Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.139
      1 /*	$NetBSD: kern_resource.c,v 1.139 2008/04/24 18:39:24 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.139 2008/04/24 18:39:24 ad Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/atomic.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 /*
     63  * Maximum process data and stack limits.
     64  * They are variables so they are patchable.
     65  */
     66 rlim_t maxdmap = MAXDSIZ;
     67 rlim_t maxsmap = MAXSSIZ;
     68 
     69 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
     70 static u_long 		uihash;
     71 
     72 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
     73 
     74 static pool_cache_t	plimit_cache;
     75 static pool_cache_t	pstats_cache;
     76 
     77 void
     78 resource_init(void)
     79 {
     80 	/*
     81 	 * In case of MP system, SLIST_FOREACH would force a cache line
     82 	 * write-back for every modified 'uidinfo', thus we try to keep the
     83 	 * lists short.
     84 	 */
     85 	const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
     86 
     87 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
     88 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
     89 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
     90 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
     91 	uihashtbl = hashinit(uihash_sz, HASH_SLIST, M_PROC, M_WAITOK, &uihash);
     92 }
     93 
     94 /*
     95  * Resource controls and accounting.
     96  */
     97 
     98 int
     99 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    100     register_t *retval)
    101 {
    102 	/* {
    103 		syscallarg(int) which;
    104 		syscallarg(id_t) who;
    105 	} */
    106 	struct proc *curp = l->l_proc, *p;
    107 	int low = NZERO + PRIO_MAX + 1;
    108 	int who = SCARG(uap, who);
    109 
    110 	mutex_enter(proc_lock);
    111 	switch (SCARG(uap, which)) {
    112 	case PRIO_PROCESS:
    113 		if (who == 0)
    114 			p = curp;
    115 		else
    116 			p = p_find(who, PFIND_LOCKED);
    117 		if (p != NULL)
    118 			low = p->p_nice;
    119 		break;
    120 
    121 	case PRIO_PGRP: {
    122 		struct pgrp *pg;
    123 
    124 		if (who == 0)
    125 			pg = curp->p_pgrp;
    126 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    127 			break;
    128 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    129 			if (p->p_nice < low)
    130 				low = p->p_nice;
    131 		}
    132 		break;
    133 	}
    134 
    135 	case PRIO_USER:
    136 		if (who == 0)
    137 			who = (int)kauth_cred_geteuid(l->l_cred);
    138 		PROCLIST_FOREACH(p, &allproc) {
    139 			mutex_enter(p->p_lock);
    140 			if (kauth_cred_geteuid(p->p_cred) ==
    141 			    (uid_t)who && p->p_nice < low)
    142 				low = p->p_nice;
    143 			mutex_exit(p->p_lock);
    144 		}
    145 		break;
    146 
    147 	default:
    148 		mutex_exit(proc_lock);
    149 		return (EINVAL);
    150 	}
    151 	mutex_exit(proc_lock);
    152 
    153 	if (low == NZERO + PRIO_MAX + 1)
    154 		return (ESRCH);
    155 	*retval = low - NZERO;
    156 	return (0);
    157 }
    158 
    159 /* ARGSUSED */
    160 int
    161 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    162     register_t *retval)
    163 {
    164 	/* {
    165 		syscallarg(int) which;
    166 		syscallarg(id_t) who;
    167 		syscallarg(int) prio;
    168 	} */
    169 	struct proc *curp = l->l_proc, *p;
    170 	int found = 0, error = 0;
    171 	int who = SCARG(uap, who);
    172 
    173 	mutex_enter(proc_lock);
    174 	switch (SCARG(uap, which)) {
    175 	case PRIO_PROCESS:
    176 		if (who == 0)
    177 			p = curp;
    178 		else
    179 			p = p_find(who, PFIND_LOCKED);
    180 		if (p != 0) {
    181 			mutex_enter(p->p_lock);
    182 			error = donice(l, p, SCARG(uap, prio));
    183 			mutex_exit(p->p_lock);
    184 		}
    185 		found++;
    186 		break;
    187 
    188 	case PRIO_PGRP: {
    189 		struct pgrp *pg;
    190 
    191 		if (who == 0)
    192 			pg = curp->p_pgrp;
    193 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    194 			break;
    195 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    196 			mutex_enter(p->p_lock);
    197 			error = donice(l, p, SCARG(uap, prio));
    198 			mutex_exit(p->p_lock);
    199 			found++;
    200 		}
    201 		break;
    202 	}
    203 
    204 	case PRIO_USER:
    205 		if (who == 0)
    206 			who = (int)kauth_cred_geteuid(l->l_cred);
    207 		PROCLIST_FOREACH(p, &allproc) {
    208 			mutex_enter(p->p_lock);
    209 			if (kauth_cred_geteuid(p->p_cred) ==
    210 			    (uid_t)SCARG(uap, who)) {
    211 				error = donice(l, p, SCARG(uap, prio));
    212 				found++;
    213 			}
    214 			mutex_exit(p->p_lock);
    215 		}
    216 		break;
    217 
    218 	default:
    219 		error = EINVAL;
    220 		break;
    221 	}
    222 	mutex_exit(proc_lock);
    223 	if (found == 0)
    224 		return (ESRCH);
    225 	return (error);
    226 }
    227 
    228 /*
    229  * Renice a process.
    230  *
    231  * Call with the target process' credentials locked.
    232  */
    233 int
    234 donice(struct lwp *l, struct proc *chgp, int n)
    235 {
    236 	kauth_cred_t cred = l->l_cred;
    237 
    238 	KASSERT(mutex_owned(chgp->p_lock));
    239 
    240 	if (n > PRIO_MAX)
    241 		n = PRIO_MAX;
    242 	if (n < PRIO_MIN)
    243 		n = PRIO_MIN;
    244 	n += NZERO;
    245 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    246 	    KAUTH_ARG(n), NULL, NULL))
    247 		return (EACCES);
    248 	sched_nice(chgp, n);
    249 	return (0);
    250 }
    251 
    252 /* ARGSUSED */
    253 int
    254 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    255     register_t *retval)
    256 {
    257 	/* {
    258 		syscallarg(int) which;
    259 		syscallarg(const struct rlimit *) rlp;
    260 	} */
    261 	int which = SCARG(uap, which);
    262 	struct rlimit alim;
    263 	int error;
    264 
    265 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    266 	if (error)
    267 		return (error);
    268 	return (dosetrlimit(l, l->l_proc, which, &alim));
    269 }
    270 
    271 int
    272 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    273 {
    274 	struct rlimit *alimp;
    275 	int error;
    276 
    277 	if ((u_int)which >= RLIM_NLIMITS)
    278 		return (EINVAL);
    279 
    280 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    281 		return (EINVAL);
    282 
    283 	if (limp->rlim_cur > limp->rlim_max) {
    284 		/*
    285 		 * This is programming error. According to SUSv2, we should
    286 		 * return error in this case.
    287 		 */
    288 		return (EINVAL);
    289 	}
    290 
    291 	alimp = &p->p_rlimit[which];
    292 	/* if we don't change the value, no need to limcopy() */
    293 	if (limp->rlim_cur == alimp->rlim_cur &&
    294 	    limp->rlim_max == alimp->rlim_max)
    295 		return 0;
    296 
    297 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    298 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    299 	if (error)
    300 		return (error);
    301 
    302 	lim_privatise(p, false);
    303 	/* p->p_limit is now unchangeable */
    304 	alimp = &p->p_rlimit[which];
    305 
    306 	switch (which) {
    307 
    308 	case RLIMIT_DATA:
    309 		if (limp->rlim_cur > maxdmap)
    310 			limp->rlim_cur = maxdmap;
    311 		if (limp->rlim_max > maxdmap)
    312 			limp->rlim_max = maxdmap;
    313 		break;
    314 
    315 	case RLIMIT_STACK:
    316 		if (limp->rlim_cur > maxsmap)
    317 			limp->rlim_cur = maxsmap;
    318 		if (limp->rlim_max > maxsmap)
    319 			limp->rlim_max = maxsmap;
    320 
    321 		/*
    322 		 * Return EINVAL if the new stack size limit is lower than
    323 		 * current usage. Otherwise, the process would get SIGSEGV the
    324 		 * moment it would try to access anything on it's current stack.
    325 		 * This conforms to SUSv2.
    326 		 */
    327 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    328 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    329 			return (EINVAL);
    330 		}
    331 
    332 		/*
    333 		 * Stack is allocated to the max at exec time with
    334 		 * only "rlim_cur" bytes accessible (In other words,
    335 		 * allocates stack dividing two contiguous regions at
    336 		 * "rlim_cur" bytes boundary).
    337 		 *
    338 		 * Since allocation is done in terms of page, roundup
    339 		 * "rlim_cur" (otherwise, contiguous regions
    340 		 * overlap).  If stack limit is going up make more
    341 		 * accessible, if going down make inaccessible.
    342 		 */
    343 		limp->rlim_cur = round_page(limp->rlim_cur);
    344 		if (limp->rlim_cur != alimp->rlim_cur) {
    345 			vaddr_t addr;
    346 			vsize_t size;
    347 			vm_prot_t prot;
    348 
    349 			if (limp->rlim_cur > alimp->rlim_cur) {
    350 				prot = VM_PROT_READ | VM_PROT_WRITE;
    351 				size = limp->rlim_cur - alimp->rlim_cur;
    352 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    353 				    limp->rlim_cur;
    354 			} else {
    355 				prot = VM_PROT_NONE;
    356 				size = alimp->rlim_cur - limp->rlim_cur;
    357 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    358 				     alimp->rlim_cur;
    359 			}
    360 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    361 			    addr, addr+size, prot, false);
    362 		}
    363 		break;
    364 
    365 	case RLIMIT_NOFILE:
    366 		if (limp->rlim_cur > maxfiles)
    367 			limp->rlim_cur = maxfiles;
    368 		if (limp->rlim_max > maxfiles)
    369 			limp->rlim_max = maxfiles;
    370 		break;
    371 
    372 	case RLIMIT_NPROC:
    373 		if (limp->rlim_cur > maxproc)
    374 			limp->rlim_cur = maxproc;
    375 		if (limp->rlim_max > maxproc)
    376 			limp->rlim_max = maxproc;
    377 		break;
    378 	}
    379 
    380 	mutex_enter(&p->p_limit->pl_lock);
    381 	*alimp = *limp;
    382 	mutex_exit(&p->p_limit->pl_lock);
    383 	return (0);
    384 }
    385 
    386 /* ARGSUSED */
    387 int
    388 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    389     register_t *retval)
    390 {
    391 	/* {
    392 		syscallarg(int) which;
    393 		syscallarg(struct rlimit *) rlp;
    394 	} */
    395 	struct proc *p = l->l_proc;
    396 	int which = SCARG(uap, which);
    397 	struct rlimit rl;
    398 
    399 	if ((u_int)which >= RLIM_NLIMITS)
    400 		return (EINVAL);
    401 
    402 	mutex_enter(p->p_lock);
    403 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    404 	mutex_exit(p->p_lock);
    405 
    406 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    407 }
    408 
    409 /*
    410  * Transform the running time and tick information in proc p into user,
    411  * system, and interrupt time usage.
    412  *
    413  * Should be called with p->p_lock held unless called from exit1().
    414  */
    415 void
    416 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    417     struct timeval *ip, struct timeval *rp)
    418 {
    419 	uint64_t u, st, ut, it, tot;
    420 	struct lwp *l;
    421 	struct bintime tm;
    422 	struct timeval tv;
    423 
    424 	mutex_spin_enter(&p->p_stmutex);
    425 	st = p->p_sticks;
    426 	ut = p->p_uticks;
    427 	it = p->p_iticks;
    428 	mutex_spin_exit(&p->p_stmutex);
    429 
    430 	tm = p->p_rtime;
    431 
    432 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    433 		lwp_lock(l);
    434 		bintime_add(&tm, &l->l_rtime);
    435 		if ((l->l_flag & LW_RUNNING) != 0) {
    436 			struct bintime diff;
    437 			/*
    438 			 * Adjust for the current time slice.  This is
    439 			 * actually fairly important since the error
    440 			 * here is on the order of a time quantum,
    441 			 * which is much greater than the sampling
    442 			 * error.
    443 			 */
    444 			binuptime(&diff);
    445 			bintime_sub(&diff, &l->l_stime);
    446 			bintime_add(&tm, &diff);
    447 		}
    448 		lwp_unlock(l);
    449 	}
    450 
    451 	tot = st + ut + it;
    452 	bintime2timeval(&tm, &tv);
    453 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    454 
    455 	if (tot == 0) {
    456 		/* No ticks, so can't use to share time out, split 50-50 */
    457 		st = ut = u / 2;
    458 	} else {
    459 		st = (u * st) / tot;
    460 		ut = (u * ut) / tot;
    461 	}
    462 	if (sp != NULL) {
    463 		sp->tv_sec = st / 1000000;
    464 		sp->tv_usec = st % 1000000;
    465 	}
    466 	if (up != NULL) {
    467 		up->tv_sec = ut / 1000000;
    468 		up->tv_usec = ut % 1000000;
    469 	}
    470 	if (ip != NULL) {
    471 		if (it != 0)
    472 			it = (u * it) / tot;
    473 		ip->tv_sec = it / 1000000;
    474 		ip->tv_usec = it % 1000000;
    475 	}
    476 	if (rp != NULL) {
    477 		*rp = tv;
    478 	}
    479 }
    480 
    481 /* ARGSUSED */
    482 int
    483 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
    484     register_t *retval)
    485 {
    486 	/* {
    487 		syscallarg(int) who;
    488 		syscallarg(struct rusage *) rusage;
    489 	} */
    490 	struct rusage ru;
    491 	struct proc *p = l->l_proc;
    492 
    493 	switch (SCARG(uap, who)) {
    494 	case RUSAGE_SELF:
    495 		mutex_enter(p->p_lock);
    496 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    497 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    498 		rulwps(p, &ru);
    499 		mutex_exit(p->p_lock);
    500 		break;
    501 
    502 	case RUSAGE_CHILDREN:
    503 		mutex_enter(p->p_lock);
    504 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    505 		mutex_exit(p->p_lock);
    506 		break;
    507 
    508 	default:
    509 		return EINVAL;
    510 	}
    511 
    512 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    513 }
    514 
    515 void
    516 ruadd(struct rusage *ru, struct rusage *ru2)
    517 {
    518 	long *ip, *ip2;
    519 	int i;
    520 
    521 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    522 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    523 	if (ru->ru_maxrss < ru2->ru_maxrss)
    524 		ru->ru_maxrss = ru2->ru_maxrss;
    525 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    526 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    527 		*ip++ += *ip2++;
    528 }
    529 
    530 void
    531 rulwps(proc_t *p, struct rusage *ru)
    532 {
    533 	lwp_t *l;
    534 
    535 	KASSERT(mutex_owned(p->p_lock));
    536 
    537 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    538 		ruadd(ru, &l->l_ru);
    539 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    540 		ru->ru_nivcsw += l->l_nivcsw;
    541 	}
    542 }
    543 
    544 /*
    545  * Make a copy of the plimit structure.
    546  * We share these structures copy-on-write after fork,
    547  * and copy when a limit is changed.
    548  *
    549  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    550  * we are copying to change beneath our feet!
    551  */
    552 struct plimit *
    553 lim_copy(struct plimit *lim)
    554 {
    555 	struct plimit *newlim;
    556 	char *corename;
    557 	size_t alen, len;
    558 
    559 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    560 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    561 	newlim->pl_flags = 0;
    562 	newlim->pl_refcnt = 1;
    563 	newlim->pl_sv_limit = NULL;
    564 
    565 	mutex_enter(&lim->pl_lock);
    566 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    567 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    568 
    569 	alen = 0;
    570 	corename = NULL;
    571 	for (;;) {
    572 		if (lim->pl_corename == defcorename) {
    573 			newlim->pl_corename = defcorename;
    574 			break;
    575 		}
    576 		len = strlen(lim->pl_corename) + 1;
    577 		if (len <= alen) {
    578 			newlim->pl_corename = corename;
    579 			memcpy(corename, lim->pl_corename, len);
    580 			corename = NULL;
    581 			break;
    582 		}
    583 		mutex_exit(&lim->pl_lock);
    584 		if (corename != NULL)
    585 			free(corename, M_TEMP);
    586 		alen = len;
    587 		corename = malloc(alen, M_TEMP, M_WAITOK);
    588 		mutex_enter(&lim->pl_lock);
    589 	}
    590 	mutex_exit(&lim->pl_lock);
    591 	if (corename != NULL)
    592 		free(corename, M_TEMP);
    593 	return newlim;
    594 }
    595 
    596 void
    597 lim_addref(struct plimit *lim)
    598 {
    599 	atomic_inc_uint(&lim->pl_refcnt);
    600 }
    601 
    602 /*
    603  * Give a process it's own private plimit structure.
    604  * This will only be shared (in fork) if modifications are to be shared.
    605  */
    606 void
    607 lim_privatise(struct proc *p, bool set_shared)
    608 {
    609 	struct plimit *lim, *newlim;
    610 
    611 	lim = p->p_limit;
    612 	if (lim->pl_flags & PL_WRITEABLE) {
    613 		if (set_shared)
    614 			lim->pl_flags |= PL_SHAREMOD;
    615 		return;
    616 	}
    617 
    618 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    619 		return;
    620 
    621 	newlim = lim_copy(lim);
    622 
    623 	mutex_enter(p->p_lock);
    624 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    625 		/* Someone crept in while we were busy */
    626 		mutex_exit(p->p_lock);
    627 		limfree(newlim);
    628 		if (set_shared)
    629 			p->p_limit->pl_flags |= PL_SHAREMOD;
    630 		return;
    631 	}
    632 
    633 	/*
    634 	 * Since most accesses to p->p_limit aren't locked, we must not
    635 	 * delete the old limit structure yet.
    636 	 */
    637 	newlim->pl_sv_limit = p->p_limit;
    638 	newlim->pl_flags |= PL_WRITEABLE;
    639 	if (set_shared)
    640 		newlim->pl_flags |= PL_SHAREMOD;
    641 	p->p_limit = newlim;
    642 	mutex_exit(p->p_lock);
    643 }
    644 
    645 void
    646 limfree(struct plimit *lim)
    647 {
    648 	struct plimit *sv_lim;
    649 
    650 	do {
    651 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    652 			return;
    653 		if (lim->pl_corename != defcorename)
    654 			free(lim->pl_corename, M_TEMP);
    655 		sv_lim = lim->pl_sv_limit;
    656 		mutex_destroy(&lim->pl_lock);
    657 		pool_cache_put(plimit_cache, lim);
    658 	} while ((lim = sv_lim) != NULL);
    659 }
    660 
    661 struct pstats *
    662 pstatscopy(struct pstats *ps)
    663 {
    664 
    665 	struct pstats *newps;
    666 
    667 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    668 
    669 	memset(&newps->pstat_startzero, 0,
    670 	(unsigned) ((char *)&newps->pstat_endzero -
    671 		    (char *)&newps->pstat_startzero));
    672 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    673 	((char *)&newps->pstat_endcopy -
    674 	 (char *)&newps->pstat_startcopy));
    675 
    676 	return (newps);
    677 
    678 }
    679 
    680 void
    681 pstatsfree(struct pstats *ps)
    682 {
    683 
    684 	pool_cache_put(pstats_cache, ps);
    685 }
    686 
    687 /*
    688  * sysctl interface in five parts
    689  */
    690 
    691 /*
    692  * a routine for sysctl proc subtree helpers that need to pick a valid
    693  * process by pid.
    694  */
    695 static int
    696 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    697 {
    698 	struct proc *ptmp;
    699 	int error = 0;
    700 
    701 	if (pid == PROC_CURPROC)
    702 		ptmp = l->l_proc;
    703 	else if ((ptmp = pfind(pid)) == NULL)
    704 		error = ESRCH;
    705 
    706 	*p2 = ptmp;
    707 	return (error);
    708 }
    709 
    710 /*
    711  * sysctl helper routine for setting a process's specific corefile
    712  * name.  picks the process based on the given pid and checks the
    713  * correctness of the new value.
    714  */
    715 static int
    716 sysctl_proc_corename(SYSCTLFN_ARGS)
    717 {
    718 	struct proc *ptmp;
    719 	struct plimit *lim;
    720 	int error = 0, len;
    721 	char *cname;
    722 	char *ocore;
    723 	char *tmp;
    724 	struct sysctlnode node;
    725 
    726 	/*
    727 	 * is this all correct?
    728 	 */
    729 	if (namelen != 0)
    730 		return (EINVAL);
    731 	if (name[-1] != PROC_PID_CORENAME)
    732 		return (EINVAL);
    733 
    734 	/*
    735 	 * whom are we tweaking?
    736 	 */
    737 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    738 	if (error)
    739 		return (error);
    740 
    741 	/* XXX-elad */
    742 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    743 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    744 	if (error)
    745 		return (error);
    746 
    747 	if (newp == NULL) {
    748 		error = kauth_authorize_process(l->l_cred,
    749 		    KAUTH_PROCESS_CORENAME, ptmp,
    750 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    751 		if (error)
    752 			return (error);
    753 	}
    754 
    755 	/*
    756 	 * let them modify a temporary copy of the core name
    757 	 */
    758 	cname = PNBUF_GET();
    759 	lim = ptmp->p_limit;
    760 	mutex_enter(&lim->pl_lock);
    761 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    762 	mutex_exit(&lim->pl_lock);
    763 
    764 	node = *rnode;
    765 	node.sysctl_data = cname;
    766 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    767 
    768 	/*
    769 	 * if that failed, or they have nothing new to say, or we've
    770 	 * heard it before...
    771 	 */
    772 	if (error || newp == NULL)
    773 		goto done;
    774 	lim = ptmp->p_limit;
    775 	mutex_enter(&lim->pl_lock);
    776 	error = strcmp(cname, lim->pl_corename);
    777 	mutex_exit(&lim->pl_lock);
    778 	if (error == 0)
    779 		/* Unchanged */
    780 		goto done;
    781 
    782 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    783 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
    784 	if (error)
    785 		return (error);
    786 
    787 	/*
    788 	 * no error yet and cname now has the new core name in it.
    789 	 * let's see if it looks acceptable.  it must be either "core"
    790 	 * or end in ".core" or "/core".
    791 	 */
    792 	len = strlen(cname);
    793 	if (len < 4) {
    794 		error = EINVAL;
    795 	} else if (strcmp(cname + len - 4, "core") != 0) {
    796 		error = EINVAL;
    797 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    798 		error = EINVAL;
    799 	}
    800 	if (error != 0) {
    801 		goto done;
    802 	}
    803 
    804 	/*
    805 	 * hmm...looks good.  now...where do we put it?
    806 	 */
    807 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    808 	if (tmp == NULL) {
    809 		error = ENOMEM;
    810 		goto done;
    811 	}
    812 	memcpy(tmp, cname, len + 1);
    813 
    814 	lim_privatise(ptmp, false);
    815 	lim = ptmp->p_limit;
    816 	mutex_enter(&lim->pl_lock);
    817 	ocore = lim->pl_corename;
    818 	lim->pl_corename = tmp;
    819 	mutex_exit(&lim->pl_lock);
    820 	if (ocore != defcorename)
    821 		free(ocore, M_TEMP);
    822 
    823 done:
    824 	PNBUF_PUT(cname);
    825 	return error;
    826 }
    827 
    828 /*
    829  * sysctl helper routine for checking/setting a process's stop flags,
    830  * one for fork and one for exec.
    831  */
    832 static int
    833 sysctl_proc_stop(SYSCTLFN_ARGS)
    834 {
    835 	struct proc *ptmp;
    836 	int i, f, error = 0;
    837 	struct sysctlnode node;
    838 
    839 	if (namelen != 0)
    840 		return (EINVAL);
    841 
    842 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    843 	if (error)
    844 		return (error);
    845 
    846 	/* XXX-elad */
    847 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    848 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    849 	if (error)
    850 		return (error);
    851 
    852 	switch (rnode->sysctl_num) {
    853 	case PROC_PID_STOPFORK:
    854 		f = PS_STOPFORK;
    855 		break;
    856 	case PROC_PID_STOPEXEC:
    857 		f = PS_STOPEXEC;
    858 		break;
    859 	case PROC_PID_STOPEXIT:
    860 		f = PS_STOPEXIT;
    861 		break;
    862 	default:
    863 		return (EINVAL);
    864 	}
    865 
    866 	i = (ptmp->p_flag & f) ? 1 : 0;
    867 	node = *rnode;
    868 	node.sysctl_data = &i;
    869 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    870 	if (error || newp == NULL)
    871 		return (error);
    872 
    873 	mutex_enter(ptmp->p_lock);
    874 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    875 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    876 	if (error)
    877 		return (error);
    878 	if (i)
    879 		ptmp->p_sflag |= f;
    880 	else
    881 		ptmp->p_sflag &= ~f;
    882 	mutex_exit(ptmp->p_lock);
    883 
    884 	return (0);
    885 }
    886 
    887 /*
    888  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    889  */
    890 static int
    891 sysctl_proc_plimit(SYSCTLFN_ARGS)
    892 {
    893 	struct proc *ptmp;
    894 	u_int limitno;
    895 	int which, error = 0;
    896         struct rlimit alim;
    897 	struct sysctlnode node;
    898 
    899 	if (namelen != 0)
    900 		return (EINVAL);
    901 
    902 	which = name[-1];
    903 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    904 	    which != PROC_PID_LIMIT_TYPE_HARD)
    905 		return (EINVAL);
    906 
    907 	limitno = name[-2] - 1;
    908 	if (limitno >= RLIM_NLIMITS)
    909 		return (EINVAL);
    910 
    911 	if (name[-3] != PROC_PID_LIMIT)
    912 		return (EINVAL);
    913 
    914 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    915 	if (error)
    916 		return (error);
    917 
    918 	/* XXX-elad */
    919 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    920 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    921 	if (error)
    922 		return (error);
    923 
    924 	/* Check if we can view limits. */
    925 	if (newp == NULL) {
    926 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    927 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    928 		    KAUTH_ARG(which));
    929 		if (error)
    930 			return (error);
    931 	}
    932 
    933 	node = *rnode;
    934 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    935 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    936 		node.sysctl_data = &alim.rlim_max;
    937 	else
    938 		node.sysctl_data = &alim.rlim_cur;
    939 
    940 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    941 	if (error || newp == NULL)
    942 		return (error);
    943 
    944 	return (dosetrlimit(l, ptmp, limitno, &alim));
    945 }
    946 
    947 /*
    948  * and finally, the actually glue that sticks it to the tree
    949  */
    950 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    951 {
    952 
    953 	sysctl_createv(clog, 0, NULL, NULL,
    954 		       CTLFLAG_PERMANENT,
    955 		       CTLTYPE_NODE, "proc", NULL,
    956 		       NULL, 0, NULL, 0,
    957 		       CTL_PROC, CTL_EOL);
    958 	sysctl_createv(clog, 0, NULL, NULL,
    959 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    960 		       CTLTYPE_NODE, "curproc",
    961 		       SYSCTL_DESCR("Per-process settings"),
    962 		       NULL, 0, NULL, 0,
    963 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    964 
    965 	sysctl_createv(clog, 0, NULL, NULL,
    966 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    967 		       CTLTYPE_STRING, "corename",
    968 		       SYSCTL_DESCR("Core file name"),
    969 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    970 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    971 	sysctl_createv(clog, 0, NULL, NULL,
    972 		       CTLFLAG_PERMANENT,
    973 		       CTLTYPE_NODE, "rlimit",
    974 		       SYSCTL_DESCR("Process limits"),
    975 		       NULL, 0, NULL, 0,
    976 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    977 
    978 #define create_proc_plimit(s, n) do {					\
    979 	sysctl_createv(clog, 0, NULL, NULL,				\
    980 		       CTLFLAG_PERMANENT,				\
    981 		       CTLTYPE_NODE, s,					\
    982 		       SYSCTL_DESCR("Process " s " limits"),		\
    983 		       NULL, 0, NULL, 0,				\
    984 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    985 		       CTL_EOL);					\
    986 	sysctl_createv(clog, 0, NULL, NULL,				\
    987 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    988 		       CTLTYPE_QUAD, "soft",				\
    989 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    990 		       sysctl_proc_plimit, 0, NULL, 0,			\
    991 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    992 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    993 	sysctl_createv(clog, 0, NULL, NULL,				\
    994 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    995 		       CTLTYPE_QUAD, "hard",				\
    996 		       SYSCTL_DESCR("Process hard " s " limit"),	\
    997 		       sysctl_proc_plimit, 0, NULL, 0,			\
    998 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    999 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1000 	} while (0/*CONSTCOND*/)
   1001 
   1002 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1003 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1004 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1005 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1006 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1007 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1008 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1009 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1010 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1011 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1012 
   1013 #undef create_proc_plimit
   1014 
   1015 	sysctl_createv(clog, 0, NULL, NULL,
   1016 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1017 		       CTLTYPE_INT, "stopfork",
   1018 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1019 		       sysctl_proc_stop, 0, NULL, 0,
   1020 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1021 	sysctl_createv(clog, 0, NULL, NULL,
   1022 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1023 		       CTLTYPE_INT, "stopexec",
   1024 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1025 		       sysctl_proc_stop, 0, NULL, 0,
   1026 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1027 	sysctl_createv(clog, 0, NULL, NULL,
   1028 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1029 		       CTLTYPE_INT, "stopexit",
   1030 		       SYSCTL_DESCR("Stop process before completing exit"),
   1031 		       sysctl_proc_stop, 0, NULL, 0,
   1032 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1033 }
   1034 
   1035 void
   1036 uid_init(void)
   1037 {
   1038 
   1039 	/*
   1040 	 * Ensure that uid 0 is always in the user hash table, as
   1041 	 * sbreserve() expects it available from interrupt context.
   1042 	 */
   1043 	(void)uid_find(0);
   1044 }
   1045 
   1046 struct uidinfo *
   1047 uid_find(uid_t uid)
   1048 {
   1049 	struct uidinfo *uip, *uip_first, *newuip;
   1050 	struct uihashhead *uipp;
   1051 
   1052 	uipp = UIHASH(uid);
   1053 	newuip = NULL;
   1054 
   1055 	/*
   1056 	 * To make insertion atomic, abstraction of SLIST will be violated.
   1057 	 */
   1058 	uip_first = uipp->slh_first;
   1059  again:
   1060 	SLIST_FOREACH(uip, uipp, ui_hash) {
   1061 		if (uip->ui_uid != uid)
   1062 			continue;
   1063 		if (newuip != NULL)
   1064 			kmem_free(newuip, sizeof(*newuip));
   1065 		return uip;
   1066 	}
   1067 	if (newuip == NULL)
   1068 		newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
   1069 	newuip->ui_uid = uid;
   1070 
   1071 	/*
   1072 	 * If atomic insert is unsuccessful, another thread might be
   1073 	 * allocated this 'uid', thus full re-check is needed.
   1074 	 */
   1075 	newuip->ui_hash.sle_next = uip_first;
   1076 	membar_producer();
   1077 	uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
   1078 	if (uip != uip_first) {
   1079 		uip_first = uip;
   1080 		goto again;
   1081 	}
   1082 
   1083 	return newuip;
   1084 }
   1085 
   1086 /*
   1087  * Change the count associated with number of processes
   1088  * a given user is using.
   1089  */
   1090 int
   1091 chgproccnt(uid_t uid, int diff)
   1092 {
   1093 	struct uidinfo *uip;
   1094 	long proccnt;
   1095 
   1096 	uip = uid_find(uid);
   1097 	proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
   1098 	KASSERT(proccnt >= 0);
   1099 	return proccnt;
   1100 }
   1101 
   1102 int
   1103 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1104 {
   1105 	rlim_t nsb;
   1106 	const long diff = to - *hiwat;
   1107 
   1108 	nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
   1109 	if (diff > 0 && nsb > xmax) {
   1110 		atomic_add_long((long *)&uip->ui_sbsize, -diff);
   1111 		return 0;
   1112 	}
   1113 	*hiwat = to;
   1114 	KASSERT(nsb >= 0);
   1115 	return 1;
   1116 }
   1117