kern_resource.c revision 1.163 1 /* $NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.163 2011/05/14 17:12:28 rmind Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache;
69 static pool_cache_t pstats_cache;
70
71 static kauth_listener_t resource_listener;
72
73 static void sysctl_proc_setup(void);
74
75 static int
76 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
77 void *arg0, void *arg1, void *arg2, void *arg3)
78 {
79 struct proc *p;
80 int result;
81
82 result = KAUTH_RESULT_DEFER;
83 p = arg0;
84
85 switch (action) {
86 case KAUTH_PROCESS_NICE:
87 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
88 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
89 break;
90 }
91
92 if ((u_long)arg1 >= p->p_nice)
93 result = KAUTH_RESULT_ALLOW;
94
95 break;
96
97 case KAUTH_PROCESS_RLIMIT: {
98 enum kauth_process_req req;
99
100 req = (enum kauth_process_req)(unsigned long)arg1;
101
102 switch (req) {
103 case KAUTH_REQ_PROCESS_RLIMIT_GET:
104 result = KAUTH_RESULT_ALLOW;
105 break;
106
107 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
108 struct rlimit *new_rlimit;
109 u_long which;
110
111 if ((p != curlwp->l_proc) &&
112 (proc_uidmatch(cred, p->p_cred) != 0))
113 break;
114
115 new_rlimit = arg2;
116 which = (u_long)arg3;
117
118 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
119 result = KAUTH_RESULT_ALLOW;
120
121 break;
122 }
123
124 default:
125 break;
126 }
127
128 break;
129 }
130
131 default:
132 break;
133 }
134
135 return result;
136 }
137
138 void
139 resource_init(void)
140 {
141
142 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
143 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
144 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
145 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
146
147 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
148 resource_listener_cb, NULL);
149
150 sysctl_proc_setup();
151 }
152
153 /*
154 * Resource controls and accounting.
155 */
156
157 int
158 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
159 register_t *retval)
160 {
161 /* {
162 syscallarg(int) which;
163 syscallarg(id_t) who;
164 } */
165 struct proc *curp = l->l_proc, *p;
166 int low = NZERO + PRIO_MAX + 1;
167 int who = SCARG(uap, who);
168
169 mutex_enter(proc_lock);
170 switch (SCARG(uap, which)) {
171 case PRIO_PROCESS:
172 p = who ? proc_find(who) : curp;;
173 if (p != NULL)
174 low = p->p_nice;
175 break;
176
177 case PRIO_PGRP: {
178 struct pgrp *pg;
179
180 if (who == 0)
181 pg = curp->p_pgrp;
182 else if ((pg = pgrp_find(who)) == NULL)
183 break;
184 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
185 if (p->p_nice < low)
186 low = p->p_nice;
187 }
188 break;
189 }
190
191 case PRIO_USER:
192 if (who == 0)
193 who = (int)kauth_cred_geteuid(l->l_cred);
194 PROCLIST_FOREACH(p, &allproc) {
195 mutex_enter(p->p_lock);
196 if (kauth_cred_geteuid(p->p_cred) ==
197 (uid_t)who && p->p_nice < low)
198 low = p->p_nice;
199 mutex_exit(p->p_lock);
200 }
201 break;
202
203 default:
204 mutex_exit(proc_lock);
205 return (EINVAL);
206 }
207 mutex_exit(proc_lock);
208
209 if (low == NZERO + PRIO_MAX + 1)
210 return (ESRCH);
211 *retval = low - NZERO;
212 return (0);
213 }
214
215 /* ARGSUSED */
216 int
217 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
218 register_t *retval)
219 {
220 /* {
221 syscallarg(int) which;
222 syscallarg(id_t) who;
223 syscallarg(int) prio;
224 } */
225 struct proc *curp = l->l_proc, *p;
226 int found = 0, error = 0;
227 int who = SCARG(uap, who);
228
229 mutex_enter(proc_lock);
230 switch (SCARG(uap, which)) {
231 case PRIO_PROCESS:
232 p = who ? proc_find(who) : curp;
233 if (p != NULL) {
234 mutex_enter(p->p_lock);
235 found++;
236 error = donice(l, p, SCARG(uap, prio));
237 mutex_exit(p->p_lock);
238 }
239 break;
240
241 case PRIO_PGRP: {
242 struct pgrp *pg;
243
244 if (who == 0)
245 pg = curp->p_pgrp;
246 else if ((pg = pgrp_find(who)) == NULL)
247 break;
248 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
249 mutex_enter(p->p_lock);
250 found++;
251 error = donice(l, p, SCARG(uap, prio));
252 mutex_exit(p->p_lock);
253 if (error)
254 break;
255 }
256 break;
257 }
258
259 case PRIO_USER:
260 if (who == 0)
261 who = (int)kauth_cred_geteuid(l->l_cred);
262 PROCLIST_FOREACH(p, &allproc) {
263 mutex_enter(p->p_lock);
264 if (kauth_cred_geteuid(p->p_cred) ==
265 (uid_t)SCARG(uap, who)) {
266 found++;
267 error = donice(l, p, SCARG(uap, prio));
268 }
269 mutex_exit(p->p_lock);
270 if (error)
271 break;
272 }
273 break;
274
275 default:
276 mutex_exit(proc_lock);
277 return EINVAL;
278 }
279 mutex_exit(proc_lock);
280 if (found == 0)
281 return ESRCH;
282 return error;
283 }
284
285 /*
286 * Renice a process.
287 *
288 * Call with the target process' credentials locked.
289 */
290 int
291 donice(struct lwp *l, struct proc *chgp, int n)
292 {
293 kauth_cred_t cred = l->l_cred;
294
295 KASSERT(mutex_owned(chgp->p_lock));
296
297 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
298 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
299 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
300 return (EPERM);
301
302 if (n > PRIO_MAX)
303 n = PRIO_MAX;
304 if (n < PRIO_MIN)
305 n = PRIO_MIN;
306 n += NZERO;
307 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
308 KAUTH_ARG(n), NULL, NULL))
309 return (EACCES);
310 sched_nice(chgp, n);
311 return (0);
312 }
313
314 /* ARGSUSED */
315 int
316 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
317 register_t *retval)
318 {
319 /* {
320 syscallarg(int) which;
321 syscallarg(const struct rlimit *) rlp;
322 } */
323 int which = SCARG(uap, which);
324 struct rlimit alim;
325 int error;
326
327 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
328 if (error)
329 return (error);
330 return (dosetrlimit(l, l->l_proc, which, &alim));
331 }
332
333 int
334 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
335 {
336 struct rlimit *alimp;
337 int error;
338
339 if ((u_int)which >= RLIM_NLIMITS)
340 return (EINVAL);
341
342 if (limp->rlim_cur > limp->rlim_max) {
343 /*
344 * This is programming error. According to SUSv2, we should
345 * return error in this case.
346 */
347 return (EINVAL);
348 }
349
350 alimp = &p->p_rlimit[which];
351 /* if we don't change the value, no need to limcopy() */
352 if (limp->rlim_cur == alimp->rlim_cur &&
353 limp->rlim_max == alimp->rlim_max)
354 return 0;
355
356 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
357 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
358 if (error)
359 return (error);
360
361 lim_privatise(p);
362 /* p->p_limit is now unchangeable */
363 alimp = &p->p_rlimit[which];
364
365 switch (which) {
366
367 case RLIMIT_DATA:
368 if (limp->rlim_cur > maxdmap)
369 limp->rlim_cur = maxdmap;
370 if (limp->rlim_max > maxdmap)
371 limp->rlim_max = maxdmap;
372 break;
373
374 case RLIMIT_STACK:
375 if (limp->rlim_cur > maxsmap)
376 limp->rlim_cur = maxsmap;
377 if (limp->rlim_max > maxsmap)
378 limp->rlim_max = maxsmap;
379
380 /*
381 * Return EINVAL if the new stack size limit is lower than
382 * current usage. Otherwise, the process would get SIGSEGV the
383 * moment it would try to access anything on it's current stack.
384 * This conforms to SUSv2.
385 */
386 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
387 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
388 return (EINVAL);
389 }
390
391 /*
392 * Stack is allocated to the max at exec time with
393 * only "rlim_cur" bytes accessible (In other words,
394 * allocates stack dividing two contiguous regions at
395 * "rlim_cur" bytes boundary).
396 *
397 * Since allocation is done in terms of page, roundup
398 * "rlim_cur" (otherwise, contiguous regions
399 * overlap). If stack limit is going up make more
400 * accessible, if going down make inaccessible.
401 */
402 limp->rlim_cur = round_page(limp->rlim_cur);
403 if (limp->rlim_cur != alimp->rlim_cur) {
404 vaddr_t addr;
405 vsize_t size;
406 vm_prot_t prot;
407
408 if (limp->rlim_cur > alimp->rlim_cur) {
409 prot = VM_PROT_READ | VM_PROT_WRITE;
410 size = limp->rlim_cur - alimp->rlim_cur;
411 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
412 limp->rlim_cur;
413 } else {
414 prot = VM_PROT_NONE;
415 size = alimp->rlim_cur - limp->rlim_cur;
416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 alimp->rlim_cur;
418 }
419 (void) uvm_map_protect(&p->p_vmspace->vm_map,
420 addr, addr+size, prot, false);
421 }
422 break;
423
424 case RLIMIT_NOFILE:
425 if (limp->rlim_cur > maxfiles)
426 limp->rlim_cur = maxfiles;
427 if (limp->rlim_max > maxfiles)
428 limp->rlim_max = maxfiles;
429 break;
430
431 case RLIMIT_NPROC:
432 if (limp->rlim_cur > maxproc)
433 limp->rlim_cur = maxproc;
434 if (limp->rlim_max > maxproc)
435 limp->rlim_max = maxproc;
436 break;
437 }
438
439 mutex_enter(&p->p_limit->pl_lock);
440 *alimp = *limp;
441 mutex_exit(&p->p_limit->pl_lock);
442 return (0);
443 }
444
445 /* ARGSUSED */
446 int
447 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
448 register_t *retval)
449 {
450 /* {
451 syscallarg(int) which;
452 syscallarg(struct rlimit *) rlp;
453 } */
454 struct proc *p = l->l_proc;
455 int which = SCARG(uap, which);
456 struct rlimit rl;
457
458 if ((u_int)which >= RLIM_NLIMITS)
459 return (EINVAL);
460
461 mutex_enter(p->p_lock);
462 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
463 mutex_exit(p->p_lock);
464
465 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
466 }
467
468 /*
469 * Transform the running time and tick information in proc p into user,
470 * system, and interrupt time usage.
471 *
472 * Should be called with p->p_lock held unless called from exit1().
473 */
474 void
475 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
476 struct timeval *ip, struct timeval *rp)
477 {
478 uint64_t u, st, ut, it, tot;
479 struct lwp *l;
480 struct bintime tm;
481 struct timeval tv;
482
483 mutex_spin_enter(&p->p_stmutex);
484 st = p->p_sticks;
485 ut = p->p_uticks;
486 it = p->p_iticks;
487 mutex_spin_exit(&p->p_stmutex);
488
489 tm = p->p_rtime;
490
491 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
492 lwp_lock(l);
493 bintime_add(&tm, &l->l_rtime);
494 if ((l->l_pflag & LP_RUNNING) != 0) {
495 struct bintime diff;
496 /*
497 * Adjust for the current time slice. This is
498 * actually fairly important since the error
499 * here is on the order of a time quantum,
500 * which is much greater than the sampling
501 * error.
502 */
503 binuptime(&diff);
504 bintime_sub(&diff, &l->l_stime);
505 bintime_add(&tm, &diff);
506 }
507 lwp_unlock(l);
508 }
509
510 tot = st + ut + it;
511 bintime2timeval(&tm, &tv);
512 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
513
514 if (tot == 0) {
515 /* No ticks, so can't use to share time out, split 50-50 */
516 st = ut = u / 2;
517 } else {
518 st = (u * st) / tot;
519 ut = (u * ut) / tot;
520 }
521 if (sp != NULL) {
522 sp->tv_sec = st / 1000000;
523 sp->tv_usec = st % 1000000;
524 }
525 if (up != NULL) {
526 up->tv_sec = ut / 1000000;
527 up->tv_usec = ut % 1000000;
528 }
529 if (ip != NULL) {
530 if (it != 0)
531 it = (u * it) / tot;
532 ip->tv_sec = it / 1000000;
533 ip->tv_usec = it % 1000000;
534 }
535 if (rp != NULL) {
536 *rp = tv;
537 }
538 }
539
540 /* ARGSUSED */
541 int
542 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
543 register_t *retval)
544 {
545 /* {
546 syscallarg(int) who;
547 syscallarg(struct rusage *) rusage;
548 } */
549 struct rusage ru;
550 struct proc *p = l->l_proc;
551
552 switch (SCARG(uap, who)) {
553 case RUSAGE_SELF:
554 mutex_enter(p->p_lock);
555 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
556 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
557 rulwps(p, &ru);
558 mutex_exit(p->p_lock);
559 break;
560
561 case RUSAGE_CHILDREN:
562 mutex_enter(p->p_lock);
563 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
564 mutex_exit(p->p_lock);
565 break;
566
567 default:
568 return EINVAL;
569 }
570
571 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
572 }
573
574 void
575 ruadd(struct rusage *ru, struct rusage *ru2)
576 {
577 long *ip, *ip2;
578 int i;
579
580 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
581 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
582 if (ru->ru_maxrss < ru2->ru_maxrss)
583 ru->ru_maxrss = ru2->ru_maxrss;
584 ip = &ru->ru_first; ip2 = &ru2->ru_first;
585 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
586 *ip++ += *ip2++;
587 }
588
589 void
590 rulwps(proc_t *p, struct rusage *ru)
591 {
592 lwp_t *l;
593
594 KASSERT(mutex_owned(p->p_lock));
595
596 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
597 ruadd(ru, &l->l_ru);
598 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
599 ru->ru_nivcsw += l->l_nivcsw;
600 }
601 }
602
603 /*
604 * lim_copy: make a copy of the plimit structure.
605 *
606 * We use copy-on-write after fork, and copy when a limit is changed.
607 */
608 struct plimit *
609 lim_copy(struct plimit *lim)
610 {
611 struct plimit *newlim;
612 char *corename;
613 size_t alen, len;
614
615 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
616 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
617 newlim->pl_writeable = false;
618 newlim->pl_refcnt = 1;
619 newlim->pl_sv_limit = NULL;
620
621 mutex_enter(&lim->pl_lock);
622 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
623 sizeof(struct rlimit) * RLIM_NLIMITS);
624
625 /*
626 * Note: the common case is a use of default core name.
627 */
628 alen = 0;
629 corename = NULL;
630 for (;;) {
631 if (lim->pl_corename == defcorename) {
632 newlim->pl_corename = defcorename;
633 newlim->pl_cnlen = 0;
634 break;
635 }
636 len = lim->pl_cnlen;
637 if (len == alen) {
638 newlim->pl_corename = corename;
639 newlim->pl_cnlen = len;
640 memcpy(corename, lim->pl_corename, len);
641 corename = NULL;
642 break;
643 }
644 mutex_exit(&lim->pl_lock);
645 if (corename) {
646 kmem_free(corename, alen);
647 }
648 alen = len;
649 corename = kmem_alloc(alen, KM_SLEEP);
650 mutex_enter(&lim->pl_lock);
651 }
652 mutex_exit(&lim->pl_lock);
653
654 if (corename) {
655 kmem_free(corename, alen);
656 }
657 return newlim;
658 }
659
660 void
661 lim_addref(struct plimit *lim)
662 {
663 atomic_inc_uint(&lim->pl_refcnt);
664 }
665
666 /*
667 * lim_privatise: give a process its own private plimit structure.
668 */
669 void
670 lim_privatise(proc_t *p)
671 {
672 struct plimit *lim = p->p_limit, *newlim;
673
674 if (lim->pl_writeable) {
675 return;
676 }
677
678 newlim = lim_copy(lim);
679
680 mutex_enter(p->p_lock);
681 if (p->p_limit->pl_writeable) {
682 /* Other thread won the race. */
683 mutex_exit(p->p_lock);
684 lim_free(newlim);
685 return;
686 }
687
688 /*
689 * Since p->p_limit can be accessed without locked held,
690 * old limit structure must not be deleted yet.
691 */
692 newlim->pl_sv_limit = p->p_limit;
693 newlim->pl_writeable = true;
694 p->p_limit = newlim;
695 mutex_exit(p->p_lock);
696 }
697
698 void
699 lim_setcorename(proc_t *p, char *name, size_t len)
700 {
701 struct plimit *lim;
702 char *oname;
703 size_t olen;
704
705 lim_privatise(p);
706 lim = p->p_limit;
707
708 mutex_enter(&lim->pl_lock);
709 oname = lim->pl_corename;
710 olen = lim->pl_cnlen;
711 lim->pl_corename = name;
712 lim->pl_cnlen = len;
713 mutex_exit(&lim->pl_lock);
714
715 if (oname != defcorename) {
716 kmem_free(oname, olen);
717 }
718 }
719
720 void
721 lim_free(struct plimit *lim)
722 {
723 struct plimit *sv_lim;
724
725 do {
726 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
727 return;
728 }
729 if (lim->pl_corename != defcorename) {
730 kmem_free(lim->pl_corename, lim->pl_cnlen);
731 }
732 sv_lim = lim->pl_sv_limit;
733 mutex_destroy(&lim->pl_lock);
734 pool_cache_put(plimit_cache, lim);
735 } while ((lim = sv_lim) != NULL);
736 }
737
738 struct pstats *
739 pstatscopy(struct pstats *ps)
740 {
741
742 struct pstats *newps;
743
744 newps = pool_cache_get(pstats_cache, PR_WAITOK);
745
746 memset(&newps->pstat_startzero, 0,
747 (unsigned) ((char *)&newps->pstat_endzero -
748 (char *)&newps->pstat_startzero));
749 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
750 ((char *)&newps->pstat_endcopy -
751 (char *)&newps->pstat_startcopy));
752
753 return (newps);
754
755 }
756
757 void
758 pstatsfree(struct pstats *ps)
759 {
760
761 pool_cache_put(pstats_cache, ps);
762 }
763
764 /*
765 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
766 * need to pick a valid process by PID.
767 *
768 * => Hold a reference on the process, on success.
769 */
770 static int
771 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
772 {
773 proc_t *p;
774 int error;
775
776 if (pid == PROC_CURPROC) {
777 p = l->l_proc;
778 } else {
779 mutex_enter(proc_lock);
780 p = proc_find(pid);
781 if (p == NULL) {
782 mutex_exit(proc_lock);
783 return ESRCH;
784 }
785 }
786 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
787 if (pid != PROC_CURPROC) {
788 mutex_exit(proc_lock);
789 }
790 *p2 = p;
791 return error;
792 }
793
794 /*
795 * sysctl_proc_corename: helper routine to get or set the core file name
796 * for a process specified by PID.
797 */
798 static int
799 sysctl_proc_corename(SYSCTLFN_ARGS)
800 {
801 struct proc *p;
802 struct plimit *lim;
803 char *cnbuf, *cname;
804 struct sysctlnode node;
805 size_t len;
806 int error;
807
808 /* First, validate the request. */
809 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
810 return EINVAL;
811
812 /* Find the process. Hold a reference (p_reflock), if found. */
813 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
814 if (error)
815 return error;
816
817 /* XXX-elad */
818 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
819 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
820 if (error) {
821 rw_exit(&p->p_reflock);
822 return error;
823 }
824
825 cnbuf = PNBUF_GET();
826
827 if (newp == NULL) {
828 /* Get case: copy the core name into the buffer. */
829 error = kauth_authorize_process(l->l_cred,
830 KAUTH_PROCESS_CORENAME, p,
831 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
832 if (error) {
833 goto done;
834 }
835 lim = p->p_limit;
836 mutex_enter(&lim->pl_lock);
837 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
838 mutex_exit(&lim->pl_lock);
839 } else {
840 /* Set case: just use the temporary buffer. */
841 error = kauth_authorize_process(l->l_cred,
842 KAUTH_PROCESS_CORENAME, p,
843 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
844 if (error) {
845 goto done;
846 }
847 }
848
849 node = *rnode;
850 node.sysctl_data = cnbuf;
851 error = sysctl_lookup(SYSCTLFN_CALL(&node));
852
853 /* Return if error, or if caller is only getting the core name. */
854 if (error || newp == NULL) {
855 goto done;
856 }
857
858 /*
859 * Validate new core name. It must be either "core", "/core",
860 * or end in ".core".
861 */
862 len = strlen(cnbuf);
863 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
864 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
865 error = EINVAL;
866 goto done;
867 }
868
869 /* Allocate, copy and set the new core name for plimit structure. */
870 cname = kmem_alloc(++len, KM_NOSLEEP);
871 if (cname == NULL) {
872 error = ENOMEM;
873 goto done;
874 }
875 memcpy(cname, cnbuf, len);
876 lim_setcorename(p, cname, len);
877 done:
878 rw_exit(&p->p_reflock);
879 PNBUF_PUT(cnbuf);
880 return error;
881 }
882
883 /*
884 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
885 */
886 static int
887 sysctl_proc_stop(SYSCTLFN_ARGS)
888 {
889 struct proc *p;
890 int isset, flag, error = 0;
891 struct sysctlnode node;
892
893 if (namelen != 0)
894 return EINVAL;
895
896 /* Find the process. Hold a reference (p_reflock), if found. */
897 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
898 if (error)
899 return error;
900
901 /* XXX-elad */
902 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
903 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
904 if (error) {
905 goto out;
906 }
907
908 /* Determine the flag. */
909 switch (rnode->sysctl_num) {
910 case PROC_PID_STOPFORK:
911 flag = PS_STOPFORK;
912 break;
913 case PROC_PID_STOPEXEC:
914 flag = PS_STOPEXEC;
915 break;
916 case PROC_PID_STOPEXIT:
917 flag = PS_STOPEXIT;
918 break;
919 default:
920 error = EINVAL;
921 goto out;
922 }
923 isset = (p->p_flag & flag) ? 1 : 0;
924 node = *rnode;
925 node.sysctl_data = &isset;
926 error = sysctl_lookup(SYSCTLFN_CALL(&node));
927
928 /* Return if error, or if callers is only getting the flag. */
929 if (error || newp == NULL) {
930 goto out;
931 }
932
933 /* Check if caller can set the flags. */
934 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
935 p, KAUTH_ARG(flag), NULL, NULL);
936 if (error) {
937 goto out;
938 }
939 mutex_enter(p->p_lock);
940 if (isset) {
941 p->p_sflag |= flag;
942 } else {
943 p->p_sflag &= ~flag;
944 }
945 mutex_exit(p->p_lock);
946 out:
947 rw_exit(&p->p_reflock);
948 return error;
949 }
950
951 /*
952 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
953 */
954 static int
955 sysctl_proc_plimit(SYSCTLFN_ARGS)
956 {
957 struct proc *p;
958 u_int limitno;
959 int which, error = 0;
960 struct rlimit alim;
961 struct sysctlnode node;
962
963 if (namelen != 0)
964 return EINVAL;
965
966 which = name[-1];
967 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
968 which != PROC_PID_LIMIT_TYPE_HARD)
969 return EINVAL;
970
971 limitno = name[-2] - 1;
972 if (limitno >= RLIM_NLIMITS)
973 return EINVAL;
974
975 if (name[-3] != PROC_PID_LIMIT)
976 return EINVAL;
977
978 /* Find the process. Hold a reference (p_reflock), if found. */
979 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
980 if (error)
981 return error;
982
983 /* XXX-elad */
984 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
985 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
986 if (error)
987 goto out;
988
989 /* Check if caller can retrieve the limits. */
990 if (newp == NULL) {
991 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
992 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
993 KAUTH_ARG(which));
994 if (error)
995 goto out;
996 }
997
998 /* Retrieve the limits. */
999 node = *rnode;
1000 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1001 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1002 node.sysctl_data = &alim.rlim_max;
1003 } else {
1004 node.sysctl_data = &alim.rlim_cur;
1005 }
1006 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1007
1008 /* Return if error, or if we are only retrieving the limits. */
1009 if (error || newp == NULL) {
1010 goto out;
1011 }
1012 error = dosetrlimit(l, p, limitno, &alim);
1013 out:
1014 rw_exit(&p->p_reflock);
1015 return error;
1016 }
1017
1018 static struct sysctllog *proc_sysctllog;
1019
1020 /*
1021 * and finally, the actually glue that sticks it to the tree
1022 */
1023 static void
1024 sysctl_proc_setup()
1025 {
1026
1027 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1028 CTLFLAG_PERMANENT,
1029 CTLTYPE_NODE, "proc", NULL,
1030 NULL, 0, NULL, 0,
1031 CTL_PROC, CTL_EOL);
1032 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1033 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1034 CTLTYPE_NODE, "curproc",
1035 SYSCTL_DESCR("Per-process settings"),
1036 NULL, 0, NULL, 0,
1037 CTL_PROC, PROC_CURPROC, CTL_EOL);
1038
1039 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1040 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1041 CTLTYPE_STRING, "corename",
1042 SYSCTL_DESCR("Core file name"),
1043 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1044 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1045 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1046 CTLFLAG_PERMANENT,
1047 CTLTYPE_NODE, "rlimit",
1048 SYSCTL_DESCR("Process limits"),
1049 NULL, 0, NULL, 0,
1050 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1051
1052 #define create_proc_plimit(s, n) do { \
1053 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1054 CTLFLAG_PERMANENT, \
1055 CTLTYPE_NODE, s, \
1056 SYSCTL_DESCR("Process " s " limits"), \
1057 NULL, 0, NULL, 0, \
1058 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1059 CTL_EOL); \
1060 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1061 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1062 CTLTYPE_QUAD, "soft", \
1063 SYSCTL_DESCR("Process soft " s " limit"), \
1064 sysctl_proc_plimit, 0, NULL, 0, \
1065 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1066 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1067 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1068 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1069 CTLTYPE_QUAD, "hard", \
1070 SYSCTL_DESCR("Process hard " s " limit"), \
1071 sysctl_proc_plimit, 0, NULL, 0, \
1072 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1073 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1074 } while (0/*CONSTCOND*/)
1075
1076 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1077 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1078 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1079 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1080 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1081 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1082 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1083 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1084 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1085 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1086 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1087
1088 #undef create_proc_plimit
1089
1090 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1091 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1092 CTLTYPE_INT, "stopfork",
1093 SYSCTL_DESCR("Stop process at fork(2)"),
1094 sysctl_proc_stop, 0, NULL, 0,
1095 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1096 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1098 CTLTYPE_INT, "stopexec",
1099 SYSCTL_DESCR("Stop process at execve(2)"),
1100 sysctl_proc_stop, 0, NULL, 0,
1101 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1102 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1103 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1104 CTLTYPE_INT, "stopexit",
1105 SYSCTL_DESCR("Stop process before completing exit"),
1106 sysctl_proc_stop, 0, NULL, 0,
1107 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1108 }
1109