kern_resource.c revision 1.149.2.2 1 /* $NetBSD: kern_resource.c,v 1.149.2.2 2009/07/23 23:32:34 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.149.2.2 2009/07/23 23:32:34 jym Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59
60 #include <uvm/uvm_extern.h>
61
62 /*
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
65 */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68
69 static pool_cache_t plimit_cache;
70 static pool_cache_t pstats_cache;
71
72 void
73 resource_init(void)
74 {
75
76 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
77 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
78 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
79 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
80 }
81
82 /*
83 * Resource controls and accounting.
84 */
85
86 int
87 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
88 register_t *retval)
89 {
90 /* {
91 syscallarg(int) which;
92 syscallarg(id_t) who;
93 } */
94 struct proc *curp = l->l_proc, *p;
95 int low = NZERO + PRIO_MAX + 1;
96 int who = SCARG(uap, who);
97
98 mutex_enter(proc_lock);
99 switch (SCARG(uap, which)) {
100 case PRIO_PROCESS:
101 if (who == 0)
102 p = curp;
103 else
104 p = p_find(who, PFIND_LOCKED);
105 if (p != NULL)
106 low = p->p_nice;
107 break;
108
109 case PRIO_PGRP: {
110 struct pgrp *pg;
111
112 if (who == 0)
113 pg = curp->p_pgrp;
114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
115 break;
116 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
117 if (p->p_nice < low)
118 low = p->p_nice;
119 }
120 break;
121 }
122
123 case PRIO_USER:
124 if (who == 0)
125 who = (int)kauth_cred_geteuid(l->l_cred);
126 PROCLIST_FOREACH(p, &allproc) {
127 if ((p->p_flag & PK_MARKER) != 0)
128 continue;
129 mutex_enter(p->p_lock);
130 if (kauth_cred_geteuid(p->p_cred) ==
131 (uid_t)who && p->p_nice < low)
132 low = p->p_nice;
133 mutex_exit(p->p_lock);
134 }
135 break;
136
137 default:
138 mutex_exit(proc_lock);
139 return (EINVAL);
140 }
141 mutex_exit(proc_lock);
142
143 if (low == NZERO + PRIO_MAX + 1)
144 return (ESRCH);
145 *retval = low - NZERO;
146 return (0);
147 }
148
149 /* ARGSUSED */
150 int
151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
152 register_t *retval)
153 {
154 /* {
155 syscallarg(int) which;
156 syscallarg(id_t) who;
157 syscallarg(int) prio;
158 } */
159 struct proc *curp = l->l_proc, *p;
160 int found = 0, error = 0;
161 int who = SCARG(uap, who);
162
163 mutex_enter(proc_lock);
164 switch (SCARG(uap, which)) {
165 case PRIO_PROCESS:
166 if (who == 0)
167 p = curp;
168 else
169 p = p_find(who, PFIND_LOCKED);
170 if (p != 0) {
171 mutex_enter(p->p_lock);
172 error = donice(l, p, SCARG(uap, prio));
173 mutex_exit(p->p_lock);
174 found++;
175 }
176 break;
177
178 case PRIO_PGRP: {
179 struct pgrp *pg;
180
181 if (who == 0)
182 pg = curp->p_pgrp;
183 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
184 break;
185 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
186 mutex_enter(p->p_lock);
187 error = donice(l, p, SCARG(uap, prio));
188 mutex_exit(p->p_lock);
189 found++;
190 }
191 break;
192 }
193
194 case PRIO_USER:
195 if (who == 0)
196 who = (int)kauth_cred_geteuid(l->l_cred);
197 PROCLIST_FOREACH(p, &allproc) {
198 if ((p->p_flag & PK_MARKER) != 0)
199 continue;
200 mutex_enter(p->p_lock);
201 if (kauth_cred_geteuid(p->p_cred) ==
202 (uid_t)SCARG(uap, who)) {
203 error = donice(l, p, SCARG(uap, prio));
204 found++;
205 }
206 mutex_exit(p->p_lock);
207 }
208 break;
209
210 default:
211 mutex_exit(proc_lock);
212 return EINVAL;
213 }
214 mutex_exit(proc_lock);
215 if (found == 0)
216 return (ESRCH);
217 return (error);
218 }
219
220 /*
221 * Renice a process.
222 *
223 * Call with the target process' credentials locked.
224 */
225 int
226 donice(struct lwp *l, struct proc *chgp, int n)
227 {
228 kauth_cred_t cred = l->l_cred;
229
230 KASSERT(mutex_owned(chgp->p_lock));
231
232 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
233 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
234 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
235 return (EPERM);
236
237 if (n > PRIO_MAX)
238 n = PRIO_MAX;
239 if (n < PRIO_MIN)
240 n = PRIO_MIN;
241 n += NZERO;
242 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
243 KAUTH_ARG(n), NULL, NULL))
244 return (EACCES);
245 sched_nice(chgp, n);
246 return (0);
247 }
248
249 /* ARGSUSED */
250 int
251 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
252 register_t *retval)
253 {
254 /* {
255 syscallarg(int) which;
256 syscallarg(const struct rlimit *) rlp;
257 } */
258 int which = SCARG(uap, which);
259 struct rlimit alim;
260 int error;
261
262 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
263 if (error)
264 return (error);
265 return (dosetrlimit(l, l->l_proc, which, &alim));
266 }
267
268 int
269 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
270 {
271 struct rlimit *alimp;
272 int error;
273
274 if ((u_int)which >= RLIM_NLIMITS)
275 return (EINVAL);
276
277 if (limp->rlim_cur > limp->rlim_max) {
278 /*
279 * This is programming error. According to SUSv2, we should
280 * return error in this case.
281 */
282 return (EINVAL);
283 }
284
285 alimp = &p->p_rlimit[which];
286 /* if we don't change the value, no need to limcopy() */
287 if (limp->rlim_cur == alimp->rlim_cur &&
288 limp->rlim_max == alimp->rlim_max)
289 return 0;
290
291 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
292 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
293 if (error)
294 return (error);
295
296 lim_privatise(p, false);
297 /* p->p_limit is now unchangeable */
298 alimp = &p->p_rlimit[which];
299
300 switch (which) {
301
302 case RLIMIT_DATA:
303 if (limp->rlim_cur > maxdmap)
304 limp->rlim_cur = maxdmap;
305 if (limp->rlim_max > maxdmap)
306 limp->rlim_max = maxdmap;
307 break;
308
309 case RLIMIT_STACK:
310 if (limp->rlim_cur > maxsmap)
311 limp->rlim_cur = maxsmap;
312 if (limp->rlim_max > maxsmap)
313 limp->rlim_max = maxsmap;
314
315 /*
316 * Return EINVAL if the new stack size limit is lower than
317 * current usage. Otherwise, the process would get SIGSEGV the
318 * moment it would try to access anything on it's current stack.
319 * This conforms to SUSv2.
320 */
321 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
322 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
323 return (EINVAL);
324 }
325
326 /*
327 * Stack is allocated to the max at exec time with
328 * only "rlim_cur" bytes accessible (In other words,
329 * allocates stack dividing two contiguous regions at
330 * "rlim_cur" bytes boundary).
331 *
332 * Since allocation is done in terms of page, roundup
333 * "rlim_cur" (otherwise, contiguous regions
334 * overlap). If stack limit is going up make more
335 * accessible, if going down make inaccessible.
336 */
337 limp->rlim_cur = round_page(limp->rlim_cur);
338 if (limp->rlim_cur != alimp->rlim_cur) {
339 vaddr_t addr;
340 vsize_t size;
341 vm_prot_t prot;
342
343 if (limp->rlim_cur > alimp->rlim_cur) {
344 prot = VM_PROT_READ | VM_PROT_WRITE;
345 size = limp->rlim_cur - alimp->rlim_cur;
346 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
347 limp->rlim_cur;
348 } else {
349 prot = VM_PROT_NONE;
350 size = alimp->rlim_cur - limp->rlim_cur;
351 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
352 alimp->rlim_cur;
353 }
354 (void) uvm_map_protect(&p->p_vmspace->vm_map,
355 addr, addr+size, prot, false);
356 }
357 break;
358
359 case RLIMIT_NOFILE:
360 if (limp->rlim_cur > maxfiles)
361 limp->rlim_cur = maxfiles;
362 if (limp->rlim_max > maxfiles)
363 limp->rlim_max = maxfiles;
364 break;
365
366 case RLIMIT_NPROC:
367 if (limp->rlim_cur > maxproc)
368 limp->rlim_cur = maxproc;
369 if (limp->rlim_max > maxproc)
370 limp->rlim_max = maxproc;
371 break;
372 }
373
374 mutex_enter(&p->p_limit->pl_lock);
375 *alimp = *limp;
376 mutex_exit(&p->p_limit->pl_lock);
377 return (0);
378 }
379
380 /* ARGSUSED */
381 int
382 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
383 register_t *retval)
384 {
385 /* {
386 syscallarg(int) which;
387 syscallarg(struct rlimit *) rlp;
388 } */
389 struct proc *p = l->l_proc;
390 int which = SCARG(uap, which);
391 struct rlimit rl;
392
393 if ((u_int)which >= RLIM_NLIMITS)
394 return (EINVAL);
395
396 mutex_enter(p->p_lock);
397 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
398 mutex_exit(p->p_lock);
399
400 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
401 }
402
403 /*
404 * Transform the running time and tick information in proc p into user,
405 * system, and interrupt time usage.
406 *
407 * Should be called with p->p_lock held unless called from exit1().
408 */
409 void
410 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
411 struct timeval *ip, struct timeval *rp)
412 {
413 uint64_t u, st, ut, it, tot;
414 struct lwp *l;
415 struct bintime tm;
416 struct timeval tv;
417
418 mutex_spin_enter(&p->p_stmutex);
419 st = p->p_sticks;
420 ut = p->p_uticks;
421 it = p->p_iticks;
422 mutex_spin_exit(&p->p_stmutex);
423
424 tm = p->p_rtime;
425
426 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
427 lwp_lock(l);
428 bintime_add(&tm, &l->l_rtime);
429 if ((l->l_pflag & LP_RUNNING) != 0) {
430 struct bintime diff;
431 /*
432 * Adjust for the current time slice. This is
433 * actually fairly important since the error
434 * here is on the order of a time quantum,
435 * which is much greater than the sampling
436 * error.
437 */
438 binuptime(&diff);
439 bintime_sub(&diff, &l->l_stime);
440 bintime_add(&tm, &diff);
441 }
442 lwp_unlock(l);
443 }
444
445 tot = st + ut + it;
446 bintime2timeval(&tm, &tv);
447 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
448
449 if (tot == 0) {
450 /* No ticks, so can't use to share time out, split 50-50 */
451 st = ut = u / 2;
452 } else {
453 st = (u * st) / tot;
454 ut = (u * ut) / tot;
455 }
456 if (sp != NULL) {
457 sp->tv_sec = st / 1000000;
458 sp->tv_usec = st % 1000000;
459 }
460 if (up != NULL) {
461 up->tv_sec = ut / 1000000;
462 up->tv_usec = ut % 1000000;
463 }
464 if (ip != NULL) {
465 if (it != 0)
466 it = (u * it) / tot;
467 ip->tv_sec = it / 1000000;
468 ip->tv_usec = it % 1000000;
469 }
470 if (rp != NULL) {
471 *rp = tv;
472 }
473 }
474
475 /* ARGSUSED */
476 int
477 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
478 register_t *retval)
479 {
480 /* {
481 syscallarg(int) who;
482 syscallarg(struct rusage *) rusage;
483 } */
484 struct rusage ru;
485 struct proc *p = l->l_proc;
486
487 switch (SCARG(uap, who)) {
488 case RUSAGE_SELF:
489 mutex_enter(p->p_lock);
490 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
491 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
492 rulwps(p, &ru);
493 mutex_exit(p->p_lock);
494 break;
495
496 case RUSAGE_CHILDREN:
497 mutex_enter(p->p_lock);
498 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
499 mutex_exit(p->p_lock);
500 break;
501
502 default:
503 return EINVAL;
504 }
505
506 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
507 }
508
509 void
510 ruadd(struct rusage *ru, struct rusage *ru2)
511 {
512 long *ip, *ip2;
513 int i;
514
515 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
516 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
517 if (ru->ru_maxrss < ru2->ru_maxrss)
518 ru->ru_maxrss = ru2->ru_maxrss;
519 ip = &ru->ru_first; ip2 = &ru2->ru_first;
520 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
521 *ip++ += *ip2++;
522 }
523
524 void
525 rulwps(proc_t *p, struct rusage *ru)
526 {
527 lwp_t *l;
528
529 KASSERT(mutex_owned(p->p_lock));
530
531 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
532 ruadd(ru, &l->l_ru);
533 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
534 ru->ru_nivcsw += l->l_nivcsw;
535 }
536 }
537
538 /*
539 * Make a copy of the plimit structure.
540 * We share these structures copy-on-write after fork,
541 * and copy when a limit is changed.
542 *
543 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
544 * we are copying to change beneath our feet!
545 */
546 struct plimit *
547 lim_copy(struct plimit *lim)
548 {
549 struct plimit *newlim;
550 char *corename;
551 size_t alen, len;
552
553 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
554 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
555 newlim->pl_flags = 0;
556 newlim->pl_refcnt = 1;
557 newlim->pl_sv_limit = NULL;
558
559 mutex_enter(&lim->pl_lock);
560 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
561 sizeof(struct rlimit) * RLIM_NLIMITS);
562
563 alen = 0;
564 corename = NULL;
565 for (;;) {
566 if (lim->pl_corename == defcorename) {
567 newlim->pl_corename = defcorename;
568 break;
569 }
570 len = strlen(lim->pl_corename) + 1;
571 if (len <= alen) {
572 newlim->pl_corename = corename;
573 memcpy(corename, lim->pl_corename, len);
574 corename = NULL;
575 break;
576 }
577 mutex_exit(&lim->pl_lock);
578 if (corename != NULL)
579 free(corename, M_TEMP);
580 alen = len;
581 corename = malloc(alen, M_TEMP, M_WAITOK);
582 mutex_enter(&lim->pl_lock);
583 }
584 mutex_exit(&lim->pl_lock);
585 if (corename != NULL)
586 free(corename, M_TEMP);
587 return newlim;
588 }
589
590 void
591 lim_addref(struct plimit *lim)
592 {
593 atomic_inc_uint(&lim->pl_refcnt);
594 }
595
596 /*
597 * Give a process it's own private plimit structure.
598 * This will only be shared (in fork) if modifications are to be shared.
599 */
600 void
601 lim_privatise(struct proc *p, bool set_shared)
602 {
603 struct plimit *lim, *newlim;
604
605 lim = p->p_limit;
606 if (lim->pl_flags & PL_WRITEABLE) {
607 if (set_shared)
608 lim->pl_flags |= PL_SHAREMOD;
609 return;
610 }
611
612 if (set_shared && lim->pl_flags & PL_SHAREMOD)
613 return;
614
615 newlim = lim_copy(lim);
616
617 mutex_enter(p->p_lock);
618 if (p->p_limit->pl_flags & PL_WRITEABLE) {
619 /* Someone crept in while we were busy */
620 mutex_exit(p->p_lock);
621 limfree(newlim);
622 if (set_shared)
623 p->p_limit->pl_flags |= PL_SHAREMOD;
624 return;
625 }
626
627 /*
628 * Since most accesses to p->p_limit aren't locked, we must not
629 * delete the old limit structure yet.
630 */
631 newlim->pl_sv_limit = p->p_limit;
632 newlim->pl_flags |= PL_WRITEABLE;
633 if (set_shared)
634 newlim->pl_flags |= PL_SHAREMOD;
635 p->p_limit = newlim;
636 mutex_exit(p->p_lock);
637 }
638
639 void
640 limfree(struct plimit *lim)
641 {
642 struct plimit *sv_lim;
643
644 do {
645 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
646 return;
647 if (lim->pl_corename != defcorename)
648 free(lim->pl_corename, M_TEMP);
649 sv_lim = lim->pl_sv_limit;
650 mutex_destroy(&lim->pl_lock);
651 pool_cache_put(plimit_cache, lim);
652 } while ((lim = sv_lim) != NULL);
653 }
654
655 struct pstats *
656 pstatscopy(struct pstats *ps)
657 {
658
659 struct pstats *newps;
660
661 newps = pool_cache_get(pstats_cache, PR_WAITOK);
662
663 memset(&newps->pstat_startzero, 0,
664 (unsigned) ((char *)&newps->pstat_endzero -
665 (char *)&newps->pstat_startzero));
666 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
667 ((char *)&newps->pstat_endcopy -
668 (char *)&newps->pstat_startcopy));
669
670 return (newps);
671
672 }
673
674 void
675 pstatsfree(struct pstats *ps)
676 {
677
678 pool_cache_put(pstats_cache, ps);
679 }
680
681 /*
682 * sysctl interface in five parts
683 */
684
685 /*
686 * a routine for sysctl proc subtree helpers that need to pick a valid
687 * process by pid.
688 */
689 static int
690 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
691 {
692 struct proc *ptmp;
693 int error = 0;
694
695 if (pid == PROC_CURPROC)
696 ptmp = l->l_proc;
697 else if ((ptmp = pfind(pid)) == NULL)
698 error = ESRCH;
699
700 *p2 = ptmp;
701 return (error);
702 }
703
704 /*
705 * sysctl helper routine for setting a process's specific corefile
706 * name. picks the process based on the given pid and checks the
707 * correctness of the new value.
708 */
709 static int
710 sysctl_proc_corename(SYSCTLFN_ARGS)
711 {
712 struct proc *ptmp;
713 struct plimit *lim;
714 int error = 0, len;
715 char *cname;
716 char *ocore;
717 char *tmp;
718 struct sysctlnode node;
719
720 /*
721 * is this all correct?
722 */
723 if (namelen != 0)
724 return (EINVAL);
725 if (name[-1] != PROC_PID_CORENAME)
726 return (EINVAL);
727
728 /*
729 * whom are we tweaking?
730 */
731 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
732 if (error)
733 return (error);
734
735 /* XXX-elad */
736 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
737 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
738 if (error)
739 return (error);
740
741 if (newp == NULL) {
742 error = kauth_authorize_process(l->l_cred,
743 KAUTH_PROCESS_CORENAME, ptmp,
744 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
745 if (error)
746 return (error);
747 }
748
749 /*
750 * let them modify a temporary copy of the core name
751 */
752 cname = PNBUF_GET();
753 lim = ptmp->p_limit;
754 mutex_enter(&lim->pl_lock);
755 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
756 mutex_exit(&lim->pl_lock);
757
758 node = *rnode;
759 node.sysctl_data = cname;
760 error = sysctl_lookup(SYSCTLFN_CALL(&node));
761
762 /*
763 * if that failed, or they have nothing new to say, or we've
764 * heard it before...
765 */
766 if (error || newp == NULL)
767 goto done;
768 lim = ptmp->p_limit;
769 mutex_enter(&lim->pl_lock);
770 error = strcmp(cname, lim->pl_corename);
771 mutex_exit(&lim->pl_lock);
772 if (error == 0)
773 /* Unchanged */
774 goto done;
775
776 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
777 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
778 if (error)
779 return (error);
780
781 /*
782 * no error yet and cname now has the new core name in it.
783 * let's see if it looks acceptable. it must be either "core"
784 * or end in ".core" or "/core".
785 */
786 len = strlen(cname);
787 if (len < 4) {
788 error = EINVAL;
789 } else if (strcmp(cname + len - 4, "core") != 0) {
790 error = EINVAL;
791 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
792 error = EINVAL;
793 }
794 if (error != 0) {
795 goto done;
796 }
797
798 /*
799 * hmm...looks good. now...where do we put it?
800 */
801 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
802 if (tmp == NULL) {
803 error = ENOMEM;
804 goto done;
805 }
806 memcpy(tmp, cname, len + 1);
807
808 lim_privatise(ptmp, false);
809 lim = ptmp->p_limit;
810 mutex_enter(&lim->pl_lock);
811 ocore = lim->pl_corename;
812 lim->pl_corename = tmp;
813 mutex_exit(&lim->pl_lock);
814 if (ocore != defcorename)
815 free(ocore, M_TEMP);
816
817 done:
818 PNBUF_PUT(cname);
819 return error;
820 }
821
822 /*
823 * sysctl helper routine for checking/setting a process's stop flags,
824 * one for fork and one for exec.
825 */
826 static int
827 sysctl_proc_stop(SYSCTLFN_ARGS)
828 {
829 struct proc *ptmp;
830 int i, f, error = 0;
831 struct sysctlnode node;
832
833 if (namelen != 0)
834 return (EINVAL);
835
836 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
837 if (error)
838 return (error);
839
840 /* XXX-elad */
841 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
842 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
843 if (error)
844 return (error);
845
846 switch (rnode->sysctl_num) {
847 case PROC_PID_STOPFORK:
848 f = PS_STOPFORK;
849 break;
850 case PROC_PID_STOPEXEC:
851 f = PS_STOPEXEC;
852 break;
853 case PROC_PID_STOPEXIT:
854 f = PS_STOPEXIT;
855 break;
856 default:
857 return (EINVAL);
858 }
859
860 i = (ptmp->p_flag & f) ? 1 : 0;
861 node = *rnode;
862 node.sysctl_data = &i;
863 error = sysctl_lookup(SYSCTLFN_CALL(&node));
864 if (error || newp == NULL)
865 return (error);
866
867 mutex_enter(ptmp->p_lock);
868 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
869 ptmp, KAUTH_ARG(f), NULL, NULL);
870 if (!error) {
871 if (i) {
872 ptmp->p_sflag |= f;
873 } else {
874 ptmp->p_sflag &= ~f;
875 }
876 }
877 mutex_exit(ptmp->p_lock);
878
879 return error;
880 }
881
882 /*
883 * sysctl helper routine for a process's rlimits as exposed by sysctl.
884 */
885 static int
886 sysctl_proc_plimit(SYSCTLFN_ARGS)
887 {
888 struct proc *ptmp;
889 u_int limitno;
890 int which, error = 0;
891 struct rlimit alim;
892 struct sysctlnode node;
893
894 if (namelen != 0)
895 return (EINVAL);
896
897 which = name[-1];
898 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
899 which != PROC_PID_LIMIT_TYPE_HARD)
900 return (EINVAL);
901
902 limitno = name[-2] - 1;
903 if (limitno >= RLIM_NLIMITS)
904 return (EINVAL);
905
906 if (name[-3] != PROC_PID_LIMIT)
907 return (EINVAL);
908
909 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
910 if (error)
911 return (error);
912
913 /* XXX-elad */
914 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
915 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
916 if (error)
917 return (error);
918
919 /* Check if we can view limits. */
920 if (newp == NULL) {
921 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
922 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
923 KAUTH_ARG(which));
924 if (error)
925 return (error);
926 }
927
928 node = *rnode;
929 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
930 if (which == PROC_PID_LIMIT_TYPE_HARD)
931 node.sysctl_data = &alim.rlim_max;
932 else
933 node.sysctl_data = &alim.rlim_cur;
934
935 error = sysctl_lookup(SYSCTLFN_CALL(&node));
936 if (error || newp == NULL)
937 return (error);
938
939 return (dosetrlimit(l, ptmp, limitno, &alim));
940 }
941
942 /*
943 * and finally, the actually glue that sticks it to the tree
944 */
945 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
946 {
947
948 sysctl_createv(clog, 0, NULL, NULL,
949 CTLFLAG_PERMANENT,
950 CTLTYPE_NODE, "proc", NULL,
951 NULL, 0, NULL, 0,
952 CTL_PROC, CTL_EOL);
953 sysctl_createv(clog, 0, NULL, NULL,
954 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
955 CTLTYPE_NODE, "curproc",
956 SYSCTL_DESCR("Per-process settings"),
957 NULL, 0, NULL, 0,
958 CTL_PROC, PROC_CURPROC, CTL_EOL);
959
960 sysctl_createv(clog, 0, NULL, NULL,
961 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
962 CTLTYPE_STRING, "corename",
963 SYSCTL_DESCR("Core file name"),
964 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
965 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT,
968 CTLTYPE_NODE, "rlimit",
969 SYSCTL_DESCR("Process limits"),
970 NULL, 0, NULL, 0,
971 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
972
973 #define create_proc_plimit(s, n) do { \
974 sysctl_createv(clog, 0, NULL, NULL, \
975 CTLFLAG_PERMANENT, \
976 CTLTYPE_NODE, s, \
977 SYSCTL_DESCR("Process " s " limits"), \
978 NULL, 0, NULL, 0, \
979 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
980 CTL_EOL); \
981 sysctl_createv(clog, 0, NULL, NULL, \
982 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
983 CTLTYPE_QUAD, "soft", \
984 SYSCTL_DESCR("Process soft " s " limit"), \
985 sysctl_proc_plimit, 0, NULL, 0, \
986 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
987 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
988 sysctl_createv(clog, 0, NULL, NULL, \
989 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
990 CTLTYPE_QUAD, "hard", \
991 SYSCTL_DESCR("Process hard " s " limit"), \
992 sysctl_proc_plimit, 0, NULL, 0, \
993 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
994 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
995 } while (0/*CONSTCOND*/)
996
997 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
998 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
999 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1000 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1001 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1002 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1003 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1004 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1005 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1006 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1007 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1008
1009 #undef create_proc_plimit
1010
1011 sysctl_createv(clog, 0, NULL, NULL,
1012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1013 CTLTYPE_INT, "stopfork",
1014 SYSCTL_DESCR("Stop process at fork(2)"),
1015 sysctl_proc_stop, 0, NULL, 0,
1016 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1017 sysctl_createv(clog, 0, NULL, NULL,
1018 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1019 CTLTYPE_INT, "stopexec",
1020 SYSCTL_DESCR("Stop process at execve(2)"),
1021 sysctl_proc_stop, 0, NULL, 0,
1022 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1023 sysctl_createv(clog, 0, NULL, NULL,
1024 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1025 CTLTYPE_INT, "stopexit",
1026 SYSCTL_DESCR("Stop process before completing exit"),
1027 sysctl_proc_stop, 0, NULL, 0,
1028 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1029 }
1030