Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.141.2.1
      1 /*	$NetBSD: kern_resource.c,v 1.141.2.1 2008/05/10 23:49:04 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.141.2.1 2008/05/10 23:49:04 wrstuden Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/sa.h>
     58 #include <sys/syscallargs.h>
     59 #include <sys/atomic.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Maximum process data and stack limits.
     65  * They are variables so they are patchable.
     66  */
     67 rlim_t maxdmap = MAXDSIZ;
     68 rlim_t maxsmap = MAXSSIZ;
     69 
     70 static SLIST_HEAD(uihashhead, uidinfo) *uihashtbl;
     71 static u_long 		uihash;
     72 
     73 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
     74 
     75 static pool_cache_t	plimit_cache;
     76 static pool_cache_t	pstats_cache;
     77 
     78 void
     79 resource_init(void)
     80 {
     81 	/*
     82 	 * In case of MP system, SLIST_FOREACH would force a cache line
     83 	 * write-back for every modified 'uidinfo', thus we try to keep the
     84 	 * lists short.
     85 	 */
     86 	const u_int uihash_sz = (maxproc > 1 ? 1024 : 64);
     87 
     88 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
     89 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
     90 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
     91 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
     92 	uihashtbl = hashinit(uihash_sz, HASH_SLIST, true, &uihash);
     93 }
     94 
     95 /*
     96  * Resource controls and accounting.
     97  */
     98 
     99 int
    100 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    101     register_t *retval)
    102 {
    103 	/* {
    104 		syscallarg(int) which;
    105 		syscallarg(id_t) who;
    106 	} */
    107 	struct proc *curp = l->l_proc, *p;
    108 	int low = NZERO + PRIO_MAX + 1;
    109 	int who = SCARG(uap, who);
    110 
    111 	mutex_enter(proc_lock);
    112 	switch (SCARG(uap, which)) {
    113 	case PRIO_PROCESS:
    114 		if (who == 0)
    115 			p = curp;
    116 		else
    117 			p = p_find(who, PFIND_LOCKED);
    118 		if (p != NULL)
    119 			low = p->p_nice;
    120 		break;
    121 
    122 	case PRIO_PGRP: {
    123 		struct pgrp *pg;
    124 
    125 		if (who == 0)
    126 			pg = curp->p_pgrp;
    127 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    128 			break;
    129 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    130 			if (p->p_nice < low)
    131 				low = p->p_nice;
    132 		}
    133 		break;
    134 	}
    135 
    136 	case PRIO_USER:
    137 		if (who == 0)
    138 			who = (int)kauth_cred_geteuid(l->l_cred);
    139 		PROCLIST_FOREACH(p, &allproc) {
    140 			if ((p->p_flag & PK_MARKER) != 0)
    141 				continue;
    142 			mutex_enter(p->p_lock);
    143 			if (kauth_cred_geteuid(p->p_cred) ==
    144 			    (uid_t)who && p->p_nice < low)
    145 				low = p->p_nice;
    146 			mutex_exit(p->p_lock);
    147 		}
    148 		break;
    149 
    150 	default:
    151 		mutex_exit(proc_lock);
    152 		return (EINVAL);
    153 	}
    154 	mutex_exit(proc_lock);
    155 
    156 	if (low == NZERO + PRIO_MAX + 1)
    157 		return (ESRCH);
    158 	*retval = low - NZERO;
    159 	return (0);
    160 }
    161 
    162 /* ARGSUSED */
    163 int
    164 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    165     register_t *retval)
    166 {
    167 	/* {
    168 		syscallarg(int) which;
    169 		syscallarg(id_t) who;
    170 		syscallarg(int) prio;
    171 	} */
    172 	struct proc *curp = l->l_proc, *p;
    173 	int found = 0, error = 0;
    174 	int who = SCARG(uap, who);
    175 
    176 	mutex_enter(proc_lock);
    177 	switch (SCARG(uap, which)) {
    178 	case PRIO_PROCESS:
    179 		if (who == 0)
    180 			p = curp;
    181 		else
    182 			p = p_find(who, PFIND_LOCKED);
    183 		if (p != 0) {
    184 			mutex_enter(p->p_lock);
    185 			error = donice(l, p, SCARG(uap, prio));
    186 			mutex_exit(p->p_lock);
    187 		}
    188 		found++;
    189 		break;
    190 
    191 	case PRIO_PGRP: {
    192 		struct pgrp *pg;
    193 
    194 		if (who == 0)
    195 			pg = curp->p_pgrp;
    196 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    197 			break;
    198 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    199 			mutex_enter(p->p_lock);
    200 			error = donice(l, p, SCARG(uap, prio));
    201 			mutex_exit(p->p_lock);
    202 			found++;
    203 		}
    204 		break;
    205 	}
    206 
    207 	case PRIO_USER:
    208 		if (who == 0)
    209 			who = (int)kauth_cred_geteuid(l->l_cred);
    210 		PROCLIST_FOREACH(p, &allproc) {
    211 			if ((p->p_flag & PK_MARKER) != 0)
    212 				continue;
    213 			mutex_enter(p->p_lock);
    214 			if (kauth_cred_geteuid(p->p_cred) ==
    215 			    (uid_t)SCARG(uap, who)) {
    216 				error = donice(l, p, SCARG(uap, prio));
    217 				found++;
    218 			}
    219 			mutex_exit(p->p_lock);
    220 		}
    221 		break;
    222 
    223 	default:
    224 		error = EINVAL;
    225 		break;
    226 	}
    227 	mutex_exit(proc_lock);
    228 	if (found == 0)
    229 		return (ESRCH);
    230 	return (error);
    231 }
    232 
    233 /*
    234  * Renice a process.
    235  *
    236  * Call with the target process' credentials locked.
    237  */
    238 int
    239 donice(struct lwp *l, struct proc *chgp, int n)
    240 {
    241 	kauth_cred_t cred = l->l_cred;
    242 
    243 	KASSERT(mutex_owned(chgp->p_lock));
    244 
    245 	if (n > PRIO_MAX)
    246 		n = PRIO_MAX;
    247 	if (n < PRIO_MIN)
    248 		n = PRIO_MIN;
    249 	n += NZERO;
    250 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    251 	    KAUTH_ARG(n), NULL, NULL))
    252 		return (EACCES);
    253 	sched_nice(chgp, n);
    254 	return (0);
    255 }
    256 
    257 /* ARGSUSED */
    258 int
    259 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    260     register_t *retval)
    261 {
    262 	/* {
    263 		syscallarg(int) which;
    264 		syscallarg(const struct rlimit *) rlp;
    265 	} */
    266 	int which = SCARG(uap, which);
    267 	struct rlimit alim;
    268 	int error;
    269 
    270 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    271 	if (error)
    272 		return (error);
    273 	return (dosetrlimit(l, l->l_proc, which, &alim));
    274 }
    275 
    276 int
    277 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    278 {
    279 	struct rlimit *alimp;
    280 	int error;
    281 
    282 	if ((u_int)which >= RLIM_NLIMITS)
    283 		return (EINVAL);
    284 
    285 	if (limp->rlim_cur < 0 || limp->rlim_max < 0)
    286 		return (EINVAL);
    287 
    288 	if (limp->rlim_cur > limp->rlim_max) {
    289 		/*
    290 		 * This is programming error. According to SUSv2, we should
    291 		 * return error in this case.
    292 		 */
    293 		return (EINVAL);
    294 	}
    295 
    296 	alimp = &p->p_rlimit[which];
    297 	/* if we don't change the value, no need to limcopy() */
    298 	if (limp->rlim_cur == alimp->rlim_cur &&
    299 	    limp->rlim_max == alimp->rlim_max)
    300 		return 0;
    301 
    302 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    303 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    304 	if (error)
    305 		return (error);
    306 
    307 	lim_privatise(p, false);
    308 	/* p->p_limit is now unchangeable */
    309 	alimp = &p->p_rlimit[which];
    310 
    311 	switch (which) {
    312 
    313 	case RLIMIT_DATA:
    314 		if (limp->rlim_cur > maxdmap)
    315 			limp->rlim_cur = maxdmap;
    316 		if (limp->rlim_max > maxdmap)
    317 			limp->rlim_max = maxdmap;
    318 		break;
    319 
    320 	case RLIMIT_STACK:
    321 		if (limp->rlim_cur > maxsmap)
    322 			limp->rlim_cur = maxsmap;
    323 		if (limp->rlim_max > maxsmap)
    324 			limp->rlim_max = maxsmap;
    325 
    326 		/*
    327 		 * Return EINVAL if the new stack size limit is lower than
    328 		 * current usage. Otherwise, the process would get SIGSEGV the
    329 		 * moment it would try to access anything on it's current stack.
    330 		 * This conforms to SUSv2.
    331 		 */
    332 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    333 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    334 			return (EINVAL);
    335 		}
    336 
    337 		/*
    338 		 * Stack is allocated to the max at exec time with
    339 		 * only "rlim_cur" bytes accessible (In other words,
    340 		 * allocates stack dividing two contiguous regions at
    341 		 * "rlim_cur" bytes boundary).
    342 		 *
    343 		 * Since allocation is done in terms of page, roundup
    344 		 * "rlim_cur" (otherwise, contiguous regions
    345 		 * overlap).  If stack limit is going up make more
    346 		 * accessible, if going down make inaccessible.
    347 		 */
    348 		limp->rlim_cur = round_page(limp->rlim_cur);
    349 		if (limp->rlim_cur != alimp->rlim_cur) {
    350 			vaddr_t addr;
    351 			vsize_t size;
    352 			vm_prot_t prot;
    353 
    354 			if (limp->rlim_cur > alimp->rlim_cur) {
    355 				prot = VM_PROT_READ | VM_PROT_WRITE;
    356 				size = limp->rlim_cur - alimp->rlim_cur;
    357 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    358 				    limp->rlim_cur;
    359 			} else {
    360 				prot = VM_PROT_NONE;
    361 				size = alimp->rlim_cur - limp->rlim_cur;
    362 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    363 				     alimp->rlim_cur;
    364 			}
    365 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    366 			    addr, addr+size, prot, false);
    367 		}
    368 		break;
    369 
    370 	case RLIMIT_NOFILE:
    371 		if (limp->rlim_cur > maxfiles)
    372 			limp->rlim_cur = maxfiles;
    373 		if (limp->rlim_max > maxfiles)
    374 			limp->rlim_max = maxfiles;
    375 		break;
    376 
    377 	case RLIMIT_NPROC:
    378 		if (limp->rlim_cur > maxproc)
    379 			limp->rlim_cur = maxproc;
    380 		if (limp->rlim_max > maxproc)
    381 			limp->rlim_max = maxproc;
    382 		break;
    383 	}
    384 
    385 	mutex_enter(&p->p_limit->pl_lock);
    386 	*alimp = *limp;
    387 	mutex_exit(&p->p_limit->pl_lock);
    388 	return (0);
    389 }
    390 
    391 /* ARGSUSED */
    392 int
    393 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    394     register_t *retval)
    395 {
    396 	/* {
    397 		syscallarg(int) which;
    398 		syscallarg(struct rlimit *) rlp;
    399 	} */
    400 	struct proc *p = l->l_proc;
    401 	int which = SCARG(uap, which);
    402 	struct rlimit rl;
    403 
    404 	if ((u_int)which >= RLIM_NLIMITS)
    405 		return (EINVAL);
    406 
    407 	mutex_enter(p->p_lock);
    408 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    409 	mutex_exit(p->p_lock);
    410 
    411 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    412 }
    413 
    414 /*
    415  * Transform the running time and tick information in proc p into user,
    416  * system, and interrupt time usage.
    417  *
    418  * Should be called with p->p_lock held unless called from exit1().
    419  */
    420 void
    421 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    422     struct timeval *ip, struct timeval *rp)
    423 {
    424 	uint64_t u, st, ut, it, tot;
    425 	struct lwp *l;
    426 	struct bintime tm;
    427 	struct timeval tv;
    428 
    429 	mutex_spin_enter(&p->p_stmutex);
    430 	st = p->p_sticks;
    431 	ut = p->p_uticks;
    432 	it = p->p_iticks;
    433 	mutex_spin_exit(&p->p_stmutex);
    434 
    435 	tm = p->p_rtime;
    436 
    437 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    438 		lwp_lock(l);
    439 		bintime_add(&tm, &l->l_rtime);
    440 		if ((l->l_flag & LW_RUNNING) != 0) {
    441 			struct bintime diff;
    442 			/*
    443 			 * Adjust for the current time slice.  This is
    444 			 * actually fairly important since the error
    445 			 * here is on the order of a time quantum,
    446 			 * which is much greater than the sampling
    447 			 * error.
    448 			 */
    449 			binuptime(&diff);
    450 			bintime_sub(&diff, &l->l_stime);
    451 			bintime_add(&tm, &diff);
    452 		}
    453 		lwp_unlock(l);
    454 	}
    455 
    456 	tot = st + ut + it;
    457 	bintime2timeval(&tm, &tv);
    458 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    459 
    460 	if (tot == 0) {
    461 		/* No ticks, so can't use to share time out, split 50-50 */
    462 		st = ut = u / 2;
    463 	} else {
    464 		st = (u * st) / tot;
    465 		ut = (u * ut) / tot;
    466 	}
    467 	if (sp != NULL) {
    468 		sp->tv_sec = st / 1000000;
    469 		sp->tv_usec = st % 1000000;
    470 	}
    471 	if (up != NULL) {
    472 		up->tv_sec = ut / 1000000;
    473 		up->tv_usec = ut % 1000000;
    474 	}
    475 	if (ip != NULL) {
    476 		if (it != 0)
    477 			it = (u * it) / tot;
    478 		ip->tv_sec = it / 1000000;
    479 		ip->tv_usec = it % 1000000;
    480 	}
    481 	if (rp != NULL) {
    482 		*rp = tv;
    483 	}
    484 }
    485 
    486 /* ARGSUSED */
    487 int
    488 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
    489     register_t *retval)
    490 {
    491 	/* {
    492 		syscallarg(int) who;
    493 		syscallarg(struct rusage *) rusage;
    494 	} */
    495 	struct rusage ru;
    496 	struct proc *p = l->l_proc;
    497 
    498 	switch (SCARG(uap, who)) {
    499 	case RUSAGE_SELF:
    500 		mutex_enter(p->p_lock);
    501 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    502 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    503 		rulwps(p, &ru);
    504 		mutex_exit(p->p_lock);
    505 		break;
    506 
    507 	case RUSAGE_CHILDREN:
    508 		mutex_enter(p->p_lock);
    509 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    510 		mutex_exit(p->p_lock);
    511 		break;
    512 
    513 	default:
    514 		return EINVAL;
    515 	}
    516 
    517 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    518 }
    519 
    520 void
    521 ruadd(struct rusage *ru, struct rusage *ru2)
    522 {
    523 	long *ip, *ip2;
    524 	int i;
    525 
    526 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    527 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    528 	if (ru->ru_maxrss < ru2->ru_maxrss)
    529 		ru->ru_maxrss = ru2->ru_maxrss;
    530 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    531 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    532 		*ip++ += *ip2++;
    533 }
    534 
    535 void
    536 rulwps(proc_t *p, struct rusage *ru)
    537 {
    538 	lwp_t *l;
    539 
    540 	KASSERT(mutex_owned(p->p_lock));
    541 
    542 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    543 		ruadd(ru, &l->l_ru);
    544 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    545 		ru->ru_nivcsw += l->l_nivcsw;
    546 	}
    547 }
    548 
    549 /*
    550  * Make a copy of the plimit structure.
    551  * We share these structures copy-on-write after fork,
    552  * and copy when a limit is changed.
    553  *
    554  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    555  * we are copying to change beneath our feet!
    556  */
    557 struct plimit *
    558 lim_copy(struct plimit *lim)
    559 {
    560 	struct plimit *newlim;
    561 	char *corename;
    562 	size_t alen, len;
    563 
    564 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    565 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    566 	newlim->pl_flags = 0;
    567 	newlim->pl_refcnt = 1;
    568 	newlim->pl_sv_limit = NULL;
    569 
    570 	mutex_enter(&lim->pl_lock);
    571 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    572 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    573 
    574 	alen = 0;
    575 	corename = NULL;
    576 	for (;;) {
    577 		if (lim->pl_corename == defcorename) {
    578 			newlim->pl_corename = defcorename;
    579 			break;
    580 		}
    581 		len = strlen(lim->pl_corename) + 1;
    582 		if (len <= alen) {
    583 			newlim->pl_corename = corename;
    584 			memcpy(corename, lim->pl_corename, len);
    585 			corename = NULL;
    586 			break;
    587 		}
    588 		mutex_exit(&lim->pl_lock);
    589 		if (corename != NULL)
    590 			free(corename, M_TEMP);
    591 		alen = len;
    592 		corename = malloc(alen, M_TEMP, M_WAITOK);
    593 		mutex_enter(&lim->pl_lock);
    594 	}
    595 	mutex_exit(&lim->pl_lock);
    596 	if (corename != NULL)
    597 		free(corename, M_TEMP);
    598 	return newlim;
    599 }
    600 
    601 void
    602 lim_addref(struct plimit *lim)
    603 {
    604 	atomic_inc_uint(&lim->pl_refcnt);
    605 }
    606 
    607 /*
    608  * Give a process it's own private plimit structure.
    609  * This will only be shared (in fork) if modifications are to be shared.
    610  */
    611 void
    612 lim_privatise(struct proc *p, bool set_shared)
    613 {
    614 	struct plimit *lim, *newlim;
    615 
    616 	lim = p->p_limit;
    617 	if (lim->pl_flags & PL_WRITEABLE) {
    618 		if (set_shared)
    619 			lim->pl_flags |= PL_SHAREMOD;
    620 		return;
    621 	}
    622 
    623 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    624 		return;
    625 
    626 	newlim = lim_copy(lim);
    627 
    628 	mutex_enter(p->p_lock);
    629 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    630 		/* Someone crept in while we were busy */
    631 		mutex_exit(p->p_lock);
    632 		limfree(newlim);
    633 		if (set_shared)
    634 			p->p_limit->pl_flags |= PL_SHAREMOD;
    635 		return;
    636 	}
    637 
    638 	/*
    639 	 * Since most accesses to p->p_limit aren't locked, we must not
    640 	 * delete the old limit structure yet.
    641 	 */
    642 	newlim->pl_sv_limit = p->p_limit;
    643 	newlim->pl_flags |= PL_WRITEABLE;
    644 	if (set_shared)
    645 		newlim->pl_flags |= PL_SHAREMOD;
    646 	p->p_limit = newlim;
    647 	mutex_exit(p->p_lock);
    648 }
    649 
    650 void
    651 limfree(struct plimit *lim)
    652 {
    653 	struct plimit *sv_lim;
    654 
    655 	do {
    656 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    657 			return;
    658 		if (lim->pl_corename != defcorename)
    659 			free(lim->pl_corename, M_TEMP);
    660 		sv_lim = lim->pl_sv_limit;
    661 		mutex_destroy(&lim->pl_lock);
    662 		pool_cache_put(plimit_cache, lim);
    663 	} while ((lim = sv_lim) != NULL);
    664 }
    665 
    666 struct pstats *
    667 pstatscopy(struct pstats *ps)
    668 {
    669 
    670 	struct pstats *newps;
    671 
    672 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    673 
    674 	memset(&newps->pstat_startzero, 0,
    675 	(unsigned) ((char *)&newps->pstat_endzero -
    676 		    (char *)&newps->pstat_startzero));
    677 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    678 	((char *)&newps->pstat_endcopy -
    679 	 (char *)&newps->pstat_startcopy));
    680 
    681 	return (newps);
    682 
    683 }
    684 
    685 void
    686 pstatsfree(struct pstats *ps)
    687 {
    688 
    689 	pool_cache_put(pstats_cache, ps);
    690 }
    691 
    692 /*
    693  * sysctl interface in five parts
    694  */
    695 
    696 /*
    697  * a routine for sysctl proc subtree helpers that need to pick a valid
    698  * process by pid.
    699  */
    700 static int
    701 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    702 {
    703 	struct proc *ptmp;
    704 	int error = 0;
    705 
    706 	if (pid == PROC_CURPROC)
    707 		ptmp = l->l_proc;
    708 	else if ((ptmp = pfind(pid)) == NULL)
    709 		error = ESRCH;
    710 
    711 	*p2 = ptmp;
    712 	return (error);
    713 }
    714 
    715 /*
    716  * sysctl helper routine for setting a process's specific corefile
    717  * name.  picks the process based on the given pid and checks the
    718  * correctness of the new value.
    719  */
    720 static int
    721 sysctl_proc_corename(SYSCTLFN_ARGS)
    722 {
    723 	struct proc *ptmp;
    724 	struct plimit *lim;
    725 	int error = 0, len;
    726 	char *cname;
    727 	char *ocore;
    728 	char *tmp;
    729 	struct sysctlnode node;
    730 
    731 	/*
    732 	 * is this all correct?
    733 	 */
    734 	if (namelen != 0)
    735 		return (EINVAL);
    736 	if (name[-1] != PROC_PID_CORENAME)
    737 		return (EINVAL);
    738 
    739 	/*
    740 	 * whom are we tweaking?
    741 	 */
    742 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    743 	if (error)
    744 		return (error);
    745 
    746 	/* XXX-elad */
    747 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    748 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    749 	if (error)
    750 		return (error);
    751 
    752 	if (newp == NULL) {
    753 		error = kauth_authorize_process(l->l_cred,
    754 		    KAUTH_PROCESS_CORENAME, ptmp,
    755 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    756 		if (error)
    757 			return (error);
    758 	}
    759 
    760 	/*
    761 	 * let them modify a temporary copy of the core name
    762 	 */
    763 	cname = PNBUF_GET();
    764 	lim = ptmp->p_limit;
    765 	mutex_enter(&lim->pl_lock);
    766 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    767 	mutex_exit(&lim->pl_lock);
    768 
    769 	node = *rnode;
    770 	node.sysctl_data = cname;
    771 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    772 
    773 	/*
    774 	 * if that failed, or they have nothing new to say, or we've
    775 	 * heard it before...
    776 	 */
    777 	if (error || newp == NULL)
    778 		goto done;
    779 	lim = ptmp->p_limit;
    780 	mutex_enter(&lim->pl_lock);
    781 	error = strcmp(cname, lim->pl_corename);
    782 	mutex_exit(&lim->pl_lock);
    783 	if (error == 0)
    784 		/* Unchanged */
    785 		goto done;
    786 
    787 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    788 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
    789 	if (error)
    790 		return (error);
    791 
    792 	/*
    793 	 * no error yet and cname now has the new core name in it.
    794 	 * let's see if it looks acceptable.  it must be either "core"
    795 	 * or end in ".core" or "/core".
    796 	 */
    797 	len = strlen(cname);
    798 	if (len < 4) {
    799 		error = EINVAL;
    800 	} else if (strcmp(cname + len - 4, "core") != 0) {
    801 		error = EINVAL;
    802 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    803 		error = EINVAL;
    804 	}
    805 	if (error != 0) {
    806 		goto done;
    807 	}
    808 
    809 	/*
    810 	 * hmm...looks good.  now...where do we put it?
    811 	 */
    812 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    813 	if (tmp == NULL) {
    814 		error = ENOMEM;
    815 		goto done;
    816 	}
    817 	memcpy(tmp, cname, len + 1);
    818 
    819 	lim_privatise(ptmp, false);
    820 	lim = ptmp->p_limit;
    821 	mutex_enter(&lim->pl_lock);
    822 	ocore = lim->pl_corename;
    823 	lim->pl_corename = tmp;
    824 	mutex_exit(&lim->pl_lock);
    825 	if (ocore != defcorename)
    826 		free(ocore, M_TEMP);
    827 
    828 done:
    829 	PNBUF_PUT(cname);
    830 	return error;
    831 }
    832 
    833 /*
    834  * sysctl helper routine for checking/setting a process's stop flags,
    835  * one for fork and one for exec.
    836  */
    837 static int
    838 sysctl_proc_stop(SYSCTLFN_ARGS)
    839 {
    840 	struct proc *ptmp;
    841 	int i, f, error = 0;
    842 	struct sysctlnode node;
    843 
    844 	if (namelen != 0)
    845 		return (EINVAL);
    846 
    847 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    848 	if (error)
    849 		return (error);
    850 
    851 	/* XXX-elad */
    852 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    853 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    854 	if (error)
    855 		return (error);
    856 
    857 	switch (rnode->sysctl_num) {
    858 	case PROC_PID_STOPFORK:
    859 		f = PS_STOPFORK;
    860 		break;
    861 	case PROC_PID_STOPEXEC:
    862 		f = PS_STOPEXEC;
    863 		break;
    864 	case PROC_PID_STOPEXIT:
    865 		f = PS_STOPEXIT;
    866 		break;
    867 	default:
    868 		return (EINVAL);
    869 	}
    870 
    871 	i = (ptmp->p_flag & f) ? 1 : 0;
    872 	node = *rnode;
    873 	node.sysctl_data = &i;
    874 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    875 	if (error || newp == NULL)
    876 		return (error);
    877 
    878 	mutex_enter(ptmp->p_lock);
    879 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    880 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    881 	if (error)
    882 		return (error);
    883 	if (i)
    884 		ptmp->p_sflag |= f;
    885 	else
    886 		ptmp->p_sflag &= ~f;
    887 	mutex_exit(ptmp->p_lock);
    888 
    889 	return (0);
    890 }
    891 
    892 /*
    893  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    894  */
    895 static int
    896 sysctl_proc_plimit(SYSCTLFN_ARGS)
    897 {
    898 	struct proc *ptmp;
    899 	u_int limitno;
    900 	int which, error = 0;
    901         struct rlimit alim;
    902 	struct sysctlnode node;
    903 
    904 	if (namelen != 0)
    905 		return (EINVAL);
    906 
    907 	which = name[-1];
    908 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    909 	    which != PROC_PID_LIMIT_TYPE_HARD)
    910 		return (EINVAL);
    911 
    912 	limitno = name[-2] - 1;
    913 	if (limitno >= RLIM_NLIMITS)
    914 		return (EINVAL);
    915 
    916 	if (name[-3] != PROC_PID_LIMIT)
    917 		return (EINVAL);
    918 
    919 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    920 	if (error)
    921 		return (error);
    922 
    923 	/* XXX-elad */
    924 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    925 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    926 	if (error)
    927 		return (error);
    928 
    929 	/* Check if we can view limits. */
    930 	if (newp == NULL) {
    931 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    932 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    933 		    KAUTH_ARG(which));
    934 		if (error)
    935 			return (error);
    936 	}
    937 
    938 	node = *rnode;
    939 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    940 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    941 		node.sysctl_data = &alim.rlim_max;
    942 	else
    943 		node.sysctl_data = &alim.rlim_cur;
    944 
    945 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    946 	if (error || newp == NULL)
    947 		return (error);
    948 
    949 	return (dosetrlimit(l, ptmp, limitno, &alim));
    950 }
    951 
    952 /*
    953  * and finally, the actually glue that sticks it to the tree
    954  */
    955 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
    956 {
    957 
    958 	sysctl_createv(clog, 0, NULL, NULL,
    959 		       CTLFLAG_PERMANENT,
    960 		       CTLTYPE_NODE, "proc", NULL,
    961 		       NULL, 0, NULL, 0,
    962 		       CTL_PROC, CTL_EOL);
    963 	sysctl_createv(clog, 0, NULL, NULL,
    964 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
    965 		       CTLTYPE_NODE, "curproc",
    966 		       SYSCTL_DESCR("Per-process settings"),
    967 		       NULL, 0, NULL, 0,
    968 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
    969 
    970 	sysctl_createv(clog, 0, NULL, NULL,
    971 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
    972 		       CTLTYPE_STRING, "corename",
    973 		       SYSCTL_DESCR("Core file name"),
    974 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
    975 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
    976 	sysctl_createv(clog, 0, NULL, NULL,
    977 		       CTLFLAG_PERMANENT,
    978 		       CTLTYPE_NODE, "rlimit",
    979 		       SYSCTL_DESCR("Process limits"),
    980 		       NULL, 0, NULL, 0,
    981 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
    982 
    983 #define create_proc_plimit(s, n) do {					\
    984 	sysctl_createv(clog, 0, NULL, NULL,				\
    985 		       CTLFLAG_PERMANENT,				\
    986 		       CTLTYPE_NODE, s,					\
    987 		       SYSCTL_DESCR("Process " s " limits"),		\
    988 		       NULL, 0, NULL, 0,				\
    989 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    990 		       CTL_EOL);					\
    991 	sysctl_createv(clog, 0, NULL, NULL,				\
    992 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
    993 		       CTLTYPE_QUAD, "soft",				\
    994 		       SYSCTL_DESCR("Process soft " s " limit"),	\
    995 		       sysctl_proc_plimit, 0, NULL, 0,			\
    996 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
    997 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
    998 	sysctl_createv(clog, 0, NULL, NULL,				\
    999 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1000 		       CTLTYPE_QUAD, "hard",				\
   1001 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1002 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1003 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1004 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1005 	} while (0/*CONSTCOND*/)
   1006 
   1007 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1008 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1009 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1010 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1011 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1012 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1013 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1014 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1015 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1016 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1017 
   1018 #undef create_proc_plimit
   1019 
   1020 	sysctl_createv(clog, 0, NULL, NULL,
   1021 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1022 		       CTLTYPE_INT, "stopfork",
   1023 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1024 		       sysctl_proc_stop, 0, NULL, 0,
   1025 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1026 	sysctl_createv(clog, 0, NULL, NULL,
   1027 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1028 		       CTLTYPE_INT, "stopexec",
   1029 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1030 		       sysctl_proc_stop, 0, NULL, 0,
   1031 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1032 	sysctl_createv(clog, 0, NULL, NULL,
   1033 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1034 		       CTLTYPE_INT, "stopexit",
   1035 		       SYSCTL_DESCR("Stop process before completing exit"),
   1036 		       sysctl_proc_stop, 0, NULL, 0,
   1037 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1038 }
   1039 
   1040 void
   1041 uid_init(void)
   1042 {
   1043 
   1044 	/*
   1045 	 * Ensure that uid 0 is always in the user hash table, as
   1046 	 * sbreserve() expects it available from interrupt context.
   1047 	 */
   1048 	(void)uid_find(0);
   1049 }
   1050 
   1051 struct uidinfo *
   1052 uid_find(uid_t uid)
   1053 {
   1054 	struct uidinfo *uip, *uip_first, *newuip;
   1055 	struct uihashhead *uipp;
   1056 
   1057 	uipp = UIHASH(uid);
   1058 	newuip = NULL;
   1059 
   1060 	/*
   1061 	 * To make insertion atomic, abstraction of SLIST will be violated.
   1062 	 */
   1063 	uip_first = uipp->slh_first;
   1064  again:
   1065 	SLIST_FOREACH(uip, uipp, ui_hash) {
   1066 		if (uip->ui_uid != uid)
   1067 			continue;
   1068 		if (newuip != NULL)
   1069 			kmem_free(newuip, sizeof(*newuip));
   1070 		return uip;
   1071 	}
   1072 	if (newuip == NULL)
   1073 		newuip = kmem_zalloc(sizeof(*newuip), KM_SLEEP);
   1074 	newuip->ui_uid = uid;
   1075 
   1076 	/*
   1077 	 * If atomic insert is unsuccessful, another thread might be
   1078 	 * allocated this 'uid', thus full re-check is needed.
   1079 	 */
   1080 	newuip->ui_hash.sle_next = uip_first;
   1081 	membar_producer();
   1082 	uip = atomic_cas_ptr(&uipp->slh_first, uip_first, newuip);
   1083 	if (uip != uip_first) {
   1084 		uip_first = uip;
   1085 		goto again;
   1086 	}
   1087 
   1088 	return newuip;
   1089 }
   1090 
   1091 /*
   1092  * Change the count associated with number of processes
   1093  * a given user is using.
   1094  */
   1095 int
   1096 chgproccnt(uid_t uid, int diff)
   1097 {
   1098 	struct uidinfo *uip;
   1099 	long proccnt;
   1100 
   1101 	uip = uid_find(uid);
   1102 	proccnt = atomic_add_long_nv(&uip->ui_proccnt, diff);
   1103 	KASSERT(proccnt >= 0);
   1104 	return proccnt;
   1105 }
   1106 
   1107 int
   1108 chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
   1109 {
   1110 	rlim_t nsb;
   1111 	const long diff = to - *hiwat;
   1112 
   1113 	nsb = atomic_add_long_nv((long *)&uip->ui_sbsize, diff);
   1114 	if (diff > 0 && nsb > xmax) {
   1115 		atomic_add_long((long *)&uip->ui_sbsize, -diff);
   1116 		return 0;
   1117 	}
   1118 	*hiwat = to;
   1119 	KASSERT(nsb >= 0);
   1120 	return 1;
   1121 }
   1122