Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.161
      1 /*	$NetBSD: kern_resource.c,v 1.161 2011/05/01 01:15:18 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.161 2011/05/01 01:15:18 rmind Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kmem.h>
     49 #include <sys/namei.h>
     50 #include <sys/pool.h>
     51 #include <sys/proc.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timevar.h>
     54 #include <sys/kauth.h>
     55 #include <sys/atomic.h>
     56 #include <sys/mount.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/atomic.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 /*
     63  * Maximum process data and stack limits.
     64  * They are variables so they are patchable.
     65  */
     66 rlim_t maxdmap = MAXDSIZ;
     67 rlim_t maxsmap = MAXSSIZ;
     68 
     69 static pool_cache_t	plimit_cache;
     70 static pool_cache_t	pstats_cache;
     71 
     72 static kauth_listener_t	resource_listener;
     73 
     74 static void sysctl_proc_setup(void);
     75 
     76 static int
     77 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     78     void *arg0, void *arg1, void *arg2, void *arg3)
     79 {
     80 	struct proc *p;
     81 	int result;
     82 
     83 	result = KAUTH_RESULT_DEFER;
     84 	p = arg0;
     85 
     86 	switch (action) {
     87 	case KAUTH_PROCESS_NICE:
     88 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     89                     kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     90                         break;
     91                 }
     92 
     93                 if ((u_long)arg1 >= p->p_nice)
     94                         result = KAUTH_RESULT_ALLOW;
     95 
     96 		break;
     97 
     98 	case KAUTH_PROCESS_RLIMIT: {
     99 		enum kauth_process_req req;
    100 
    101 		req = (enum kauth_process_req)(unsigned long)arg1;
    102 
    103 		switch (req) {
    104 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    105 			result = KAUTH_RESULT_ALLOW;
    106 			break;
    107 
    108 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    109 			struct rlimit *new_rlimit;
    110 			u_long which;
    111 
    112 			if ((p != curlwp->l_proc) &&
    113 			    (proc_uidmatch(cred, p->p_cred) != 0))
    114 				break;
    115 
    116 			new_rlimit = arg2;
    117 			which = (u_long)arg3;
    118 
    119 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    120 				result = KAUTH_RESULT_ALLOW;
    121 
    122 			break;
    123 			}
    124 
    125 		default:
    126 			break;
    127 		}
    128 
    129 		break;
    130 	}
    131 
    132 	default:
    133 		break;
    134 	}
    135 
    136 	return result;
    137 }
    138 
    139 void
    140 resource_init(void)
    141 {
    142 
    143 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    144 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    145 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    146 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    147 
    148 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    149 	    resource_listener_cb, NULL);
    150 
    151 	sysctl_proc_setup();
    152 }
    153 
    154 /*
    155  * Resource controls and accounting.
    156  */
    157 
    158 int
    159 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    160     register_t *retval)
    161 {
    162 	/* {
    163 		syscallarg(int) which;
    164 		syscallarg(id_t) who;
    165 	} */
    166 	struct proc *curp = l->l_proc, *p;
    167 	int low = NZERO + PRIO_MAX + 1;
    168 	int who = SCARG(uap, who);
    169 
    170 	mutex_enter(proc_lock);
    171 	switch (SCARG(uap, which)) {
    172 	case PRIO_PROCESS:
    173 		p = who ? proc_find(who) : curp;;
    174 		if (p != NULL)
    175 			low = p->p_nice;
    176 		break;
    177 
    178 	case PRIO_PGRP: {
    179 		struct pgrp *pg;
    180 
    181 		if (who == 0)
    182 			pg = curp->p_pgrp;
    183 		else if ((pg = pgrp_find(who)) == NULL)
    184 			break;
    185 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    186 			if (p->p_nice < low)
    187 				low = p->p_nice;
    188 		}
    189 		break;
    190 	}
    191 
    192 	case PRIO_USER:
    193 		if (who == 0)
    194 			who = (int)kauth_cred_geteuid(l->l_cred);
    195 		PROCLIST_FOREACH(p, &allproc) {
    196 			mutex_enter(p->p_lock);
    197 			if (kauth_cred_geteuid(p->p_cred) ==
    198 			    (uid_t)who && p->p_nice < low)
    199 				low = p->p_nice;
    200 			mutex_exit(p->p_lock);
    201 		}
    202 		break;
    203 
    204 	default:
    205 		mutex_exit(proc_lock);
    206 		return (EINVAL);
    207 	}
    208 	mutex_exit(proc_lock);
    209 
    210 	if (low == NZERO + PRIO_MAX + 1)
    211 		return (ESRCH);
    212 	*retval = low - NZERO;
    213 	return (0);
    214 }
    215 
    216 /* ARGSUSED */
    217 int
    218 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    219     register_t *retval)
    220 {
    221 	/* {
    222 		syscallarg(int) which;
    223 		syscallarg(id_t) who;
    224 		syscallarg(int) prio;
    225 	} */
    226 	struct proc *curp = l->l_proc, *p;
    227 	int found = 0, error = 0;
    228 	int who = SCARG(uap, who);
    229 
    230 	mutex_enter(proc_lock);
    231 	switch (SCARG(uap, which)) {
    232 	case PRIO_PROCESS:
    233 		p = who ? proc_find(who) : curp;
    234 		if (p != NULL) {
    235 			mutex_enter(p->p_lock);
    236 			error = donice(l, p, SCARG(uap, prio));
    237 			mutex_exit(p->p_lock);
    238 			found++;
    239 		}
    240 		break;
    241 
    242 	case PRIO_PGRP: {
    243 		struct pgrp *pg;
    244 
    245 		if (who == 0)
    246 			pg = curp->p_pgrp;
    247 		else if ((pg = pgrp_find(who)) == NULL)
    248 			break;
    249 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    250 			mutex_enter(p->p_lock);
    251 			error = donice(l, p, SCARG(uap, prio));
    252 			mutex_exit(p->p_lock);
    253 			found++;
    254 		}
    255 		break;
    256 	}
    257 
    258 	case PRIO_USER:
    259 		if (who == 0)
    260 			who = (int)kauth_cred_geteuid(l->l_cred);
    261 		PROCLIST_FOREACH(p, &allproc) {
    262 			mutex_enter(p->p_lock);
    263 			if (kauth_cred_geteuid(p->p_cred) ==
    264 			    (uid_t)SCARG(uap, who)) {
    265 				error = donice(l, p, SCARG(uap, prio));
    266 				found++;
    267 			}
    268 			mutex_exit(p->p_lock);
    269 		}
    270 		break;
    271 
    272 	default:
    273 		mutex_exit(proc_lock);
    274 		return EINVAL;
    275 	}
    276 	mutex_exit(proc_lock);
    277 	if (found == 0)
    278 		return (ESRCH);
    279 	return (error);
    280 }
    281 
    282 /*
    283  * Renice a process.
    284  *
    285  * Call with the target process' credentials locked.
    286  */
    287 int
    288 donice(struct lwp *l, struct proc *chgp, int n)
    289 {
    290 	kauth_cred_t cred = l->l_cred;
    291 
    292 	KASSERT(mutex_owned(chgp->p_lock));
    293 
    294 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    295 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    296 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    297 		return (EPERM);
    298 
    299 	if (n > PRIO_MAX)
    300 		n = PRIO_MAX;
    301 	if (n < PRIO_MIN)
    302 		n = PRIO_MIN;
    303 	n += NZERO;
    304 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    305 	    KAUTH_ARG(n), NULL, NULL))
    306 		return (EACCES);
    307 	sched_nice(chgp, n);
    308 	return (0);
    309 }
    310 
    311 /* ARGSUSED */
    312 int
    313 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    314     register_t *retval)
    315 {
    316 	/* {
    317 		syscallarg(int) which;
    318 		syscallarg(const struct rlimit *) rlp;
    319 	} */
    320 	int which = SCARG(uap, which);
    321 	struct rlimit alim;
    322 	int error;
    323 
    324 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    325 	if (error)
    326 		return (error);
    327 	return (dosetrlimit(l, l->l_proc, which, &alim));
    328 }
    329 
    330 int
    331 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    332 {
    333 	struct rlimit *alimp;
    334 	int error;
    335 
    336 	if ((u_int)which >= RLIM_NLIMITS)
    337 		return (EINVAL);
    338 
    339 	if (limp->rlim_cur > limp->rlim_max) {
    340 		/*
    341 		 * This is programming error. According to SUSv2, we should
    342 		 * return error in this case.
    343 		 */
    344 		return (EINVAL);
    345 	}
    346 
    347 	alimp = &p->p_rlimit[which];
    348 	/* if we don't change the value, no need to limcopy() */
    349 	if (limp->rlim_cur == alimp->rlim_cur &&
    350 	    limp->rlim_max == alimp->rlim_max)
    351 		return 0;
    352 
    353 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    354 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    355 	if (error)
    356 		return (error);
    357 
    358 	lim_privatise(p);
    359 	/* p->p_limit is now unchangeable */
    360 	alimp = &p->p_rlimit[which];
    361 
    362 	switch (which) {
    363 
    364 	case RLIMIT_DATA:
    365 		if (limp->rlim_cur > maxdmap)
    366 			limp->rlim_cur = maxdmap;
    367 		if (limp->rlim_max > maxdmap)
    368 			limp->rlim_max = maxdmap;
    369 		break;
    370 
    371 	case RLIMIT_STACK:
    372 		if (limp->rlim_cur > maxsmap)
    373 			limp->rlim_cur = maxsmap;
    374 		if (limp->rlim_max > maxsmap)
    375 			limp->rlim_max = maxsmap;
    376 
    377 		/*
    378 		 * Return EINVAL if the new stack size limit is lower than
    379 		 * current usage. Otherwise, the process would get SIGSEGV the
    380 		 * moment it would try to access anything on it's current stack.
    381 		 * This conforms to SUSv2.
    382 		 */
    383 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
    384 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    385 			return (EINVAL);
    386 		}
    387 
    388 		/*
    389 		 * Stack is allocated to the max at exec time with
    390 		 * only "rlim_cur" bytes accessible (In other words,
    391 		 * allocates stack dividing two contiguous regions at
    392 		 * "rlim_cur" bytes boundary).
    393 		 *
    394 		 * Since allocation is done in terms of page, roundup
    395 		 * "rlim_cur" (otherwise, contiguous regions
    396 		 * overlap).  If stack limit is going up make more
    397 		 * accessible, if going down make inaccessible.
    398 		 */
    399 		limp->rlim_cur = round_page(limp->rlim_cur);
    400 		if (limp->rlim_cur != alimp->rlim_cur) {
    401 			vaddr_t addr;
    402 			vsize_t size;
    403 			vm_prot_t prot;
    404 
    405 			if (limp->rlim_cur > alimp->rlim_cur) {
    406 				prot = VM_PROT_READ | VM_PROT_WRITE;
    407 				size = limp->rlim_cur - alimp->rlim_cur;
    408 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    409 				    limp->rlim_cur;
    410 			} else {
    411 				prot = VM_PROT_NONE;
    412 				size = alimp->rlim_cur - limp->rlim_cur;
    413 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    414 				     alimp->rlim_cur;
    415 			}
    416 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    417 			    addr, addr+size, prot, false);
    418 		}
    419 		break;
    420 
    421 	case RLIMIT_NOFILE:
    422 		if (limp->rlim_cur > maxfiles)
    423 			limp->rlim_cur = maxfiles;
    424 		if (limp->rlim_max > maxfiles)
    425 			limp->rlim_max = maxfiles;
    426 		break;
    427 
    428 	case RLIMIT_NPROC:
    429 		if (limp->rlim_cur > maxproc)
    430 			limp->rlim_cur = maxproc;
    431 		if (limp->rlim_max > maxproc)
    432 			limp->rlim_max = maxproc;
    433 		break;
    434 	}
    435 
    436 	mutex_enter(&p->p_limit->pl_lock);
    437 	*alimp = *limp;
    438 	mutex_exit(&p->p_limit->pl_lock);
    439 	return (0);
    440 }
    441 
    442 /* ARGSUSED */
    443 int
    444 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    445     register_t *retval)
    446 {
    447 	/* {
    448 		syscallarg(int) which;
    449 		syscallarg(struct rlimit *) rlp;
    450 	} */
    451 	struct proc *p = l->l_proc;
    452 	int which = SCARG(uap, which);
    453 	struct rlimit rl;
    454 
    455 	if ((u_int)which >= RLIM_NLIMITS)
    456 		return (EINVAL);
    457 
    458 	mutex_enter(p->p_lock);
    459 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    460 	mutex_exit(p->p_lock);
    461 
    462 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    463 }
    464 
    465 /*
    466  * Transform the running time and tick information in proc p into user,
    467  * system, and interrupt time usage.
    468  *
    469  * Should be called with p->p_lock held unless called from exit1().
    470  */
    471 void
    472 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    473     struct timeval *ip, struct timeval *rp)
    474 {
    475 	uint64_t u, st, ut, it, tot;
    476 	struct lwp *l;
    477 	struct bintime tm;
    478 	struct timeval tv;
    479 
    480 	mutex_spin_enter(&p->p_stmutex);
    481 	st = p->p_sticks;
    482 	ut = p->p_uticks;
    483 	it = p->p_iticks;
    484 	mutex_spin_exit(&p->p_stmutex);
    485 
    486 	tm = p->p_rtime;
    487 
    488 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    489 		lwp_lock(l);
    490 		bintime_add(&tm, &l->l_rtime);
    491 		if ((l->l_pflag & LP_RUNNING) != 0) {
    492 			struct bintime diff;
    493 			/*
    494 			 * Adjust for the current time slice.  This is
    495 			 * actually fairly important since the error
    496 			 * here is on the order of a time quantum,
    497 			 * which is much greater than the sampling
    498 			 * error.
    499 			 */
    500 			binuptime(&diff);
    501 			bintime_sub(&diff, &l->l_stime);
    502 			bintime_add(&tm, &diff);
    503 		}
    504 		lwp_unlock(l);
    505 	}
    506 
    507 	tot = st + ut + it;
    508 	bintime2timeval(&tm, &tv);
    509 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    510 
    511 	if (tot == 0) {
    512 		/* No ticks, so can't use to share time out, split 50-50 */
    513 		st = ut = u / 2;
    514 	} else {
    515 		st = (u * st) / tot;
    516 		ut = (u * ut) / tot;
    517 	}
    518 	if (sp != NULL) {
    519 		sp->tv_sec = st / 1000000;
    520 		sp->tv_usec = st % 1000000;
    521 	}
    522 	if (up != NULL) {
    523 		up->tv_sec = ut / 1000000;
    524 		up->tv_usec = ut % 1000000;
    525 	}
    526 	if (ip != NULL) {
    527 		if (it != 0)
    528 			it = (u * it) / tot;
    529 		ip->tv_sec = it / 1000000;
    530 		ip->tv_usec = it % 1000000;
    531 	}
    532 	if (rp != NULL) {
    533 		*rp = tv;
    534 	}
    535 }
    536 
    537 /* ARGSUSED */
    538 int
    539 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    540     register_t *retval)
    541 {
    542 	/* {
    543 		syscallarg(int) who;
    544 		syscallarg(struct rusage *) rusage;
    545 	} */
    546 	struct rusage ru;
    547 	struct proc *p = l->l_proc;
    548 
    549 	switch (SCARG(uap, who)) {
    550 	case RUSAGE_SELF:
    551 		mutex_enter(p->p_lock);
    552 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
    553 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
    554 		rulwps(p, &ru);
    555 		mutex_exit(p->p_lock);
    556 		break;
    557 
    558 	case RUSAGE_CHILDREN:
    559 		mutex_enter(p->p_lock);
    560 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
    561 		mutex_exit(p->p_lock);
    562 		break;
    563 
    564 	default:
    565 		return EINVAL;
    566 	}
    567 
    568 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    569 }
    570 
    571 void
    572 ruadd(struct rusage *ru, struct rusage *ru2)
    573 {
    574 	long *ip, *ip2;
    575 	int i;
    576 
    577 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    578 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    579 	if (ru->ru_maxrss < ru2->ru_maxrss)
    580 		ru->ru_maxrss = ru2->ru_maxrss;
    581 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    582 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    583 		*ip++ += *ip2++;
    584 }
    585 
    586 void
    587 rulwps(proc_t *p, struct rusage *ru)
    588 {
    589 	lwp_t *l;
    590 
    591 	KASSERT(mutex_owned(p->p_lock));
    592 
    593 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    594 		ruadd(ru, &l->l_ru);
    595 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    596 		ru->ru_nivcsw += l->l_nivcsw;
    597 	}
    598 }
    599 
    600 /*
    601  * lim_copy: make a copy of the plimit structure.
    602  *
    603  * We use copy-on-write after fork, and copy when a limit is changed.
    604  */
    605 struct plimit *
    606 lim_copy(struct plimit *lim)
    607 {
    608 	struct plimit *newlim;
    609 	char *corename;
    610 	size_t alen, len;
    611 
    612 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    613 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    614 	newlim->pl_writeable = false;
    615 	newlim->pl_refcnt = 1;
    616 	newlim->pl_sv_limit = NULL;
    617 
    618 	mutex_enter(&lim->pl_lock);
    619 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    620 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    621 
    622 	/*
    623 	 * Note: the common case is a use of default core name.
    624 	 */
    625 	alen = 0;
    626 	corename = NULL;
    627 	for (;;) {
    628 		if (lim->pl_corename == defcorename) {
    629 			newlim->pl_corename = defcorename;
    630 			newlim->pl_cnlen = 0;
    631 			break;
    632 		}
    633 		len = lim->pl_cnlen;
    634 		if (len == alen) {
    635 			newlim->pl_corename = corename;
    636 			newlim->pl_cnlen = len;
    637 			memcpy(corename, lim->pl_corename, len);
    638 			corename = NULL;
    639 			break;
    640 		}
    641 		mutex_exit(&lim->pl_lock);
    642 		if (corename) {
    643 			kmem_free(corename, alen);
    644 		}
    645 		alen = len;
    646 		corename = kmem_alloc(alen, KM_SLEEP);
    647 		mutex_enter(&lim->pl_lock);
    648 	}
    649 	mutex_exit(&lim->pl_lock);
    650 
    651 	if (corename) {
    652 		kmem_free(corename, alen);
    653 	}
    654 	return newlim;
    655 }
    656 
    657 void
    658 lim_addref(struct plimit *lim)
    659 {
    660 	atomic_inc_uint(&lim->pl_refcnt);
    661 }
    662 
    663 /*
    664  * lim_privatise: give a process its own private plimit structure.
    665  */
    666 void
    667 lim_privatise(proc_t *p)
    668 {
    669 	struct plimit *lim = p->p_limit, *newlim;
    670 
    671 	if (lim->pl_writeable) {
    672 		return;
    673 	}
    674 
    675 	newlim = lim_copy(lim);
    676 
    677 	mutex_enter(p->p_lock);
    678 	if (p->p_limit->pl_writeable) {
    679 		/* Other thread won the race. */
    680 		mutex_exit(p->p_lock);
    681 		lim_free(newlim);
    682 		return;
    683 	}
    684 
    685 	/*
    686 	 * Since p->p_limit can be accessed without locked held,
    687 	 * old limit structure must not be deleted yet.
    688 	 */
    689 	newlim->pl_sv_limit = p->p_limit;
    690 	newlim->pl_writeable = true;
    691 	p->p_limit = newlim;
    692 	mutex_exit(p->p_lock);
    693 }
    694 
    695 void
    696 lim_setcorename(proc_t *p, char *name, size_t len)
    697 {
    698 	struct plimit *lim;
    699 	char *oname;
    700 	size_t olen;
    701 
    702 	lim_privatise(p);
    703 	lim = p->p_limit;
    704 
    705 	mutex_enter(&lim->pl_lock);
    706 	oname = lim->pl_corename;
    707 	olen = lim->pl_cnlen;
    708 	lim->pl_corename = name;
    709 	lim->pl_cnlen = len;
    710 	mutex_exit(&lim->pl_lock);
    711 
    712 	if (oname != defcorename) {
    713 		kmem_free(oname, olen);
    714 	}
    715 }
    716 
    717 void
    718 lim_free(struct plimit *lim)
    719 {
    720 	struct plimit *sv_lim;
    721 
    722 	do {
    723 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    724 			return;
    725 		}
    726 		if (lim->pl_corename != defcorename) {
    727 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    728 		}
    729 		sv_lim = lim->pl_sv_limit;
    730 		mutex_destroy(&lim->pl_lock);
    731 		pool_cache_put(plimit_cache, lim);
    732 	} while ((lim = sv_lim) != NULL);
    733 }
    734 
    735 struct pstats *
    736 pstatscopy(struct pstats *ps)
    737 {
    738 
    739 	struct pstats *newps;
    740 
    741 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
    742 
    743 	memset(&newps->pstat_startzero, 0,
    744 	(unsigned) ((char *)&newps->pstat_endzero -
    745 		    (char *)&newps->pstat_startzero));
    746 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
    747 	((char *)&newps->pstat_endcopy -
    748 	 (char *)&newps->pstat_startcopy));
    749 
    750 	return (newps);
    751 
    752 }
    753 
    754 void
    755 pstatsfree(struct pstats *ps)
    756 {
    757 
    758 	pool_cache_put(pstats_cache, ps);
    759 }
    760 
    761 /*
    762  * sysctl interface in five parts
    763  */
    764 
    765 /*
    766  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    767  * need to pick a valid process by PID.
    768  *
    769  * => Hold a reference on the process, on success.
    770  */
    771 static int
    772 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    773 {
    774 	proc_t *p;
    775 	int error;
    776 
    777 	if (pid == PROC_CURPROC) {
    778 		p = l->l_proc;
    779 	} else {
    780 		mutex_enter(proc_lock);
    781 		p = proc_find(pid);
    782 		if (p == NULL) {
    783 			mutex_exit(proc_lock);
    784 			return ESRCH;
    785 		}
    786 	}
    787 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    788 	if (pid != PROC_CURPROC) {
    789 		mutex_exit(proc_lock);
    790 	}
    791 	*p2 = p;
    792 	return error;
    793 }
    794 
    795 /*
    796  * sysctl_proc_corename: helper routine to get or set the core file name
    797  * for a process specified by PID.
    798  */
    799 static int
    800 sysctl_proc_corename(SYSCTLFN_ARGS)
    801 {
    802 	struct proc *p;
    803 	struct plimit *lim;
    804 	char *cnbuf, *cname;
    805 	struct sysctlnode node;
    806 	size_t len;
    807 	int error;
    808 
    809 	/* First, validate the request. */
    810 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    811 		return EINVAL;
    812 
    813 	/* Find the process.  Hold a reference (p_reflock), if found. */
    814 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    815 	if (error)
    816 		return error;
    817 
    818 	/* XXX-elad */
    819 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    820 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    821 	if (error) {
    822 		rw_exit(&p->p_reflock);
    823 		return error;
    824 	}
    825 
    826 	cnbuf = PNBUF_GET();
    827 
    828 	if (newp == NULL) {
    829 		/* Get case: copy the core name into the buffer. */
    830 		error = kauth_authorize_process(l->l_cred,
    831 		    KAUTH_PROCESS_CORENAME, p,
    832 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    833 		if (error) {
    834 			goto done;
    835 		}
    836 		lim = p->p_limit;
    837 		mutex_enter(&lim->pl_lock);
    838 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    839 		mutex_exit(&lim->pl_lock);
    840 	} else {
    841 		/* Set case: just use the temporary buffer. */
    842 		error = kauth_authorize_process(l->l_cred,
    843 		    KAUTH_PROCESS_CORENAME, p,
    844 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    845 		if (error) {
    846 			goto done;
    847 		}
    848 	}
    849 
    850 	node = *rnode;
    851 	node.sysctl_data = cnbuf;
    852 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    853 
    854 	/* Return if error, or if we are only retrieving the core name. */
    855 	if (error || newp == NULL) {
    856 		goto done;
    857 	}
    858 
    859 	/*
    860 	 * Validate new core name.  It must be either "core", "/core",
    861 	 * or end in ".core".
    862 	 */
    863 	len = strlen(cnbuf);
    864 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    865 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    866 		error = EINVAL;
    867 		goto done;
    868 	}
    869 
    870 	/* Allocate, copy and set the new core name for plimit structure. */
    871 	cname = kmem_alloc(++len, KM_NOSLEEP);
    872 	if (cname == NULL) {
    873 		error = ENOMEM;
    874 		goto done;
    875 	}
    876 	memcpy(cname, cnbuf, len);
    877 	lim_setcorename(p, cname, len);
    878 done:
    879 	rw_exit(&p->p_reflock);
    880 	PNBUF_PUT(cnbuf);
    881 	return error;
    882 }
    883 
    884 /*
    885  * sysctl helper routine for checking/setting a process's stop flags,
    886  * one for fork and one for exec.
    887  */
    888 static int
    889 sysctl_proc_stop(SYSCTLFN_ARGS)
    890 {
    891 	struct proc *ptmp;
    892 	int i, f, error = 0;
    893 	struct sysctlnode node;
    894 
    895 	if (namelen != 0)
    896 		return (EINVAL);
    897 
    898 	/* Find the process.  Hold a reference (p_reflock), if found. */
    899 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &ptmp);
    900 	if (error)
    901 		return error;
    902 
    903 	/* XXX-elad */
    904 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    905 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    906 	if (error)
    907 		goto out;
    908 
    909 	switch (rnode->sysctl_num) {
    910 	case PROC_PID_STOPFORK:
    911 		f = PS_STOPFORK;
    912 		break;
    913 	case PROC_PID_STOPEXEC:
    914 		f = PS_STOPEXEC;
    915 		break;
    916 	case PROC_PID_STOPEXIT:
    917 		f = PS_STOPEXIT;
    918 		break;
    919 	default:
    920 		error = EINVAL;
    921 		goto out;
    922 	}
    923 
    924 	i = (ptmp->p_flag & f) ? 1 : 0;
    925 	node = *rnode;
    926 	node.sysctl_data = &i;
    927 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    928 	if (error || newp == NULL)
    929 		goto out;
    930 
    931 	mutex_enter(ptmp->p_lock);
    932 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    933 	    ptmp, KAUTH_ARG(f), NULL, NULL);
    934 	if (!error) {
    935 		if (i) {
    936 			ptmp->p_sflag |= f;
    937 		} else {
    938 			ptmp->p_sflag &= ~f;
    939 		}
    940 	}
    941 	mutex_exit(ptmp->p_lock);
    942 out:
    943 	rw_exit(&ptmp->p_reflock);
    944 	return error;
    945 }
    946 
    947 /*
    948  * sysctl helper routine for a process's rlimits as exposed by sysctl.
    949  */
    950 static int
    951 sysctl_proc_plimit(SYSCTLFN_ARGS)
    952 {
    953 	struct proc *ptmp;
    954 	u_int limitno;
    955 	int which, error = 0;
    956         struct rlimit alim;
    957 	struct sysctlnode node;
    958 
    959 	if (namelen != 0)
    960 		return (EINVAL);
    961 
    962 	which = name[-1];
    963 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    964 	    which != PROC_PID_LIMIT_TYPE_HARD)
    965 		return (EINVAL);
    966 
    967 	limitno = name[-2] - 1;
    968 	if (limitno >= RLIM_NLIMITS)
    969 		return (EINVAL);
    970 
    971 	if (name[-3] != PROC_PID_LIMIT)
    972 		return (EINVAL);
    973 
    974 	/* Find the process.  Hold a reference (p_reflock), if found. */
    975 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &ptmp);
    976 	if (error)
    977 		return error;
    978 
    979 	/* XXX-elad */
    980 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
    981 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    982 	if (error)
    983 		goto out;
    984 
    985 	/* Check if we can view limits. */
    986 	if (newp == NULL) {
    987 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    988 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
    989 		    KAUTH_ARG(which));
    990 		if (error)
    991 			goto out;
    992 	}
    993 
    994 	node = *rnode;
    995 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
    996 	if (which == PROC_PID_LIMIT_TYPE_HARD)
    997 		node.sysctl_data = &alim.rlim_max;
    998 	else
    999 		node.sysctl_data = &alim.rlim_cur;
   1000 
   1001 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1002 	if (error || newp == NULL) {
   1003 		goto out;
   1004 	}
   1005 	error = dosetrlimit(l, ptmp, limitno, &alim);
   1006 out:
   1007 	rw_exit(&ptmp->p_reflock);
   1008 	return error;
   1009 }
   1010 
   1011 static struct sysctllog *proc_sysctllog;
   1012 
   1013 /*
   1014  * and finally, the actually glue that sticks it to the tree
   1015  */
   1016 static void
   1017 sysctl_proc_setup()
   1018 {
   1019 
   1020 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1021 		       CTLFLAG_PERMANENT,
   1022 		       CTLTYPE_NODE, "proc", NULL,
   1023 		       NULL, 0, NULL, 0,
   1024 		       CTL_PROC, CTL_EOL);
   1025 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1026 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1027 		       CTLTYPE_NODE, "curproc",
   1028 		       SYSCTL_DESCR("Per-process settings"),
   1029 		       NULL, 0, NULL, 0,
   1030 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1031 
   1032 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1033 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1034 		       CTLTYPE_STRING, "corename",
   1035 		       SYSCTL_DESCR("Core file name"),
   1036 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1037 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1038 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1039 		       CTLFLAG_PERMANENT,
   1040 		       CTLTYPE_NODE, "rlimit",
   1041 		       SYSCTL_DESCR("Process limits"),
   1042 		       NULL, 0, NULL, 0,
   1043 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1044 
   1045 #define create_proc_plimit(s, n) do {					\
   1046 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1047 		       CTLFLAG_PERMANENT,				\
   1048 		       CTLTYPE_NODE, s,					\
   1049 		       SYSCTL_DESCR("Process " s " limits"),		\
   1050 		       NULL, 0, NULL, 0,				\
   1051 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1052 		       CTL_EOL);					\
   1053 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1054 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1055 		       CTLTYPE_QUAD, "soft",				\
   1056 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1057 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1058 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1059 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1060 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1061 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1062 		       CTLTYPE_QUAD, "hard",				\
   1063 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1064 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1065 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1066 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1067 	} while (0/*CONSTCOND*/)
   1068 
   1069 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1070 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1071 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1072 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1073 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1074 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1075 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1076 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1077 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1078 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1079 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1080 
   1081 #undef create_proc_plimit
   1082 
   1083 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1084 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1085 		       CTLTYPE_INT, "stopfork",
   1086 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1087 		       sysctl_proc_stop, 0, NULL, 0,
   1088 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1089 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1090 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1091 		       CTLTYPE_INT, "stopexec",
   1092 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1093 		       sysctl_proc_stop, 0, NULL, 0,
   1094 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1095 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1096 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1097 		       CTLTYPE_INT, "stopexit",
   1098 		       SYSCTL_DESCR("Stop process before completing exit"),
   1099 		       sysctl_proc_stop, 0, NULL, 0,
   1100 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1101 }
   1102