kern_resource.c revision 1.147.4.1 1 /* $NetBSD: kern_resource.c,v 1.147.4.1 2009/04/01 00:25:22 snj Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.147.4.1 2009/04/01 00:25:22 snj Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static pool_cache_t plimit_cache;
70 static pool_cache_t pstats_cache;
71
72 void
73 resource_init(void)
74 {
75
76 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
77 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
78 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
79 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
80 }
81
82 /*
83 * Resource controls and accounting.
84 */
85
86 int
87 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
88 register_t *retval)
89 {
90 /* {
91 syscallarg(int) which;
92 syscallarg(id_t) who;
93 } */
94 struct proc *curp = l->l_proc, *p;
95 int low = NZERO + PRIO_MAX + 1;
96 int who = SCARG(uap, who);
97
98 mutex_enter(proc_lock);
99 switch (SCARG(uap, which)) {
100 case PRIO_PROCESS:
101 if (who == 0)
102 p = curp;
103 else
104 p = p_find(who, PFIND_LOCKED);
105 if (p != NULL)
106 low = p->p_nice;
107 break;
108
109 case PRIO_PGRP: {
110 struct pgrp *pg;
111
112 if (who == 0)
113 pg = curp->p_pgrp;
114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
115 break;
116 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
117 if (p->p_nice < low)
118 low = p->p_nice;
119 }
120 break;
121 }
122
123 case PRIO_USER:
124 if (who == 0)
125 who = (int)kauth_cred_geteuid(l->l_cred);
126 PROCLIST_FOREACH(p, &allproc) {
127 if ((p->p_flag & PK_MARKER) != 0)
128 continue;
129 mutex_enter(p->p_lock);
130 if (kauth_cred_geteuid(p->p_cred) ==
131 (uid_t)who && p->p_nice < low)
132 low = p->p_nice;
133 mutex_exit(p->p_lock);
134 }
135 break;
136
137 default:
138 mutex_exit(proc_lock);
139 return (EINVAL);
140 }
141 mutex_exit(proc_lock);
142
143 if (low == NZERO + PRIO_MAX + 1)
144 return (ESRCH);
145 *retval = low - NZERO;
146 return (0);
147 }
148
149 /* ARGSUSED */
150 int
151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
152 register_t *retval)
153 {
154 /* {
155 syscallarg(int) which;
156 syscallarg(id_t) who;
157 syscallarg(int) prio;
158 } */
159 struct proc *curp = l->l_proc, *p;
160 int found = 0, error = 0;
161 int who = SCARG(uap, who);
162
163 mutex_enter(proc_lock);
164 switch (SCARG(uap, which)) {
165 case PRIO_PROCESS:
166 if (who == 0)
167 p = curp;
168 else
169 p = p_find(who, PFIND_LOCKED);
170 if (p != 0) {
171 mutex_enter(p->p_lock);
172 error = donice(l, p, SCARG(uap, prio));
173 mutex_exit(p->p_lock);
174 found++;
175 }
176 break;
177
178 case PRIO_PGRP: {
179 struct pgrp *pg;
180
181 if (who == 0)
182 pg = curp->p_pgrp;
183 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
184 break;
185 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
186 mutex_enter(p->p_lock);
187 error = donice(l, p, SCARG(uap, prio));
188 mutex_exit(p->p_lock);
189 found++;
190 }
191 break;
192 }
193
194 case PRIO_USER:
195 if (who == 0)
196 who = (int)kauth_cred_geteuid(l->l_cred);
197 PROCLIST_FOREACH(p, &allproc) {
198 if ((p->p_flag & PK_MARKER) != 0)
199 continue;
200 mutex_enter(p->p_lock);
201 if (kauth_cred_geteuid(p->p_cred) ==
202 (uid_t)SCARG(uap, who)) {
203 error = donice(l, p, SCARG(uap, prio));
204 found++;
205 }
206 mutex_exit(p->p_lock);
207 }
208 break;
209
210 default:
211 mutex_exit(proc_lock);
212 return EINVAL;
213 }
214 mutex_exit(proc_lock);
215 if (found == 0)
216 return (ESRCH);
217 return (error);
218 }
219
220 /*
221 * Renice a process.
222 *
223 * Call with the target process' credentials locked.
224 */
225 int
226 donice(struct lwp *l, struct proc *chgp, int n)
227 {
228 kauth_cred_t cred = l->l_cred;
229
230 KASSERT(mutex_owned(chgp->p_lock));
231
232 if (n > PRIO_MAX)
233 n = PRIO_MAX;
234 if (n < PRIO_MIN)
235 n = PRIO_MIN;
236 n += NZERO;
237 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
238 KAUTH_ARG(n), NULL, NULL))
239 return (EACCES);
240 sched_nice(chgp, n);
241 return (0);
242 }
243
244 /* ARGSUSED */
245 int
246 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
247 register_t *retval)
248 {
249 /* {
250 syscallarg(int) which;
251 syscallarg(const struct rlimit *) rlp;
252 } */
253 int which = SCARG(uap, which);
254 struct rlimit alim;
255 int error;
256
257 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
258 if (error)
259 return (error);
260 return (dosetrlimit(l, l->l_proc, which, &alim));
261 }
262
263 int
264 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
265 {
266 struct rlimit *alimp;
267 int error;
268
269 if ((u_int)which >= RLIM_NLIMITS)
270 return (EINVAL);
271
272 if (limp->rlim_cur < 0 || limp->rlim_max < 0)
273 return (EINVAL);
274
275 if (limp->rlim_cur > limp->rlim_max) {
276 /*
277 * This is programming error. According to SUSv2, we should
278 * return error in this case.
279 */
280 return (EINVAL);
281 }
282
283 alimp = &p->p_rlimit[which];
284 /* if we don't change the value, no need to limcopy() */
285 if (limp->rlim_cur == alimp->rlim_cur &&
286 limp->rlim_max == alimp->rlim_max)
287 return 0;
288
289 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
290 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
291 if (error)
292 return (error);
293
294 lim_privatise(p, false);
295 /* p->p_limit is now unchangeable */
296 alimp = &p->p_rlimit[which];
297
298 switch (which) {
299
300 case RLIMIT_DATA:
301 if (limp->rlim_cur > maxdmap)
302 limp->rlim_cur = maxdmap;
303 if (limp->rlim_max > maxdmap)
304 limp->rlim_max = maxdmap;
305 break;
306
307 case RLIMIT_STACK:
308 if (limp->rlim_cur > maxsmap)
309 limp->rlim_cur = maxsmap;
310 if (limp->rlim_max > maxsmap)
311 limp->rlim_max = maxsmap;
312
313 /*
314 * Return EINVAL if the new stack size limit is lower than
315 * current usage. Otherwise, the process would get SIGSEGV the
316 * moment it would try to access anything on it's current stack.
317 * This conforms to SUSv2.
318 */
319 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
320 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
321 return (EINVAL);
322 }
323
324 /*
325 * Stack is allocated to the max at exec time with
326 * only "rlim_cur" bytes accessible (In other words,
327 * allocates stack dividing two contiguous regions at
328 * "rlim_cur" bytes boundary).
329 *
330 * Since allocation is done in terms of page, roundup
331 * "rlim_cur" (otherwise, contiguous regions
332 * overlap). If stack limit is going up make more
333 * accessible, if going down make inaccessible.
334 */
335 limp->rlim_cur = round_page(limp->rlim_cur);
336 if (limp->rlim_cur != alimp->rlim_cur) {
337 vaddr_t addr;
338 vsize_t size;
339 vm_prot_t prot;
340
341 if (limp->rlim_cur > alimp->rlim_cur) {
342 prot = VM_PROT_READ | VM_PROT_WRITE;
343 size = limp->rlim_cur - alimp->rlim_cur;
344 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
345 limp->rlim_cur;
346 } else {
347 prot = VM_PROT_NONE;
348 size = alimp->rlim_cur - limp->rlim_cur;
349 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
350 alimp->rlim_cur;
351 }
352 (void) uvm_map_protect(&p->p_vmspace->vm_map,
353 addr, addr+size, prot, false);
354 }
355 break;
356
357 case RLIMIT_NOFILE:
358 if (limp->rlim_cur > maxfiles)
359 limp->rlim_cur = maxfiles;
360 if (limp->rlim_max > maxfiles)
361 limp->rlim_max = maxfiles;
362 break;
363
364 case RLIMIT_NPROC:
365 if (limp->rlim_cur > maxproc)
366 limp->rlim_cur = maxproc;
367 if (limp->rlim_max > maxproc)
368 limp->rlim_max = maxproc;
369 break;
370 }
371
372 mutex_enter(&p->p_limit->pl_lock);
373 *alimp = *limp;
374 mutex_exit(&p->p_limit->pl_lock);
375 return (0);
376 }
377
378 /* ARGSUSED */
379 int
380 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
381 register_t *retval)
382 {
383 /* {
384 syscallarg(int) which;
385 syscallarg(struct rlimit *) rlp;
386 } */
387 struct proc *p = l->l_proc;
388 int which = SCARG(uap, which);
389 struct rlimit rl;
390
391 if ((u_int)which >= RLIM_NLIMITS)
392 return (EINVAL);
393
394 mutex_enter(p->p_lock);
395 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
396 mutex_exit(p->p_lock);
397
398 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
399 }
400
401 /*
402 * Transform the running time and tick information in proc p into user,
403 * system, and interrupt time usage.
404 *
405 * Should be called with p->p_lock held unless called from exit1().
406 */
407 void
408 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
409 struct timeval *ip, struct timeval *rp)
410 {
411 uint64_t u, st, ut, it, tot;
412 struct lwp *l;
413 struct bintime tm;
414 struct timeval tv;
415
416 mutex_spin_enter(&p->p_stmutex);
417 st = p->p_sticks;
418 ut = p->p_uticks;
419 it = p->p_iticks;
420 mutex_spin_exit(&p->p_stmutex);
421
422 tm = p->p_rtime;
423
424 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
425 lwp_lock(l);
426 bintime_add(&tm, &l->l_rtime);
427 if ((l->l_pflag & LP_RUNNING) != 0) {
428 struct bintime diff;
429 /*
430 * Adjust for the current time slice. This is
431 * actually fairly important since the error
432 * here is on the order of a time quantum,
433 * which is much greater than the sampling
434 * error.
435 */
436 binuptime(&diff);
437 bintime_sub(&diff, &l->l_stime);
438 bintime_add(&tm, &diff);
439 }
440 lwp_unlock(l);
441 }
442
443 tot = st + ut + it;
444 bintime2timeval(&tm, &tv);
445 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
446
447 if (tot == 0) {
448 /* No ticks, so can't use to share time out, split 50-50 */
449 st = ut = u / 2;
450 } else {
451 st = (u * st) / tot;
452 ut = (u * ut) / tot;
453 }
454 if (sp != NULL) {
455 sp->tv_sec = st / 1000000;
456 sp->tv_usec = st % 1000000;
457 }
458 if (up != NULL) {
459 up->tv_sec = ut / 1000000;
460 up->tv_usec = ut % 1000000;
461 }
462 if (ip != NULL) {
463 if (it != 0)
464 it = (u * it) / tot;
465 ip->tv_sec = it / 1000000;
466 ip->tv_usec = it % 1000000;
467 }
468 if (rp != NULL) {
469 *rp = tv;
470 }
471 }
472
473 /* ARGSUSED */
474 int
475 sys_getrusage(struct lwp *l, const struct sys_getrusage_args *uap,
476 register_t *retval)
477 {
478 /* {
479 syscallarg(int) who;
480 syscallarg(struct rusage *) rusage;
481 } */
482 struct rusage ru;
483 struct proc *p = l->l_proc;
484
485 switch (SCARG(uap, who)) {
486 case RUSAGE_SELF:
487 mutex_enter(p->p_lock);
488 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
489 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
490 rulwps(p, &ru);
491 mutex_exit(p->p_lock);
492 break;
493
494 case RUSAGE_CHILDREN:
495 mutex_enter(p->p_lock);
496 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
497 mutex_exit(p->p_lock);
498 break;
499
500 default:
501 return EINVAL;
502 }
503
504 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
505 }
506
507 void
508 ruadd(struct rusage *ru, struct rusage *ru2)
509 {
510 long *ip, *ip2;
511 int i;
512
513 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
514 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
515 if (ru->ru_maxrss < ru2->ru_maxrss)
516 ru->ru_maxrss = ru2->ru_maxrss;
517 ip = &ru->ru_first; ip2 = &ru2->ru_first;
518 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
519 *ip++ += *ip2++;
520 }
521
522 void
523 rulwps(proc_t *p, struct rusage *ru)
524 {
525 lwp_t *l;
526
527 KASSERT(mutex_owned(p->p_lock));
528
529 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
530 ruadd(ru, &l->l_ru);
531 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
532 ru->ru_nivcsw += l->l_nivcsw;
533 }
534 }
535
536 /*
537 * Make a copy of the plimit structure.
538 * We share these structures copy-on-write after fork,
539 * and copy when a limit is changed.
540 *
541 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
542 * we are copying to change beneath our feet!
543 */
544 struct plimit *
545 lim_copy(struct plimit *lim)
546 {
547 struct plimit *newlim;
548 char *corename;
549 size_t alen, len;
550
551 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
552 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
553 newlim->pl_flags = 0;
554 newlim->pl_refcnt = 1;
555 newlim->pl_sv_limit = NULL;
556
557 mutex_enter(&lim->pl_lock);
558 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
559 sizeof(struct rlimit) * RLIM_NLIMITS);
560
561 alen = 0;
562 corename = NULL;
563 for (;;) {
564 if (lim->pl_corename == defcorename) {
565 newlim->pl_corename = defcorename;
566 break;
567 }
568 len = strlen(lim->pl_corename) + 1;
569 if (len <= alen) {
570 newlim->pl_corename = corename;
571 memcpy(corename, lim->pl_corename, len);
572 corename = NULL;
573 break;
574 }
575 mutex_exit(&lim->pl_lock);
576 if (corename != NULL)
577 free(corename, M_TEMP);
578 alen = len;
579 corename = malloc(alen, M_TEMP, M_WAITOK);
580 mutex_enter(&lim->pl_lock);
581 }
582 mutex_exit(&lim->pl_lock);
583 if (corename != NULL)
584 free(corename, M_TEMP);
585 return newlim;
586 }
587
588 void
589 lim_addref(struct plimit *lim)
590 {
591 atomic_inc_uint(&lim->pl_refcnt);
592 }
593
594 /*
595 * Give a process it's own private plimit structure.
596 * This will only be shared (in fork) if modifications are to be shared.
597 */
598 void
599 lim_privatise(struct proc *p, bool set_shared)
600 {
601 struct plimit *lim, *newlim;
602
603 lim = p->p_limit;
604 if (lim->pl_flags & PL_WRITEABLE) {
605 if (set_shared)
606 lim->pl_flags |= PL_SHAREMOD;
607 return;
608 }
609
610 if (set_shared && lim->pl_flags & PL_SHAREMOD)
611 return;
612
613 newlim = lim_copy(lim);
614
615 mutex_enter(p->p_lock);
616 if (p->p_limit->pl_flags & PL_WRITEABLE) {
617 /* Someone crept in while we were busy */
618 mutex_exit(p->p_lock);
619 limfree(newlim);
620 if (set_shared)
621 p->p_limit->pl_flags |= PL_SHAREMOD;
622 return;
623 }
624
625 /*
626 * Since most accesses to p->p_limit aren't locked, we must not
627 * delete the old limit structure yet.
628 */
629 newlim->pl_sv_limit = p->p_limit;
630 newlim->pl_flags |= PL_WRITEABLE;
631 if (set_shared)
632 newlim->pl_flags |= PL_SHAREMOD;
633 p->p_limit = newlim;
634 mutex_exit(p->p_lock);
635 }
636
637 void
638 limfree(struct plimit *lim)
639 {
640 struct plimit *sv_lim;
641
642 do {
643 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
644 return;
645 if (lim->pl_corename != defcorename)
646 free(lim->pl_corename, M_TEMP);
647 sv_lim = lim->pl_sv_limit;
648 mutex_destroy(&lim->pl_lock);
649 pool_cache_put(plimit_cache, lim);
650 } while ((lim = sv_lim) != NULL);
651 }
652
653 struct pstats *
654 pstatscopy(struct pstats *ps)
655 {
656
657 struct pstats *newps;
658
659 newps = pool_cache_get(pstats_cache, PR_WAITOK);
660
661 memset(&newps->pstat_startzero, 0,
662 (unsigned) ((char *)&newps->pstat_endzero -
663 (char *)&newps->pstat_startzero));
664 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
665 ((char *)&newps->pstat_endcopy -
666 (char *)&newps->pstat_startcopy));
667
668 return (newps);
669
670 }
671
672 void
673 pstatsfree(struct pstats *ps)
674 {
675
676 pool_cache_put(pstats_cache, ps);
677 }
678
679 /*
680 * sysctl interface in five parts
681 */
682
683 /*
684 * a routine for sysctl proc subtree helpers that need to pick a valid
685 * process by pid.
686 */
687 static int
688 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
689 {
690 struct proc *ptmp;
691 int error = 0;
692
693 if (pid == PROC_CURPROC)
694 ptmp = l->l_proc;
695 else if ((ptmp = pfind(pid)) == NULL)
696 error = ESRCH;
697
698 *p2 = ptmp;
699 return (error);
700 }
701
702 /*
703 * sysctl helper routine for setting a process's specific corefile
704 * name. picks the process based on the given pid and checks the
705 * correctness of the new value.
706 */
707 static int
708 sysctl_proc_corename(SYSCTLFN_ARGS)
709 {
710 struct proc *ptmp;
711 struct plimit *lim;
712 int error = 0, len;
713 char *cname;
714 char *ocore;
715 char *tmp;
716 struct sysctlnode node;
717
718 /*
719 * is this all correct?
720 */
721 if (namelen != 0)
722 return (EINVAL);
723 if (name[-1] != PROC_PID_CORENAME)
724 return (EINVAL);
725
726 /*
727 * whom are we tweaking?
728 */
729 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
730 if (error)
731 return (error);
732
733 /* XXX-elad */
734 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
735 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
736 if (error)
737 return (error);
738
739 if (newp == NULL) {
740 error = kauth_authorize_process(l->l_cred,
741 KAUTH_PROCESS_CORENAME, ptmp,
742 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
743 if (error)
744 return (error);
745 }
746
747 /*
748 * let them modify a temporary copy of the core name
749 */
750 cname = PNBUF_GET();
751 lim = ptmp->p_limit;
752 mutex_enter(&lim->pl_lock);
753 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
754 mutex_exit(&lim->pl_lock);
755
756 node = *rnode;
757 node.sysctl_data = cname;
758 error = sysctl_lookup(SYSCTLFN_CALL(&node));
759
760 /*
761 * if that failed, or they have nothing new to say, or we've
762 * heard it before...
763 */
764 if (error || newp == NULL)
765 goto done;
766 lim = ptmp->p_limit;
767 mutex_enter(&lim->pl_lock);
768 error = strcmp(cname, lim->pl_corename);
769 mutex_exit(&lim->pl_lock);
770 if (error == 0)
771 /* Unchanged */
772 goto done;
773
774 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
775 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
776 if (error)
777 return (error);
778
779 /*
780 * no error yet and cname now has the new core name in it.
781 * let's see if it looks acceptable. it must be either "core"
782 * or end in ".core" or "/core".
783 */
784 len = strlen(cname);
785 if (len < 4) {
786 error = EINVAL;
787 } else if (strcmp(cname + len - 4, "core") != 0) {
788 error = EINVAL;
789 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
790 error = EINVAL;
791 }
792 if (error != 0) {
793 goto done;
794 }
795
796 /*
797 * hmm...looks good. now...where do we put it?
798 */
799 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
800 if (tmp == NULL) {
801 error = ENOMEM;
802 goto done;
803 }
804 memcpy(tmp, cname, len + 1);
805
806 lim_privatise(ptmp, false);
807 lim = ptmp->p_limit;
808 mutex_enter(&lim->pl_lock);
809 ocore = lim->pl_corename;
810 lim->pl_corename = tmp;
811 mutex_exit(&lim->pl_lock);
812 if (ocore != defcorename)
813 free(ocore, M_TEMP);
814
815 done:
816 PNBUF_PUT(cname);
817 return error;
818 }
819
820 /*
821 * sysctl helper routine for checking/setting a process's stop flags,
822 * one for fork and one for exec.
823 */
824 static int
825 sysctl_proc_stop(SYSCTLFN_ARGS)
826 {
827 struct proc *ptmp;
828 int i, f, error = 0;
829 struct sysctlnode node;
830
831 if (namelen != 0)
832 return (EINVAL);
833
834 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
835 if (error)
836 return (error);
837
838 /* XXX-elad */
839 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
840 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
841 if (error)
842 return (error);
843
844 switch (rnode->sysctl_num) {
845 case PROC_PID_STOPFORK:
846 f = PS_STOPFORK;
847 break;
848 case PROC_PID_STOPEXEC:
849 f = PS_STOPEXEC;
850 break;
851 case PROC_PID_STOPEXIT:
852 f = PS_STOPEXIT;
853 break;
854 default:
855 return (EINVAL);
856 }
857
858 i = (ptmp->p_flag & f) ? 1 : 0;
859 node = *rnode;
860 node.sysctl_data = &i;
861 error = sysctl_lookup(SYSCTLFN_CALL(&node));
862 if (error || newp == NULL)
863 return (error);
864
865 mutex_enter(ptmp->p_lock);
866 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
867 ptmp, KAUTH_ARG(f), NULL, NULL);
868 if (!error) {
869 if (i) {
870 ptmp->p_sflag |= f;
871 } else {
872 ptmp->p_sflag &= ~f;
873 }
874 }
875 mutex_exit(ptmp->p_lock);
876
877 return error;
878 }
879
880 /*
881 * sysctl helper routine for a process's rlimits as exposed by sysctl.
882 */
883 static int
884 sysctl_proc_plimit(SYSCTLFN_ARGS)
885 {
886 struct proc *ptmp;
887 u_int limitno;
888 int which, error = 0;
889 struct rlimit alim;
890 struct sysctlnode node;
891
892 if (namelen != 0)
893 return (EINVAL);
894
895 which = name[-1];
896 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
897 which != PROC_PID_LIMIT_TYPE_HARD)
898 return (EINVAL);
899
900 limitno = name[-2] - 1;
901 if (limitno >= RLIM_NLIMITS)
902 return (EINVAL);
903
904 if (name[-3] != PROC_PID_LIMIT)
905 return (EINVAL);
906
907 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
908 if (error)
909 return (error);
910
911 /* XXX-elad */
912 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
913 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
914 if (error)
915 return (error);
916
917 /* Check if we can view limits. */
918 if (newp == NULL) {
919 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
920 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
921 KAUTH_ARG(which));
922 if (error)
923 return (error);
924 }
925
926 node = *rnode;
927 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
928 if (which == PROC_PID_LIMIT_TYPE_HARD)
929 node.sysctl_data = &alim.rlim_max;
930 else
931 node.sysctl_data = &alim.rlim_cur;
932
933 error = sysctl_lookup(SYSCTLFN_CALL(&node));
934 if (error || newp == NULL)
935 return (error);
936
937 return (dosetrlimit(l, ptmp, limitno, &alim));
938 }
939
940 /*
941 * and finally, the actually glue that sticks it to the tree
942 */
943 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
944 {
945
946 sysctl_createv(clog, 0, NULL, NULL,
947 CTLFLAG_PERMANENT,
948 CTLTYPE_NODE, "proc", NULL,
949 NULL, 0, NULL, 0,
950 CTL_PROC, CTL_EOL);
951 sysctl_createv(clog, 0, NULL, NULL,
952 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
953 CTLTYPE_NODE, "curproc",
954 SYSCTL_DESCR("Per-process settings"),
955 NULL, 0, NULL, 0,
956 CTL_PROC, PROC_CURPROC, CTL_EOL);
957
958 sysctl_createv(clog, 0, NULL, NULL,
959 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
960 CTLTYPE_STRING, "corename",
961 SYSCTL_DESCR("Core file name"),
962 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
963 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
964 sysctl_createv(clog, 0, NULL, NULL,
965 CTLFLAG_PERMANENT,
966 CTLTYPE_NODE, "rlimit",
967 SYSCTL_DESCR("Process limits"),
968 NULL, 0, NULL, 0,
969 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
970
971 #define create_proc_plimit(s, n) do { \
972 sysctl_createv(clog, 0, NULL, NULL, \
973 CTLFLAG_PERMANENT, \
974 CTLTYPE_NODE, s, \
975 SYSCTL_DESCR("Process " s " limits"), \
976 NULL, 0, NULL, 0, \
977 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
978 CTL_EOL); \
979 sysctl_createv(clog, 0, NULL, NULL, \
980 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
981 CTLTYPE_QUAD, "soft", \
982 SYSCTL_DESCR("Process soft " s " limit"), \
983 sysctl_proc_plimit, 0, NULL, 0, \
984 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
985 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
986 sysctl_createv(clog, 0, NULL, NULL, \
987 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
988 CTLTYPE_QUAD, "hard", \
989 SYSCTL_DESCR("Process hard " s " limit"), \
990 sysctl_proc_plimit, 0, NULL, 0, \
991 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
992 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
993 } while (0/*CONSTCOND*/)
994
995 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
996 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
997 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
998 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
999 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1000 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1001 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1002 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1003 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1004 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1005 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1006
1007 #undef create_proc_plimit
1008
1009 sysctl_createv(clog, 0, NULL, NULL,
1010 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1011 CTLTYPE_INT, "stopfork",
1012 SYSCTL_DESCR("Stop process at fork(2)"),
1013 sysctl_proc_stop, 0, NULL, 0,
1014 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1015 sysctl_createv(clog, 0, NULL, NULL,
1016 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1017 CTLTYPE_INT, "stopexec",
1018 SYSCTL_DESCR("Stop process at execve(2)"),
1019 sysctl_proc_stop, 0, NULL, 0,
1020 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1021 sysctl_createv(clog, 0, NULL, NULL,
1022 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1023 CTLTYPE_INT, "stopexit",
1024 SYSCTL_DESCR("Stop process before completing exit"),
1025 sysctl_proc_stop, 0, NULL, 0,
1026 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1027 }
1028