kern_resource.c revision 1.137.4.2 1 /* $NetBSD: kern_resource.c,v 1.137.4.2 2008/06/04 02:05:39 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.137.4.2 2008/06/04 02:05:39 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;
71
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73
74 static pool_cache_t plimit_cache;
75 static pool_cache_t pstats_cache;
76
77 void
78 resource_init(void)
79 {
80 /*
81 * In case of MP system, SLIST_FOREACH would force a cache line
82 * write-back for every modified 'uidinfo', thus we try to keep the
83 * lists short.
84 */
85 const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
86
87 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
88 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
89 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
90 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
91 uihashtbl = hashinit(uihash_sz, HASH_SLIST, true, &uihash);
92 }
93
94 /*
95 * Resource controls and accounting.
96 */
97
98 int
99 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
100 register_t *retval)
101 {
102 /* {
103 syscallarg(int) which;
104 syscallarg(id_t) who;
105 } */
106 struct proc *curp = l->l_proc, *p;
107 int low = NZERO + PRIO_MAX + 1;
108 int who = SCARG(uap, who);
109
110 mutex_enter(proc_lock);
111 switch (SCARG(uap, which)) {
112 case PRIO_PROCESS:
113 if (who == 0)
114 p = curp;
115 else
116 p = p_find(who, PFIND_LOCKED);
117 if (p != NULL)
118 low = p->p_nice;
119 break;
120
121 case PRIO_PGRP: {
122 struct pgrp *pg;
123
124 if (who == 0)
125 pg = curp->p_pgrp;
126 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
127 break;
128 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 if (p->p_nice < low)
130 low = p->p_nice;
131 }
132 break;
133 }
134
135 case PRIO_USER:
136 if (who == 0)
137 who = (int)kauth_cred_geteuid(l->l_cred);
138 PROCLIST_FOREACH(p, &allproc) {
139 if ((p->p_flag & PK_MARKER) != 0)
140 continue;
141 mutex_enter(p->p_lock);
142 if (kauth_cred_geteuid(p->p_cred) ==
143 (uid_t)who && p->p_nice < low)
144 low = p->p_nice;
145 mutex_exit(p->p_lock);
146 }
147 break;
148
149 default:
150 mutex_exit(proc_lock);
151 return (EINVAL);
152 }
153 mutex_exit(proc_lock);
154
155 if (low == NZERO + PRIO_MAX + 1)
156 return (ESRCH);
157 *retval = low - NZERO;
158 return (0);
159 }
160
161 /* ARGSUSED */
162 int
163 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
164 register_t *retval)
165 {
166 /* {
167 syscallarg(int) which;
168 syscallarg(id_t) who;
169 syscallarg(int) prio;
170 } */
171 struct proc *curp = l->l_proc, *p;
172 int found = 0, error = 0;
173 int who = SCARG(uap, who);
174
175 mutex_enter(proc_lock);
176 switch (SCARG(uap, which)) {
177 case PRIO_PROCESS:
178 if (who == 0)
179 p = curp;
180 else
181 p = p_find(who, PFIND_LOCKED);
182 if (p != 0) {
183 mutex_enter(p->p_lock);
184 error = donice(l, p, SCARG(uap, prio));
185 mutex_exit(p->p_lock);
186 }
187 found++;
188 break;
189
190 case PRIO_PGRP: {
191 struct pgrp *pg;
192
193 if (who == 0)
194 pg = curp->p_pgrp;
195 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
196 break;
197 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
198 mutex_enter(p->p_lock);
199 error = donice(l, p, SCARG(uap, prio));
200 mutex_exit(p->p_lock);
201 found++;
202 }
203 break;
204 }
205
206 case PRIO_USER:
207 if (who == 0)
208 who = (int)kauth_cred_geteuid(l->l_cred);
209 PROCLIST_FOREACH(p, &allproc) {
210 if ((p->p_flag & PK_MARKER) != 0)
211 continue;
212 mutex_enter(p->p_lock);
213 if (kauth_cred_geteuid(p->p_cred) ==
214 (uid_t)SCARG(uap, who)) {
215 error = donice(l, p, SCARG(uap, prio));
216 found++;
217 }
218 mutex_exit(p->p_lock);
219 }
220 break;
221
222 default:
223 error = EINVAL;
224 break;
225 }
226 mutex_exit(proc_lock);
227 if (found == 0)
228 return (ESRCH);
229 return (error);
230 }
231
232 /*
233 * Renice a process.
234 *
235 * Call with the target process' credentials locked.
236 */
237 int
238 donice(struct lwp *l, struct proc *chgp, int n)
239 {
240 kauth_cred_t cred = l->l_cred;
241
242 KASSERT(mutex_owned(chgp->p_lock));
243
244 if (n > PRIO_MAX)
245 n = PRIO_MAX;
246 if (n < PRIO_MIN)
247 n = PRIO_MIN;
248 n += NZERO;
249 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
250 KAUTH_ARG(n), NULL, NULL))
251 return (EACCES);
252 sched_nice(chgp, n);
253 return (0);
254 }
255
256 /* ARGSUSED */
257 int
258 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
259 register_t *retval)
260 {
261 /* {
262 syscallarg(int) which;
263 syscallarg(const struct rlimit *) rlp;
264 } */
265 int which = SCARG(uap, which);
266 struct rlimit alim;
267 int error;
268
269 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
270 if (error)
271 return (error);
272 return (dosetrlimit(l, l->l_proc, which, &alim));
273 }
274
275 int
276 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
277 {
278 struct rlimit *alimp;
279 int error;
280
281 if ((u_int)which >= RLIM_NLIMITS)
282 return (EINVAL);
283
284 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
285 return (EINVAL);
286
287 if (limp->rlim_cur > limp->rlim_max) {
288 /*
289 * This is programming error. According to SUSv2, we should
290 * return error in this case.
291 */
292 return (EINVAL);
293 }
294
295 alimp = &p->p_rlimit[which];
296 /* if we don't change the value, no need to limcopy() */
297 if (limp->rlim_cur == alimp->rlim_cur &&
298 limp->rlim_max == alimp->rlim_max)
299 return 0;
300
301 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
302 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
303 if (error)
304 return (error);
305
306 lim_privatise(p, false);
307 /* p->p_limit is now unchangeable */
308 alimp = &p->p_rlimit[which];
309
310 switch (which) {
311
312 case RLIMIT_DATA:
313 if (limp->rlim_cur > maxdmap)
314 limp->rlim_cur = maxdmap;
315 if (limp->rlim_max > maxdmap)
316 limp->rlim_max = maxdmap;
317 break;
318
319 case RLIMIT_STACK:
320 if (limp->rlim_cur > maxsmap)
321 limp->rlim_cur = maxsmap;
322 if (limp->rlim_max > maxsmap)
323 limp->rlim_max = maxsmap;
324
325 /*
326 * Return EINVAL if the new stack size limit is lower than
327 * current usage. Otherwise, the process would get SIGSEGV the
328 * moment it would try to access anything on it's current stack.
329 * This conforms to SUSv2.
330 */
331 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
332 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
333 return (EINVAL);
334 }
335
336 /*
337 * Stack is allocated to the max at exec time with
338 * only "rlim_cur" bytes accessible (In other words,
339 * allocates stack dividing two contiguous regions at
340 * "rlim_cur" bytes boundary).
341 *
342 * Since allocation is done in terms of page, roundup
343 * "rlim_cur" (otherwise, contiguous regions
344 * overlap). If stack limit is going up make more
345 * accessible, if going down make inaccessible.
346 */
347 limp->rlim_cur = round_page(limp->rlim_cur);
348 if (limp->rlim_cur != alimp->rlim_cur) {
349 vaddr_t addr;
350 vsize_t size;
351 vm_prot_t prot;
352
353 if (limp->rlim_cur > alimp->rlim_cur) {
354 prot = VM_PROT_READ | VM_PROT_WRITE;
355 size = limp->rlim_cur - alimp->rlim_cur;
356 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
357 limp->rlim_cur;
358 } else {
359 prot = VM_PROT_NONE;
360 size = alimp->rlim_cur - limp->rlim_cur;
361 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
362 alimp->rlim_cur;
363 }
364 (void) uvm_map_protect(&p->p_vmspace->vm_map,
365 addr, addr+size, prot, false);
366 }
367 break;
368
369 case RLIMIT_NOFILE:
370 if (limp->rlim_cur > maxfiles)
371 limp->rlim_cur = maxfiles;
372 if (limp->rlim_max > maxfiles)
373 limp->rlim_max = maxfiles;
374 break;
375
376 case RLIMIT_NPROC:
377 if (limp->rlim_cur > maxproc)
378 limp->rlim_cur = maxproc;
379 if (limp->rlim_max > maxproc)
380 limp->rlim_max = maxproc;
381 break;
382 }
383
384 mutex_enter(&p->p_limit->pl_lock);
385 *alimp = *limp;
386 mutex_exit(&p->p_limit->pl_lock);
387 return (0);
388 }
389
390 /* ARGSUSED */
391 int
392 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
393 register_t *retval)
394 {
395 /* {
396 syscallarg(int) which;
397 syscallarg(struct rlimit *) rlp;
398 } */
399 struct proc *p = l->l_proc;
400 int which = SCARG(uap, which);
401 struct rlimit rl;
402
403 if ((u_int)which >= RLIM_NLIMITS)
404 return (EINVAL);
405
406 mutex_enter(p->p_lock);
407 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
408 mutex_exit(p->p_lock);
409
410 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
411 }
412
413 /*
414 * Transform the running time and tick information in proc p into user,
415 * system, and interrupt time usage.
416 *
417 * Should be called with p->p_lock held unless called from exit1().
418 */
419 void
420 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
421 struct timeval *ip, struct timeval *rp)
422 {
423 uint64_t u, st, ut, it, tot;
424 struct lwp *l;
425 struct bintime tm;
426 struct timeval tv;
427
428 mutex_spin_enter(&p->p_stmutex);
429 st = p->p_sticks;
430 ut = p->p_uticks;
431 it = p->p_iticks;
432 mutex_spin_exit(&p->p_stmutex);
433
434 tm = p->p_rtime;
435
436 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
437 lwp_lock(l);
438 bintime_add(&tm, &l->l_rtime);
439 if ((l->l_pflag & LP_RUNNING) != 0) {
440 struct bintime diff;
441 /*
442 * Adjust for the current time slice. This is
443 * actually fairly important since the error
444 * here is on the order of a time quantum,
445 * which is much greater than the sampling
446 * error.
447 */
448 binuptime(&diff);
449 bintime_sub(&diff, &l->l_stime);
450 bintime_add(&tm, &diff);
451 }
452 lwp_unlock(l);
453 }
454
455 tot = st + ut + it;
456 bintime2timeval(&tm, &tv);
457 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
458
459 if (tot == 0) {
460 /* No ticks, so can't use to share time out, split 50-50 */
461 st = ut = u / 2;
462 } else {
463 st = (u * st) / tot;
464 ut = (u * ut) / tot;
465 }
466 if (sp != NULL) {
467 sp->tv_sec = st / 1000000;
468 sp->tv_usec = st % 1000000;
469 }
470 if (up != NULL) {
471 up->tv_sec = ut / 1000000;
472 up->tv_usec = ut % 1000000;
473 }
474 if (ip != NULL) {
475 if (it != 0)
476 it = (u * it) / tot;
477 ip->tv_sec = it / 1000000;
478 ip->tv_usec = it % 1000000;
479 }
480 if (rp != NULL) {
481 *rp = tv;
482 }
483 }
484
485 /* ARGSUSED */
486 int
487 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
488 register_t *retval)
489 {
490 /* {
491 syscallarg(int) who;
492 syscallarg(struct rusage *) rusage;
493 } */
494 struct rusage ru;
495 struct proc *p = l->l_proc;
496
497 switch (SCARG(uap, who)) {
498 case RUSAGE_SELF:
499 mutex_enter(p->p_lock);
500 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
501 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
502 rulwps(p, &ru);
503 mutex_exit(p->p_lock);
504 break;
505
506 case RUSAGE_CHILDREN:
507 mutex_enter(p->p_lock);
508 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
509 mutex_exit(p->p_lock);
510 break;
511
512 default:
513 return EINVAL;
514 }
515
516 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
517 }
518
519 void
520 ruadd(struct rusage *ru, struct rusage *ru2)
521 {
522 long *ip, *ip2;
523 int i;
524
525 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
526 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
527 if (ru->ru_maxrss < ru2->ru_maxrss)
528 ru->ru_maxrss = ru2->ru_maxrss;
529 ip = &ru->ru_first; ip2 = &ru2->ru_first;
530 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
531 *ip++ += *ip2++;
532 }
533
534 void
535 rulwps(proc_t *p, struct rusage *ru)
536 {
537 lwp_t *l;
538
539 KASSERT(mutex_owned(p->p_lock));
540
541 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
542 ruadd(ru, &l->l_ru);
543 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
544 ru->ru_nivcsw += l->l_nivcsw;
545 }
546 }
547
548 /*
549 * Make a copy of the plimit structure.
550 * We share these structures copy-on-write after fork,
551 * and copy when a limit is changed.
552 *
553 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
554 * we are copying to change beneath our feet!
555 */
556 struct plimit *
557 lim_copy(struct plimit *lim)
558 {
559 struct plimit *newlim;
560 char *corename;
561 size_t alen, len;
562
563 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
564 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
565 newlim->pl_flags = 0;
566 newlim->pl_refcnt = 1;
567 newlim->pl_sv_limit = NULL;
568
569 mutex_enter(&lim->pl_lock);
570 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
571 sizeof(struct rlimit) * RLIM_NLIMITS);
572
573 alen = 0;
574 corename = NULL;
575 for (;;) {
576 if (lim->pl_corename == defcorename) {
577 newlim->pl_corename = defcorename;
578 break;
579 }
580 len = strlen(lim->pl_corename) + 1;
581 if (len <= alen) {
582 newlim->pl_corename = corename;
583 memcpy(corename, lim->pl_corename, len);
584 corename = NULL;
585 break;
586 }
587 mutex_exit(&lim->pl_lock);
588 if (corename != NULL)
589 free(corename, M_TEMP);
590 alen = len;
591 corename = malloc(alen, M_TEMP, M_WAITOK);
592 mutex_enter(&lim->pl_lock);
593 }
594 mutex_exit(&lim->pl_lock);
595 if (corename != NULL)
596 free(corename, M_TEMP);
597 return newlim;
598 }
599
600 void
601 lim_addref(struct plimit *lim)
602 {
603 atomic_inc_uint(&lim->pl_refcnt);
604 }
605
606 /*
607 * Give a process it's own private plimit structure.
608 * This will only be shared (in fork) if modifications are to be shared.
609 */
610 void
611 lim_privatise(struct proc *p, bool set_shared)
612 {
613 struct plimit *lim, *newlim;
614
615 lim = p->p_limit;
616 if (lim->pl_flags & PL_WRITEABLE) {
617 if (set_shared)
618 lim->pl_flags |= PL_SHAREMOD;
619 return;
620 }
621
622 if (set_shared && lim->pl_flags & PL_SHAREMOD)
623 return;
624
625 newlim = lim_copy(lim);
626
627 mutex_enter(p->p_lock);
628 if (p->p_limit->pl_flags & PL_WRITEABLE) {
629 /* Someone crept in while we were busy */
630 mutex_exit(p->p_lock);
631 limfree(newlim);
632 if (set_shared)
633 p->p_limit->pl_flags |= PL_SHAREMOD;
634 return;
635 }
636
637 /*
638 * Since most accesses to p->p_limit aren't locked, we must not
639 * delete the old limit structure yet.
640 */
641 newlim->pl_sv_limit = p->p_limit;
642 newlim->pl_flags |= PL_WRITEABLE;
643 if (set_shared)
644 newlim->pl_flags |= PL_SHAREMOD;
645 p->p_limit = newlim;
646 mutex_exit(p->p_lock);
647 }
648
649 void
650 limfree(struct plimit *lim)
651 {
652 struct plimit *sv_lim;
653
654 do {
655 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
656 return;
657 if (lim->pl_corename != defcorename)
658 free(lim->pl_corename, M_TEMP);
659 sv_lim = lim->pl_sv_limit;
660 mutex_destroy(&lim->pl_lock);
661 pool_cache_put(plimit_cache, lim);
662 } while ((lim = sv_lim) != NULL);
663 }
664
665 struct pstats *
666 pstatscopy(struct pstats *ps)
667 {
668
669 struct pstats *newps;
670
671 newps = pool_cache_get(pstats_cache, PR_WAITOK);
672
673 memset(&newps->pstat_startzero, 0,
674 (unsigned) ((char *)&newps->pstat_endzero -
675 (char *)&newps->pstat_startzero));
676 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
677 ((char *)&newps->pstat_endcopy -
678 (char *)&newps->pstat_startcopy));
679
680 return (newps);
681
682 }
683
684 void
685 pstatsfree(struct pstats *ps)
686 {
687
688 pool_cache_put(pstats_cache, ps);
689 }
690
691 /*
692 * sysctl interface in five parts
693 */
694
695 /*
696 * a routine for sysctl proc subtree helpers that need to pick a valid
697 * process by pid.
698 */
699 static int
700 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
701 {
702 struct proc *ptmp;
703 int error = 0;
704
705 if (pid == PROC_CURPROC)
706 ptmp = l->l_proc;
707 else if ((ptmp = pfind(pid)) == NULL)
708 error = ESRCH;
709
710 *p2 = ptmp;
711 return (error);
712 }
713
714 /*
715 * sysctl helper routine for setting a process's specific corefile
716 * name. picks the process based on the given pid and checks the
717 * correctness of the new value.
718 */
719 static int
720 sysctl_proc_corename(SYSCTLFN_ARGS)
721 {
722 struct proc *ptmp;
723 struct plimit *lim;
724 int error = 0, len;
725 char *cname;
726 char *ocore;
727 char *tmp;
728 struct sysctlnode node;
729
730 /*
731 * is this all correct?
732 */
733 if (namelen != 0)
734 return (EINVAL);
735 if (name[-1] != PROC_PID_CORENAME)
736 return (EINVAL);
737
738 /*
739 * whom are we tweaking?
740 */
741 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
742 if (error)
743 return (error);
744
745 /* XXX-elad */
746 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
747 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
748 if (error)
749 return (error);
750
751 if (newp == NULL) {
752 error = kauth_authorize_process(l->l_cred,
753 KAUTH_PROCESS_CORENAME, ptmp,
754 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
755 if (error)
756 return (error);
757 }
758
759 /*
760 * let them modify a temporary copy of the core name
761 */
762 cname = PNBUF_GET();
763 lim = ptmp->p_limit;
764 mutex_enter(&lim->pl_lock);
765 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
766 mutex_exit(&lim->pl_lock);
767
768 node = *rnode;
769 node.sysctl_data = cname;
770 error = sysctl_lookup(SYSCTLFN_CALL(&node));
771
772 /*
773 * if that failed, or they have nothing new to say, or we've
774 * heard it before...
775 */
776 if (error || newp == NULL)
777 goto done;
778 lim = ptmp->p_limit;
779 mutex_enter(&lim->pl_lock);
780 error = strcmp(cname, lim->pl_corename);
781 mutex_exit(&lim->pl_lock);
782 if (error == 0)
783 /* Unchanged */
784 goto done;
785
786 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
787 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
788 if (error)
789 return (error);
790
791 /*
792 * no error yet and cname now has the new core name in it.
793 * let's see if it looks acceptable. it must be either "core"
794 * or end in ".core" or "/core".
795 */
796 len = strlen(cname);
797 if (len < 4) {
798 error = EINVAL;
799 } else if (strcmp(cname + len - 4, "core") != 0) {
800 error = EINVAL;
801 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
802 error = EINVAL;
803 }
804 if (error != 0) {
805 goto done;
806 }
807
808 /*
809 * hmm...looks good. now...where do we put it?
810 */
811 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
812 if (tmp == NULL) {
813 error = ENOMEM;
814 goto done;
815 }
816 memcpy(tmp, cname, len + 1);
817
818 lim_privatise(ptmp, false);
819 lim = ptmp->p_limit;
820 mutex_enter(&lim->pl_lock);
821 ocore = lim->pl_corename;
822 lim->pl_corename = tmp;
823 mutex_exit(&lim->pl_lock);
824 if (ocore != defcorename)
825 free(ocore, M_TEMP);
826
827 done:
828 PNBUF_PUT(cname);
829 return error;
830 }
831
832 /*
833 * sysctl helper routine for checking/setting a process's stop flags,
834 * one for fork and one for exec.
835 */
836 static int
837 sysctl_proc_stop(SYSCTLFN_ARGS)
838 {
839 struct proc *ptmp;
840 int i, f, error = 0;
841 struct sysctlnode node;
842
843 if (namelen != 0)
844 return (EINVAL);
845
846 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
847 if (error)
848 return (error);
849
850 /* XXX-elad */
851 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
852 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
853 if (error)
854 return (error);
855
856 switch (rnode->sysctl_num) {
857 case PROC_PID_STOPFORK:
858 f = PS_STOPFORK;
859 break;
860 case PROC_PID_STOPEXEC:
861 f = PS_STOPEXEC;
862 break;
863 case PROC_PID_STOPEXIT:
864 f = PS_STOPEXIT;
865 break;
866 default:
867 return (EINVAL);
868 }
869
870 i = (ptmp->p_flag & f) ? 1 : 0;
871 node = *rnode;
872 node.sysctl_data = &i;
873 error = sysctl_lookup(SYSCTLFN_CALL(&node));
874 if (error || newp == NULL)
875 return (error);
876
877 mutex_enter(ptmp->p_lock);
878 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
879 ptmp, KAUTH_ARG(f), NULL, NULL);
880 if (error)
881 return (error);
882 if (i)
883 ptmp->p_sflag |= f;
884 else
885 ptmp->p_sflag &= ~f;
886 mutex_exit(ptmp->p_lock);
887
888 return (0);
889 }
890
891 /*
892 * sysctl helper routine for a process's rlimits as exposed by sysctl.
893 */
894 static int
895 sysctl_proc_plimit(SYSCTLFN_ARGS)
896 {
897 struct proc *ptmp;
898 u_int limitno;
899 int which, error = 0;
900 struct rlimit alim;
901 struct sysctlnode node;
902
903 if (namelen != 0)
904 return (EINVAL);
905
906 which = name[-1];
907 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
908 which != PROC_PID_LIMIT_TYPE_HARD)
909 return (EINVAL);
910
911 limitno = name[-2] - 1;
912 if (limitno >= RLIM_NLIMITS)
913 return (EINVAL);
914
915 if (name[-3] != PROC_PID_LIMIT)
916 return (EINVAL);
917
918 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
919 if (error)
920 return (error);
921
922 /* XXX-elad */
923 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
924 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
925 if (error)
926 return (error);
927
928 /* Check if we can view limits. */
929 if (newp == NULL) {
930 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
931 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
932 KAUTH_ARG(which));
933 if (error)
934 return (error);
935 }
936
937 node = *rnode;
938 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
939 if (which == PROC_PID_LIMIT_TYPE_HARD)
940 node.sysctl_data = &alim.rlim_max;
941 else
942 node.sysctl_data = &alim.rlim_cur;
943
944 error = sysctl_lookup(SYSCTLFN_CALL(&node));
945 if (error || newp == NULL)
946 return (error);
947
948 return (dosetrlimit(l, ptmp, limitno, &alim));
949 }
950
951 /*
952 * and finally, the actually glue that sticks it to the tree
953 */
954 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
955 {
956
957 sysctl_createv(clog, 0, NULL, NULL,
958 CTLFLAG_PERMANENT,
959 CTLTYPE_NODE, "proc", NULL,
960 NULL, 0, NULL, 0,
961 CTL_PROC, CTL_EOL);
962 sysctl_createv(clog, 0, NULL, NULL,
963 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
964 CTLTYPE_NODE, "curproc",
965 SYSCTL_DESCR("Per-process settings"),
966 NULL, 0, NULL, 0,
967 CTL_PROC, PROC_CURPROC, CTL_EOL);
968
969 sysctl_createv(clog, 0, NULL, NULL,
970 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
971 CTLTYPE_STRING, "corename",
972 SYSCTL_DESCR("Core file name"),
973 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
974 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
975 sysctl_createv(clog, 0, NULL, NULL,
976 CTLFLAG_PERMANENT,
977 CTLTYPE_NODE, "rlimit",
978 SYSCTL_DESCR("Process limits"),
979 NULL, 0, NULL, 0,
980 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
981
982 #define create_proc_plimit(s, n) do { \
983 sysctl_createv(clog, 0, NULL, NULL, \
984 CTLFLAG_PERMANENT, \
985 CTLTYPE_NODE, s, \
986 SYSCTL_DESCR("Process " s " limits"), \
987 NULL, 0, NULL, 0, \
988 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
989 CTL_EOL); \
990 sysctl_createv(clog, 0, NULL, NULL, \
991 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
992 CTLTYPE_QUAD, "soft", \
993 SYSCTL_DESCR("Process soft " s " limit"), \
994 sysctl_proc_plimit, 0, NULL, 0, \
995 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
996 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
997 sysctl_createv(clog, 0, NULL, NULL, \
998 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
999 CTLTYPE_QUAD, "hard", \
1000 SYSCTL_DESCR("Process hard " s " limit"), \
1001 sysctl_proc_plimit, 0, NULL, 0, \
1002 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1003 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1004 } while (0/*CONSTCOND*/)
1005
1006 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1007 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1008 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1009 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1010 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1011 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1012 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1013 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1014 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1015 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1016
1017 #undef create_proc_plimit
1018
1019 sysctl_createv(clog, 0, NULL, NULL,
1020 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1021 CTLTYPE_INT, "stopfork",
1022 SYSCTL_DESCR("Stop process at fork(2)"),
1023 sysctl_proc_stop, 0, NULL, 0,
1024 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1025 sysctl_createv(clog, 0, NULL, NULL,
1026 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1027 CTLTYPE_INT, "stopexec",
1028 SYSCTL_DESCR("Stop process at execve(2)"),
1029 sysctl_proc_stop, 0, NULL, 0,
1030 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1031 sysctl_createv(clog, 0, NULL, NULL,
1032 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1033 CTLTYPE_INT, "stopexit",
1034 SYSCTL_DESCR("Stop process before completing exit"),
1035 sysctl_proc_stop, 0, NULL, 0,
1036 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1037 }
1038
1039 void
1040 uid_init(void)
1041 {
1042
1043 /*
1044 * Ensure that uid 0 is always in the user hash table, as
1045 * sbreserve() expects it available from interrupt context.
1046 */
1047 (void)uid_find(0);
1048 }
1049
1050 struct uidinfo *
1051 uid_find(uid_t uid)
1052 {
1053 struct uidinfo *uip, *uip_first, *newuip;
1054 struct uihashhead *uipp;
1055
1056 uipp = UIHASH(uid);
1057 newuip = NULL;
1058
1059 /*
1060 * To make insertion atomic, abstraction of SLIST will be violated.
1061 */
1062 uip_first = uipp->slh_first;
1063 again:
1064 SLIST_FOREACH(uip, uipp, ui_hash) {
1065 if (uip->ui_uid != uid)
1066 continue;
1067 if (newuip != NULL)
1068 kmem_free(newuip, sizeof(*newuip));
1069 return uip;
1070 }
1071 if (newuip == NULL)
1072 newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
1073 newuip->ui_uid = uid;
1074
1075 /*
1076 * If atomic insert is unsuccessful, another thread might be
1077 * allocated this 'uid', thus full re-check is needed.
1078 */
1079 newuip->ui_hash.sle_next = uip_first;
1080 membar_producer();
1081 uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
1082 if (uip != uip_first) {
1083 uip_first = uip;
1084 goto again;
1085 }
1086
1087 return newuip;
1088 }
1089
1090 /*
1091 * Change the count associated with number of processes
1092 * a given user is using.
1093 */
1094 int
1095 chgproccnt(uid_t uid, int diff)
1096 {
1097 struct uidinfo *uip;
1098 long proccnt;
1099
1100 uip = uid_find(uid);
1101 proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
1102 KASSERT(proccnt >= 0);
1103 return proccnt;
1104 }
1105
1106 int
1107 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
1108 {
1109 rlim_t nsb;
1110 const long diff = to - *hiwat;
1111
1112 nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
1113 if (diff > 0 && nsb > xmax) {
1114 atomic_add_long((long *)&uip->ui_sbsize, -diff);
1115 return 0;
1116 }
1117 *hiwat = to;
1118 KASSERT(nsb >= 0);
1119 return 1;
1120 }
1121