim);
611
612 mutex_enter(p->p_lock);
613 if (p->p_limit->pl_flags & PL_WRITEABLE) {
614 /* Someone crept in while we were busy */
615 mutex_exit(p->p_lock);
616 limfree(newlim);
617 if (set_shared)
618 p->p_limit->pl_flags |= PL_SHAREMOD;
619 return;
620 }
621
622 /*
623 * Since most accesses to p->p_limit aren't locked, we must not
624 * delete the old limit structure yet.
625 */
626 newlim->pl_sv_limit = p->p_limit;
627 newlim->pl_flags |= PL_WRITEABLE;
628 if (set_shared)
629 newlim->pl_flags |= PL_SHAREMOD;
630 p->p_limit = newlim;
631 mutex_exit(p->p_lock);
632 }
633
634 void
635 limfree(struct plimit *lim)
636 {
637 struct plimit *sv_lim;
638
639 do {
640 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
641 return;
642 if (lim->pl_corename != defcorename)
643 free(lim->pl_corename, M_TEMP);
644 sv_lim = lim->pl_sv_limit;
645 mutex_destroy(&lim->pl_lock);
646 pool_cache_put(plimit_cache, lim);
647 } while ((lim = sv_lim) != NULL);
648 }
649
650 struct pstats *
651 pstatscopy(struct pstats *ps)
652 {
653
654 struct pstats *newps;
655
656 newps = pool_cache_get(pstats_cache, PR_WAITOK);
657
658 memset(&newps->pstat_startzero, 0,
659 (unsigned) ((char *)&newps->pstat_endzero -
660 (char *)&newps->pstat_startzero));
661 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
662 ((char *)&newps->pstat_endcopy -
663 (char *)&newps->pstat_startcopy));
664
665 return (newps);
666
667 }
668
669 void
670 pstatsfree(struct pstats *ps)
671 {
672
673 pool_cache_put(pstats_cache, ps);
674 }
675
676 /*
677 * sysctl interface in five parts
678 */
679
680 /*
681 * a routine for sysctl proc subtree helpers that need to pick a valid
682 * process by pid.
683 */
684 static int
685 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
686 {
687 struct proc *ptmp;
688 int error = 0;
689
690 if (pid == PROC_CURPROC)
691 ptmp = l->l_proc;
692 else if ((ptmp = pfind(pid)) == NULL)
693 error = ESRCH;
694
695 *p2 = ptmp;
696 return (error);
697 }
698
699 /*
700 * sysctl helper routine for setting a process's specific corefile
701 * name. picks the process based on the given pid and checks the
702 * correctness of the new value.
703 */
704 static int
705 sysctl_proc_corename(SYSCTLFN_ARGS)
706 {
707 struct proc *ptmp;
708 struct plimit *lim;
709 int error = 0, len;
710 char *cname;
711 char *ocore;
712 char *tmp;
713 struct sysctlnode node;
714
715 /*
716 * is this all correct?
717 */
718 if (namelen != 0)
719 return (EINVAL);
720 if (name[-1] != PROC_PID_CORENAME)
721 return (EINVAL);
722
723 /*
724 * whom are we tweaking?
725 */
726 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
727 if (error)
728 return (error);
729
730 /* XXX-elad */
731 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
732 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
733 if (error)
734 return (error);
735
736 if (newp == NULL) {
737 error = kauth_authorize_process(l->l_cred,
738 KAUTH_PROCESS_CORENAME, ptmp,
739 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
740 if (error)
741 return (error);
742 }
743
744 /*
745 * let them modify a temporary copy of the core name
746 */
747 cname = PNBUF_GET();
748 lim = ptmp->p_limit;
749 mutex_enter(&lim->pl_lock);
750 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
751 mutex_exit(&lim->pl_lock);
752
753 node = *rnode;
754 node.sysctl_data = cname;
755 error = sysctl_lookup(SYSCTLFN_CALL(&node));
756
757 /*
758 * if that failed, or they have nothing new to say, or we've
759 * heard it before...
760 */
761 if (error || newp == NULL)
762 goto done;
763 lim = ptmp->p_limit;
764 mutex_enter(&lim->pl_lock);
765 error = strcmp(cname, lim->pl_corename);
766 mutex_exit(&lim->pl_lock);
767 if (error == 0)
768 /* Unchanged */
769 goto done;
770
771 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
772 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
773 if (error)
774 return (error);
775
776 /*
777 * no error yet and cname now has the new core name in it.
778 * let's see if it looks acceptable. it must be either "core"
779 * or end in ".core" or "/core".
780 */
781 len = strlen(cname);
782 if (len < 4) {
783 error = EINVAL;
784 } else if (strcmp(cname + len - 4, "core") != 0) {
785 error = EINVAL;
786 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
787 error = EINVAL;
788 }
789 if (error != 0) {
790 goto done;
791 }
792
793 /*
794 * hmm...looks good. now...where do we put it?
795 */
796 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
797 if (tmp == NULL) {
798 error = ENOMEM;
799 goto done;
800 }
801 memcpy(tmp, cname, len + 1);
802
803 lim_privatise(ptmp, false);
804 lim = ptmp->p_limit;
805 mutex_enter(&lim->pl_lock);
806 ocore = lim->pl_corename;
807 lim->pl_corename = tmp;
808 mutex_exit(&lim->pl_lock);
809 if (ocore != defcorename)
810 free(ocore, M_TEMP);
811
812 done:
813 PNBUF_PUT(cname);
814 return error;
815 }
816
817 /*
818 * sysctl helper routine for checking/setting a process's stop flags,
819 * one for fork and one for exec.
820 */
821 static int
822 sysctl_proc_stop(SYSCTLFN_ARGS)
823 {
824 struct proc *ptmp;
825 int i, f, error = 0;
826 struct sysctlnode node;
827
828 if (namelen != 0)
829 return (EINVAL);
830
831 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
832 if (error)
833 return (error);
834
835 /* XXX-elad */
836 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
837 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
838 if (error)
839 return (error);
840
841 switch (rnode->sysctl_num) {
842 case PROC_PID_STOPFORK:
843 f = PS_STOPFORK;
844 break;
845 case PROC_PID_STOPEXEC:
846 f = PS_STOPEXEC;
847 break;
848 case PROC_PID_STOPEXIT:
849 f = PS_STOPEXIT;
850 break;
851 default:
852 return (EINVAL);
853 }
854
855 i = (ptmp->p_flag & f) ? 1 : 0;
856 node = *rnode;
857 node.sysctl_data = &i;
858 error = sysctl_lookup(SYSCTLFN_CALL(&node));
859 if (error || newp == NULL)
860 return (error);
861
862 mutex_enter(ptmp->p_lock);
863 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
864 ptmp, KAUTH_ARG(f), NULL, NULL);
865 if (!error) {
866 if (i) {
867 ptmp->p_sflag |= f;
868 } else {
869 ptmp->p_sflag &= ~f;
870 }
871 }
872 mutex_exit(ptmp->p_lock);
873
874 return error;
875 }
876
877 /*
878 * sysctl helper routine for a process's rlimits as exposed by sysctl.
879 */
880 static int
881 sysctl_proc_plimit(SYSCTLFN_ARGS)
882 {
883 struct proc *ptmp;
884 u_int limitno;
885 int which, error = 0;
886 struct rlimit alim;
887 struct sysctlnode node;
888
889 if (namelen != 0)
890 return (EINVAL);
891
892 which = name[-1];
893 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
894 which != PROC_PID_LIMIT_TYPE_HARD)
895 return (EINVAL);
896
897 limitno = name[-2] - 1;
898 if (limitno >= RLIM_NLIMITS)
899 return (EINVAL);
900
901 if (name[-3] != PROC_PID_LIMIT)
902 return (EINVAL);
903
904 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
905 if (error)
906 return (error);
907
908 /* XXX-elad */
909 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
910 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
911 if (error)
912 return (error);
913
914 /* Check if we can view limits. */
915 if (newp == NULL) {
916 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
917 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
918 KAUTH_ARG(which));
919 if (error)
920 return (error);
921 }
922
923 node = *rnode;
924 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
925 if (which == PROC_PID_LIMIT_TYPE_HARD)
926 node.sysctl_data = &alim.rlim_max;
927 else
928 node.sysctl_data = &alim.rlim_cur;
929
930 error = sysctl_lookup(SYSCTLFN_CALL(&node));
931 if (error || newp == NULL)
932 return (error);
933
934 return (dosetrlimit(l, ptmp, limitno, &alim));
935 }
936
937 /*
938 * and finally, the actually glue that sticks it to the tree
939 */
940 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
941 {
942
943 sysctl_createv(clog, 0, NULL, NULL,
944 CTLFLAG_PERMANENT,
945 CTLTYPE_NODE, "proc", NULL,
946 NULL, 0, NULL, 0,
947 CTL_PROC, CTL_EOL);
948 sysctl_createv(clog, 0, NULL, NULL,
949 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
950 CTLTYPE_NODE, "curproc",
951 SYSCTL_DESCR("Per-process settings"),
952 NULL, 0, NULL, 0,
953 CTL_PROC, PROC_CURPROC, CTL_EOL);
954
955 sysctl_createv(clog, 0, NULL, NULL,
956 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
957 CTLTYPE_STRING, "corename",
958 SYSCTL_DESCR("Core file name"),
959 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
960 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
961 sysctl_createv(clog, 0, NULL, NULL,
962 CTLFLAG_PERMANENT,
963 CTLTYPE_NODE, "rlimit",
964 SYSCTL_DESCR("Process limits"),
965 NULL, 0, NULL, 0,
966 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
967
968 #define create_proc_plimit(s, n) do { \
969 sysctl_createv(clog, 0, NULL, NULL, \
970 CTLFLAG_PERMANENT, \
971 CTLTYPE_NODE, s, \
972 SYSCTL_DESCR("Process " s " limits"), \
973 NULL, 0, NULL, 0, \
974 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
975 CTL_EOL); \
976 sysctl_createv(clog, 0, NULL, NULL, \
977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
978 CTLTYPE_QUAD, "soft", \
979 SYSCTL_DESCR("Process soft " s " limit"), \
980 sysctl_proc_plimit, 0, NULL, 0, \
981 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
982 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
983 sysctl_createv(clog, 0, NULL, NULL, \
984 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
985 CTLTYPE_QUAD, "hard", \
986 SYSCTL_DESCR("Process hard " s " limit"), \
987 sysctl_proc_plimit, 0, NULL, 0, \
988 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
989 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
990 } while (0/*CONSTCOND*/)
991
992 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
993 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
994 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
995 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
996 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
997 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
998 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
999 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1000 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1001 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1002
1003 #undef create_proc_plimit
1004
1005 sysctl_createv(clog, 0, NULL, NULL,
1006 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1007 CTLTYPE_INT, "stopfork",
1008 SYSCTL_DESCR("Stop process at fork(2)"),
1009 sysctl_proc_stop, 0, NULL, 0,
1010 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1011 sysctl_createv(clog, 0, NULL, NULL,
1012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1013 CTLTYPE_INT, "stopexec",
1014 SYSCTL_DESCR("Stop process at execve(2)"),
1015 sysctl_proc_stop, 0, NULL, 0,
1016 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1017 sysctl_createv(clog, 0, NULL, NULL,
1018 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1019 CTLTYPE_INT, "stopexit",
1020 SYSCTL_DESCR("Stop process before completing exit"),
1021 sysctl_proc_stop, 0, NULL, 0,
1022 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1023 }
1024