Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.156
      1 /*	$NetBSD: kern_resource.c,v 1.156 2010/05/26 23:53:21 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.156 2010/05/26 23:53:21 pooka Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/atomic.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 /*
     63  * Maximum process data and stack limits.
     64  * They are variables so they are patchable.
     65  */
     66 rlim_t maxdmap = MAXDSIZ;
     67 rlim_t maxsmap = MAXSSIZ;
     68 
     69 static pool_cache_t	plimit_cache;
     70 static pool_cache_t	pstats_cache;
     71 
     72 static kauth_listener_t	resource_listener;
     73 
     74 static void sysctl_proc_setup(void);
     75 
     76 static int
     77 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     78     void *arg0, void *arg1, void *arg2, void *arg3)
     79 {
     80 	struct proc *p;
     81 	int result;
     82 
     83 	result = KAUTH_RESULT_DEFER;
     84 	p = arg0;
     85 
     86 	switch (action) {
     87 	case KAUTH_PROCESS_NICE:
     88 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     89                     kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     90                         break;
     91                 }
     92 
     93                 if ((u_long)arg1 >= p->p_nice)
     94                         result = KAUTH_RESULT_ALLOW;
     95 
     96 		break;
     97 
     98 	case KAUTH_PROCESS_RLIMIT: {
     99 		enum kauth_process_req req;
    100 
    101 		req = (enum kauth_process_req)(unsigned long)arg1;
    102 
    103 		switch (req) {
    104 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    105 			result = KAUTH_RESULT_ALLOW;
    106 			break;
    107 
    108 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    109 			struct rlimit *new_rlimit;
    110 			u_long which;
    111 
    112 			if ((p != curlwp->l_proc) &&
    113 			    (proc_uidmatch(cred, p->p_cred) != 0))
    114 				break;
    115 
    116 			new_rlimit = arg2;
    117 			which = (u_long)arg3;
    118 
    119 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    120 				result = KAUTH_RESULT_ALLOW;
    121 
    122 			break;
    123 			}
    124 
    125 		default:
    126 			break;
    127 		}
    128 
    129 		break;
    130 	}
    131 
    132 	default:
    133 		break;
    134 	}
    135 
    136 	return result;
    137 }
    138 
    139 void
    140 resource_init(void)
    141 {
    142 
    143 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    144 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    145 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    146 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    147 
    148 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    149 	    resource_listener_cb, NULL);
    150 
    151 	sysctl_proc_setup();
    152 }
    153 
    154 /*
    155  * Resource controls and accounting.
    156  */
    157 
    158 int
    159 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    160     register_t *retval)
    161 {
    162 	/* {
    163 		syscallarg(int) which;
    164 		syscallarg(id_t) who;
    165 	} */
    166 	struct proc *curp = l->l_proc, *p;
    167 	int low = NZERO + PRIO_MAX + 1;
    168 	int who = SCARG(uap, who);
    169 
    170 	mutex_enter(proc_lock);
    171 	switch (SCARG(uap, which)) {
    172 	case PRIO_PROCESS:
    173 		if (who == 0)
    174 			p = curp;
    175 		else
    176 			p = p_find(who, PFIND_LOCKED);
    177 		if (p != NULL)
    178 			low = p->p_nice;
    179 		break;
    180 
    181 	case PRIO_PGRP: {
    182 		struct pgrp *pg;
    183 
    184 		if (who == 0)
    185 			pg = curp->p_pgrp;
    186 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    187 			break;
    188 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    189 			if (p->p_nice < low)
    190 				low = p->p_nice;
    191 		}
    192 		break;
    193 	}
    194 
    195 	case PRIO_USER:
    196 		if (who == 0)
    197 			who = (int)kauth_cred_geteuid(l->l_cred);
    198 		PROCLIST_FOREACH(p, &allproc) {
    199 			mutex_enter(p->p_lock);
    200 			if (kauth_cred_geteuid(p->p_cred) ==
    201 			    (uid_t)who && p->p_nice < low)
    202 				low = p->p_nice;
    203 			mutex_exit(p->p_lock);
    204 		}
    205 		break;
    206 
    207 	default:
    208 		mutex_exit(proc_lock);
    209 		return (EINVAL);
    210 	}
    211 	mutex_exit(proc_lock);
    212 
    213 	if (low == NZERO + PRIO_MAX + 1)
    214 		return (ESRCH);
    215 	*retval = low - NZERO;
    216 	return (0);
    217 }
    218 
    219 /* ARGSUSED */
    220 int
    221 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    222     register_t *retval)
    223 {
    224 	/* {
    225 		syscallarg(int) which;
    226 		syscallarg(id_t) who;
    227 		syscallarg(int) prio;
    228 	} */
    229 	struct proc *curp = l->l_proc, *p;
    230 	int found = 0, error = 0;
    231 	int who = SCARG(uap, who);
    232 
    233 	mutex_enter(proc_lock);
    234 	switch (SCARG(uap, which)) {
    235 	case PRIO_PROCESS:
    236 		if (who == 0)
    237 			p = curp;
    238 		else
    239 			p = p_find(who, PFIND_LOCKED);
    240 		if (p != 0) {
    241 			mutex_enter(p->p_lock);
    242 			error = donice(l, p, SCARG(uap, prio));
    243 			mutex_exit(p->p_lock);
    244 			found++;
    245 		}
    246 		break;
    247 
    248 	case PRIO_PGRP: {
    249 		struct pgrp *pg;
    250 
    251 		if (who == 0)
    252 			pg = curp->p_pgrp;
    253 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
    254 			break;
    255 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    256 			mutex_enter(p->p_lock);
    257 			error = donice(l, p, SCARG(uap, prio));
    258 			mutex_exit(p->p_lock);
    259 			found++;
    260 		}
    261 		break;
    262 	}
    263 
    264 	case PRIO_USER:
    265 		if (who == 0)
    266 			who = (int)kauth_cred_geteuid(l->l_cred);
    267 		PROCLIST_FOREACH(p, &allproc) {
    268 			mutex_enter(p->p_lock);
    269 			if (kauth_cred_geteuid(p->p_cred) ==
    270 			    (uid_t)SCARG(uap, who)) {
    271 				error = donice(l, p, SCARG(uap, prio));
    272 				found++;
    273 			}
    274 			mutex_exit(p->p_lock);
    275 		}
    276 		break;
    277 
    278 	default:
    279 		mutex_exit(proc_lock);
    280 		return EINVAL;
    281 	}
    282 	mutex_exit(proc_lock);
    283 	if (found == 0)
    284 		return (ESRCH);
    285 	return (error);
    286 }
    287 
    288 /*
    289  * Renice a process.
    290  *
    291  * Call with the target process' credentials locked.
    292  */
    293 int
    294 donice(struct lwp *l, struct proc *chgp, int n)
    295 {
    296 	kauth_cred_t cred = l->l_cred;
    297 
    298 	KASSERT(mutex_owned(chgp->p_lock));
    299 
    300 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    301 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    302 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    303 		return (EPERM);
    304 
    305 	if (n > PRIO_MAX)
    306 		n = PRIO_MAX;
    307 	if (n < PRIO_MIN)
    308 		n = PRIO_MIN;
    309 	n += NZERO;
    310 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    311 	    KAUTH_ARG(n), NULL, NULL))
    312 		return (EACCES);
    313 	sched_nice(chgp, n);
    314 	return (0);
    315 }
    316 
    317 /* ARGSUSED */
    318 int
    319 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    320     register_t *retval)
    321 {
    322 	/* {
    323 		syscallarg(int) which;
    324 		syscallarg(const struct rlimit *) rlp;
    325 	} */
    326 	int which = SCARG(uap, which);
    327 	struct rlimit alim;
    328 	int error;
    329 
    330 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    331 	if (error)
    332 		return (error);
    333 	return (dosetrlimit(l, l->l_proc, which, &alim));
    334 }
    335 
    336 int
    337 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    338 {
    339 	struct rlimit *alimp;
    340 	int error;
    341 
    342 	if ((u_int)which >= RLIM_NLIMITS)
    343 		return (EINVAL);
    344 
    345 	if (limp->rlim_cur > limp->rlim_max) {
    346 		/*
    347 		 * This is programming error. According to SUSv2, we should
    348 		 * return error in this case.
    349 		 */
    350 		return (EINVAL);
    351 	}
    352 
    353 	alimp = &p->p_rlimit[which];
    354 	/* if we don't change the value, no need to limcopy() */
    355 	if (limp->rlim_cur == alimp->rlim_cur &&
    356 	    limp->rlim_max == alimp->rlim_max)
    357 		return 0;
    358 
    359 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    360 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    361 	if (error)
    362 		return (error);
    363 
    364 	lim_privatise(p, false);
    365 	/* p->p_limit is now unchangeable */
    366 	alimp = &p->p_rlimit[which];
    367 
    368 	switch (which) {
    369 
    370 	case RLIMIT_DATA:
    371 		if (limp->rlim_cur > maxdmap)
    372 			limp->rlim_cur = maxdmap;
    373 		if (limp->rlim_max > maxdmap)
    374 			limp->rlim_max = maxdmap;
    375 		break;
    376 
    377 	case RLIMIT_STACK:
    378 		if (limp->rlim_cur > maxsmap)
    379 			limp->rlim_cur = maxsmap;
    380 		if (limp->rlim_max > maxsmap)
    381 			limp->rlim_max = maxsmap;
    382 
    383 		/*
    384 		 * Return EINVAL if the new stack size limit is lower than
    385 		 * current usage. Otherwise, the process would get SIGSEGV the
    386 		 * moment it would try to access anything on it's current stack.
    387 		 * This conforms to SUSv2.
    388 		 */
    389 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    390 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    391 			return (EINVAL);
    392 		}
    393 
    394 		/*
    395 		 * Stack is allocated to the max at exec time with
    396 		 * only "rlim_cur" bytes accessible (In other words,
    397 		 * allocates stack dividing two contiguous regions at
    398 		 * "rlim_cur" bytes boundary).
    399 		 *
    400 		 * Since allocation is done in terms of page, roundup
    401 		 * "rlim_cur" (otherwise, contiguous regions
    402 		 * overlap).  If stack limit is going up make more
    403 		 * accessible, if going down make inaccessible.
    404 		 */
    405 		limp->rlim_cur = round_page(limp->rlim_cur);
    406 		if (limp->rlim_cur != alimp->rlim_cur) {
    407 			vaddr_t addr;
    408 			vsize_t size;
    409 			vm_prot_t prot;
    410 
    411 			if (limp->rlim_cur > alimp->rlim_cur) {
    412 				prot = VM_PROT_READ | VM_PROT_WRITE;
    413 				size = limp->rlim_cur - alimp->rlim_cur;
    414 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    415 				    limp->rlim_cur;
    416 			} else {
    417 				prot = VM_PROT_NONE;
    418 				size = alimp->rlim_cur - limp->rlim_cur;
    419 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    420 				     alimp->rlim_cur;
    421 			}
    422 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    423 			    addr, addr+size, prot, false);
    424 		}
    425 		break;
    426 
    427 	case RLIMIT_NOFILE:
    428 		if (limp->rlim_cur > maxfiles)
    429 			limp->rlim_cur = maxfiles;
    430 		if (limp->rlim_max > maxfiles)
    431 			limp->rlim_max = maxfiles;
    432 		break;
    433 
    434 	case RLIMIT_NPROC:
    435 		if (limp->rlim_cur > maxproc)
    436 			limp->rlim_cur = maxproc;
    437 		if (limp->rlim_max > maxproc)
    438 			limp->rlim_max = maxproc;
    439 		break;
    440 	}
    441 
    442 	mutex_enter(&p->p_limit->pl_lock);
    443 	*alimp = *limp;
    444 	mutex_exit(&p->p_limit->pl_lock);
    445 	return (0);
    446 }
    447 
    448 /* ARGSUSED */
    449 int
    450 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    451     register_t *retval)
    452 {
    453 	/* {
    454 		syscallarg(int) which;
    455 		syscallarg(struct rlimit *) rlp;
    456 	} */
    457 	struct proc *p = l->l_proc;
    458 	int which = SCARG(uap, which);
    459 	struct rlimit rl;
    460 
    461 	if ((u_int)which >= RLIM_NLIMITS)
    462 		return (EINVAL);
    463 
    464 	mutex_enter(p->p_lock);
    465 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    466 	mutex_exit(p->p_lock);
    467 
    468 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    469 }
    470 
    471 /*
    472  * Transform the running time and tick information in proc p into user,
    473  * system, and interrupt time usage.
    474  *
    475  * Should be called with p->p_lock held unless called from exit1().
    476  */
    477 void
    478 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    479     struct timeval *ip, struct timeval *rp)
    480 {
    481 	uint64_t u, st, ut, it, tot;
    482 	struct lwp *l;
    483 	struct bintime tm;
    484 	struct timeval tv;
    485 
    486 	mutex_spin_enter(&p->p_stmutex);
    487 	st = p->p_sticks;
    488 	ut = p->p_uticks;
    489 	it = p->p_iticks;
    490 	mutex_spin_exit(&p->p_stmutex);
    491 
    492 	tm = p->p_rtime;
    493 
    494 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    495 		lwp_lock(l);
    496 		bintime_add(&tm, &l->l_rtime);
    497 		if ((l->l_pflag & LP_RUNNING) != 0) {
    498 			struct bintime diff;
    499 			/*
    500 			 * Adjust for the current time slice.  This is
    501 			 * actually fairly important since the error
    502 			 * here is on the order of a time quantum,
    503 			 * which is much greater than the sampling
    504 			 * error.
    505 			 */
    506 			binuptime(&diff);
    507 			bintime_sub(&diff, &l->l_stime);
    508 			bintime_add(&tm, &diff);
    509 		}
    510 		lwp_unlock(l);
    511 	}
    512 
    513 	tot = st + ut + it;
    514 	bintime2timeval(&tm, &tv);
    515 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    516 
    517 	if (tot == 0) {
    518 		/* No ticks, so can't use to share time out, split 50-50 */
    519 		st = ut = u / 2;
    520 	} else {
    521 		st = (u * st) / tot;
    522 		ut = (u * ut) / tot;
    523 	}
    524 	if (sp != NULL) {
    525 		sp->tv_sec = st / 1000000;
    526 		sp->tv_usec = st % 1000000;
    527 	}
    528 	if (up != NULL) {
    529 		up->tv_sec = ut / 1000000;
    530 		up->tv_usec = ut % 1000000;
    531 	}
    532 	if (ip != NULL) {
    533 		if (it != 0)
    534 			it = (u * it) / tot;
    535 		ip->tv_sec = it / 1000000;
    536 		ip->tv_usec = it % 1000000;
    537 	}
    538 	if (rp != NULL) {
    539 		*rp = tv;
    540 	}
    541 }
    542 
    543 /* ARGSUSED */
    544 int
    545 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    546     register_t *retval)
    547 {
    548 	/* {
    549 		syscallarg(int) who;
    550 		syscallarg(struct rusage *) rusage;
    551 	} */
    552 	struct rusage ru;
    553 	struct proc *p = l->l_proc;
    554 
    555 	switch (SCARG(uap, who)) {
    556 	case RUSAGE_SELF:
    557 		mutex_enter(p->p_lock);
    558 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    559 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    560 		rulwps(p, &ru);
    561 		mutex_exit(p->p_lock);
    562 		break;
    563 
    564 	case RUSAGE_CHILDREN:
    565 		mutex_enter(p->p_lock);
    566 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    567 		mutex_exit(p->p_lock);
    568 		break;
    569 
    570 	default:
    571 		return EINVAL;
    572 	}
    573 
    574 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    575 }
    576 
    577 void
    578 ruadd(struct rusage *ru, struct rusage *ru2)
    579 {
    580 	long *ip, *ip2;
    581 	int i;
    582 
    583 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    584 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    585 	if (ru->ru_maxrss < ru2->ru_maxrss)
    586 		ru->ru_maxrss = ru2->ru_maxrss;
    587 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    588 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    589 		*ip++ += *ip2++;
    590 }
    591 
    592 void
    593 rulwps(proc_t *p, struct rusage *ru)
    594 {
    595 	lwp_t *l;
    596 
    597 	KASSERT(mutex_owned(p->p_lock));
    598 
    599 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    600 		ruadd(ru, &l->l_ru);
    601 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    602 		ru->ru_nivcsw += l->l_nivcsw;
    603 	}
    604 }
    605 
    606 /*
    607  * Make a copy of the plimit structure.
    608  * We share these structures copy-on-write after fork,
    609  * and copy when a limit is changed.
    610  *
    611  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
    612  * we are copying to change beneath our feet!
    613  */
    614 struct plimit *
    615 lim_copy(struct plimit *lim)
    616 {
    617 	struct plimit *newlim;
    618 	char *corename;
    619 	size_t alen, len;
    620 
    621 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    622 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    623 	newlim->pl_flags = 0;
    624 	newlim->pl_refcnt = 1;
    625 	newlim->pl_sv_limit = NULL;
    626 
    627 	mutex_enter(&lim->pl_lock);
    628 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    629 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    630 
    631 	alen = 0;
    632 	corename = NULL;
    633 	for (;;) {
    634 		if (lim->pl_corename == defcorename) {
    635 			newlim->pl_corename = defcorename;
    636 			break;
    637 		}
    638 		len = strlen(lim->pl_corename) + 1;
    639 		if (len <= alen) {
    640 			newlim->pl_corename = corename;
    641 			memcpy(corename, lim->pl_corename, len);
    642 			corename = NULL;
    643 			break;
    644 		}
    645 		mutex_exit(&lim->pl_lock);
    646 		if (corename != NULL)
    647 			free(corename, M_TEMP);
    648 		alen = len;
    649 		corename = malloc(alen, M_TEMP, M_WAITOK);
    650 		mutex_enter(&lim->pl_lock);
    651 	}
    652 	mutex_exit(&lim->pl_lock);
    653 	if (corename != NULL)
    654 		free(corename, M_TEMP);
    655 	return newlim;
    656 }
    657 
    658 void
    659 lim_addref(struct plimit *lim)
    660 {
    661 	atomic_inc_uint(&lim->pl_refcnt);
    662 }
    663 
    664 /*
    665  * Give a process it's own private plimit structure.
    666  * This will only be shared (in fork) if modifications are to be shared.
    667  */
    668 void
    669 lim_privatise(struct proc *p, bool set_shared)
    670 {
    671 	struct plimit *lim, *newlim;
    672 
    673 	lim = p->p_limit;
    674 	if (lim->pl_flags & PL_WRITEABLE) {
    675 		if (set_shared)
    676 			lim->pl_flags |= PL_SHAREMOD;
    677 		return;
    678 	}
    679 
    680 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
    681 		return;
    682 
    683 	newlim = lim_copy(lim);
    684 
    685 	mutex_enter(p->p_lock);
    686 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
    687 		/* Someone crept in while we were busy */
    688 		mutex_exit(p->p_lock);
    689 		limfree(newlim);
    690 		if (set_shared)
    691 			p->p_limit->pl_flags |= PL_SHAREMOD;
    692 		return;
    693 	}
    694 
    695 	/*
    696 	 * Since most accesses to p->p_limit aren't locked, we must not
    697 	 * delete the old limit structure yet.
    698 	 */
    699 	newlim->pl_sv_limit = p->p_limit;
    700 	newlim->pl_flags |= PL_WRITEABLE;
    701 	if (set_shared)
    702 		newlim->pl_flags |= PL_SHAREMOD;
    703 	p->p_limit = newlim;
    704 	mutex_exit(p->p_lock);
    705 }
    706 
    707 void
    708 limfree(struct plimit *lim)
    709 {
    710 	struct plimit *sv_lim;
    711 
    712 	do {
    713 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
    714 			return;
    715 		if (lim->pl_corename != defcorename)
    716 			free(lim->pl_corename, M_TEMP);
    717 		sv_lim = lim->pl_sv_limit;
    718 		mutex_destroy(&lim->pl_lock);
    719 		pool_cache_put(plimit_cache, lim);
    720 	} while ((lim = sv_lim) != NULL);
    721 }
    722 
    723 struct pstats *
    724 pstatscopy(struct pstats *ps)
    725 {
    726 
    727 	struct pstats *newps;
    728 
    729 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    730 
    731 	memset(&newps->pstat_startzero, 0,
    732 	(unsigned) ((char *)&newps->pstat_endzero -
    733 		    (char *)&newps->pstat_startzero));
    734 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    735 	((char *)&newps->pstat_endcopy -
    736 	 (char *)&newps->pstat_startcopy));
    737 
    738 	return (newps);
    739 
    740 }
    741 
    742 void
    743 pstatsfree(struct pstats *ps)
    744 {
    745 
    746 	pool_cache_put(pstats_cache, ps);
    747 }
    748 
    749 /*
    750  * sysctl interface in five parts
    751  */
    752 
    753 /*
    754  * a routine for sysctl proc subtree helpers that need to pick a valid
    755  * process by pid.
    756  */
    757 static int
    758 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
    759 {
    760 	struct proc *ptmp;
    761 	int error = 0;
    762 
    763 	if (pid == PROC_CURPROC)
    764 		ptmp = l->l_proc;
    765 	else if ((ptmp = pfind(pid)) == NULL)
    766 		error = ESRCH;
    767 
    768 	*p2 = ptmp;
    769 	return (error);
    770 }
    771 
    772 /*
    773  * sysctl helper routine for setting a process's specific corefile
    774  * name.  picks the process based on the given pid and checks the
    775  * correctness of the new value.
    776  */
    777 static int
    778 sysctl_proc_corename(SYSCTLFN_ARGS)
    779 {
    780 	struct proc *ptmp;
    781 	struct plimit *lim;
    782 	int error = 0, len;
    783 	char *cname;
    784 	char *ocore;
    785 	char *tmp;
    786 	struct sysctlnode node;
    787 
    788 	/*
    789 	 * is this all correct?
    790 	 */
    791 	if (namelen != 0)
    792 		return (EINVAL);
    793 	if (name[-1] != PROC_PID_CORENAME)
    794 		return (EINVAL);
    795 
    796 	/*
    797 	 * whom are we tweaking?
    798 	 */
    799 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    800 	if (error)
    801 		return (error);
    802 
    803 	/* XXX-elad */
    804 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    805 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    806 	if (error)
    807 		return (error);
    808 
    809 	if (newp == NULL) {
    810 		error = kauth_authorize_process(l->l_cred,
    811 		    KAUTH_PROCESS_CORENAME, ptmp,
    812 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    813 		if (error)
    814 			return (error);
    815 	}
    816 
    817 	/*
    818 	 * let them modify a temporary copy of the core name
    819 	 */
    820 	cname = PNBUF_GET();
    821 	lim = ptmp->p_limit;
    822 	mutex_enter(&lim->pl_lock);
    823 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
    824 	mutex_exit(&lim->pl_lock);
    825 
    826 	node = *rnode;
    827 	node.sysctl_data = cname;
    828 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    829 
    830 	/*
    831 	 * if that failed, or they have nothing new to say, or we've
    832 	 * heard it before...
    833 	 */
    834 	if (error || newp == NULL)
    835 		goto done;
    836 	lim = ptmp->p_limit;
    837 	mutex_enter(&lim->pl_lock);
    838 	error = strcmp(cname, lim->pl_corename);
    839 	mutex_exit(&lim->pl_lock);
    840 	if (error == 0)
    841 		/* Unchanged */
    842 		goto done;
    843 
    844 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    845 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
    846 	if (error)
    847 		return (error);
    848 
    849 	/*
    850 	 * no error yet and cname now has the new core name in it.
    851 	 * let's see if it looks acceptable.  it must be either "core"
    852 	 * or end in ".core" or "/core".
    853 	 */
    854 	len = strlen(cname);
    855 	if (len < 4) {
    856 		error = EINVAL;
    857 	} else if (strcmp(cname + len - 4, "core") != 0) {
    858 		error = EINVAL;
    859 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
    860 		error = EINVAL;
    861 	}
    862 	if (error != 0) {
    863 		goto done;
    864 	}
    865 
    866 	/*
    867 	 * hmm...looks good.  now...where do we put it?
    868 	 */
    869 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
    870 	if (tmp == NULL) {
    871 		error = ENOMEM;
    872 		goto done;
    873 	}
    874 	memcpy(tmp, cname, len + 1);
    875 
    876 	lim_privatise(ptmp, false);
    877 	lim = ptmp->p_limit;
    878 	mutex_enter(&lim->pl_lock);
    879 	ocore = lim->pl_corename;
    880 	lim->pl_corename = tmp;
    881 	mutex_exit(&lim->pl_lock);
    882 	if (ocore != defcorename)
    883 		free(ocore, M_TEMP);
    884 
    885 done:
    886 	PNBUF_PUT(cname);
    887 	return error;
    888 }
    889 
    890 /*
    891  * sysctl helper routine for checking/setting a process's stop flags,
    892  * one for fork and one for exec.
    893  */
    894 static int
    895 sysctl_proc_stop(SYSCTLFN_ARGS)
    896 {
    897 	struct proc *ptmp;
    898 	int i, f, error = 0;
    899 	struct sysctlnode node;
    900 
    901 	if (namelen != 0)
    902 		return (EINVAL);
    903 
    904 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
    905 	if (error)
    906 		return (error);
    907 
    908 	/* XXX-elad */
    909 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    910 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    911 	if (error)
    912 		return (error);
    913 
    914 	switch (rnode->sysctl_num) {
    915 	case PROC_PID_STOPFORK:
    916 		f = PS_STOPFORK;
    917 		break;
    918 	case PROC_PID_STOPEXEC:
    919 		f = PS_STOPEXEC;
    920 		break;
    921 	case PROC_PID_STOPEXIT:
    922 		f = PS_STOPEXIT;
    923 		break;
    924 	default:
    925 		return (EINVAL);
    926 	}
    927 
    928 	i = (ptmp->p_flag & f) ? 1 : 0;
    929 	node = *rnode;
    930 	node.sysctl_data = &i;
    931 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    932 	if (error || newp == NULL)
    933 		return (error);
    934 
    935 	mutex_enter(ptmp->p_lock);
    936 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    937 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    938 	if (!error) {
    939 		if (i) {
    940 			ptmp->p_sflag |= f;
    941 		} else {
    942 			ptmp->p_sflag &= ~f;
    943 		}
    944 	}
    945 	mutex_exit(ptmp->p_lock);
    946 
    947 	return error;
    948 }
    949 
    950 /*
    951  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    952  */
    953 static int
    954 sysctl_proc_plimit(SYSCTLFN_ARGS)
    955 {
    956 	struct proc *ptmp;
    957 	u_int limitno;
    958 	int which, error = 0;
    959         struct rlimit alim;
    960 	struct sysctlnode node;
    961 
    962 	if (namelen != 0)
    963 		return (EINVAL);
    964 
    965 	which = name[-1];
    966 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    967 	    which != PROC_PID_LIMIT_TYPE_HARD)
    968 		return (EINVAL);
    969 
    970 	limitno = name[-2] - 1;
    971 	if (limitno >= RLIM_NLIMITS)
    972 		return (EINVAL);
    973 
    974 	if (name[-3] != PROC_PID_LIMIT)
    975 		return (EINVAL);
    976 
    977 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
    978 	if (error)
    979 		return (error);
    980 
    981 	/* XXX-elad */
    982 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    983 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    984 	if (error)
    985 		return (error);
    986 
    987 	/* Check if we can view limits. */
    988 	if (newp == NULL) {
    989 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    990 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    991 		    KAUTH_ARG(which));
    992 		if (error)
    993 			return (error);
    994 	}
    995 
    996 	node = *rnode;
    997 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    998 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    999 		node.sysctl_data = &alim.rlim_max;
   1000 	else
   1001 		node.sysctl_data = &alim.rlim_cur;
   1002 
   1003 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1004 	if (error || newp == NULL)
   1005 		return (error);
   1006 
   1007 	return (dosetrlimit(l, ptmp, limitno, &alim));
   1008 }
   1009 
   1010 static struct sysctllog *proc_sysctllog;
   1011 
   1012 /*
   1013  * and finally, the actually glue that sticks it to the tree
   1014  */
   1015 static void
   1016 sysctl_proc_setup()
   1017 {
   1018 
   1019 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1020 		       CTLFLAG_PERMANENT,
   1021 		       CTLTYPE_NODE, "proc", NULL,
   1022 		       NULL, 0, NULL, 0,
   1023 		       CTL_PROC, CTL_EOL);
   1024 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1025 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1026 		       CTLTYPE_NODE, "curproc",
   1027 		       SYSCTL_DESCR("Per-process settings"),
   1028 		       NULL, 0, NULL, 0,
   1029 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1030 
   1031 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1032 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1033 		       CTLTYPE_STRING, "corename",
   1034 		       SYSCTL_DESCR("Core file name"),
   1035 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1036 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1037 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1038 		       CTLFLAG_PERMANENT,
   1039 		       CTLTYPE_NODE, "rlimit",
   1040 		       SYSCTL_DESCR("Process limits"),
   1041 		       NULL, 0, NULL, 0,
   1042 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1043 
   1044 #define create_proc_plimit(s, n) do {					\
   1045 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1046 		       CTLFLAG_PERMANENT,				\
   1047 		       CTLTYPE_NODE, s,					\
   1048 		       SYSCTL_DESCR("Process " s " limits"),		\
   1049 		       NULL, 0, NULL, 0,				\
   1050 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1051 		       CTL_EOL);					\
   1052 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1053 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1054 		       CTLTYPE_QUAD, "soft",				\
   1055 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1056 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1057 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1058 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1059 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1060 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1061 		       CTLTYPE_QUAD, "hard",				\
   1062 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1063 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1064 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1065 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1066 	} while (0/*CONSTCOND*/)
   1067 
   1068 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1069 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1070 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1071 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1072 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1073 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1074 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1075 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1076 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1077 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1078 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1079 
   1080 #undef create_proc_plimit
   1081 
   1082 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1083 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1084 		       CTLTYPE_INT, "stopfork",
   1085 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1086 		       sysctl_proc_stop, 0, NULL, 0,
   1087 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1088 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1089 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1090 		       CTLTYPE_INT, "stopexec",
   1091 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1092 		       sysctl_proc_stop, 0, NULL, 0,
   1093 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1094 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1095 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1096 		       CTLTYPE_INT, "stopexit",
   1097 		       SYSCTL_DESCR("Stop process before completing exit"),
   1098 		       sysctl_proc_stop, 0, NULL, 0,
   1099 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1100 }
   1101