kern_resource.c revision 1.167.2.2 1 /* $NetBSD: kern_resource.c,v 1.167.2.2 2012/10/30 17:22:30 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.167.2.2 2012/10/30 17:22:30 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on it's current stack.
389 * This conforms to SUSv2.
390 */
391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_cur = round_page(limp->rlim_cur);
408 if (limp->rlim_cur != alimp->rlim_cur) {
409 vaddr_t addr;
410 vsize_t size;
411 vm_prot_t prot;
412
413 if (limp->rlim_cur > alimp->rlim_cur) {
414 prot = VM_PROT_READ | VM_PROT_WRITE;
415 size = limp->rlim_cur - alimp->rlim_cur;
416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 limp->rlim_cur;
418 } else {
419 prot = VM_PROT_NONE;
420 size = alimp->rlim_cur - limp->rlim_cur;
421 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
422 alimp->rlim_cur;
423 }
424 (void) uvm_map_protect(&p->p_vmspace->vm_map,
425 addr, addr+size, prot, false);
426 }
427 break;
428
429 case RLIMIT_NOFILE:
430 if (limp->rlim_cur > maxfiles)
431 limp->rlim_cur = maxfiles;
432 if (limp->rlim_max > maxfiles)
433 limp->rlim_max = maxfiles;
434 break;
435
436 case RLIMIT_NPROC:
437 if (limp->rlim_cur > maxproc)
438 limp->rlim_cur = maxproc;
439 if (limp->rlim_max > maxproc)
440 limp->rlim_max = maxproc;
441 break;
442
443 case RLIMIT_NTHR:
444 if (limp->rlim_cur > maxlwp)
445 limp->rlim_cur = maxlwp;
446 if (limp->rlim_max > maxlwp)
447 limp->rlim_max = maxlwp;
448 break;
449 }
450
451 mutex_enter(&p->p_limit->pl_lock);
452 *alimp = *limp;
453 mutex_exit(&p->p_limit->pl_lock);
454 return 0;
455 }
456
457 int
458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
459 register_t *retval)
460 {
461 /* {
462 syscallarg(int) which;
463 syscallarg(struct rlimit *) rlp;
464 } */
465 struct proc *p = l->l_proc;
466 int which = SCARG(uap, which);
467 struct rlimit rl;
468
469 if ((u_int)which >= RLIM_NLIMITS)
470 return EINVAL;
471
472 mutex_enter(p->p_lock);
473 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
474 mutex_exit(p->p_lock);
475
476 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
477 }
478
479 /*
480 * Transform the running time and tick information in proc p into user,
481 * system, and interrupt time usage.
482 *
483 * Should be called with p->p_lock held unless called from exit1().
484 */
485 void
486 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
487 struct timeval *ip, struct timeval *rp)
488 {
489 uint64_t u, st, ut, it, tot;
490 struct lwp *l;
491 struct bintime tm;
492 struct timeval tv;
493
494 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
495
496 mutex_spin_enter(&p->p_stmutex);
497 st = p->p_sticks;
498 ut = p->p_uticks;
499 it = p->p_iticks;
500 mutex_spin_exit(&p->p_stmutex);
501
502 tm = p->p_rtime;
503
504 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
505 lwp_lock(l);
506 bintime_add(&tm, &l->l_rtime);
507 if ((l->l_pflag & LP_RUNNING) != 0) {
508 struct bintime diff;
509 /*
510 * Adjust for the current time slice. This is
511 * actually fairly important since the error
512 * here is on the order of a time quantum,
513 * which is much greater than the sampling
514 * error.
515 */
516 binuptime(&diff);
517 bintime_sub(&diff, &l->l_stime);
518 bintime_add(&tm, &diff);
519 }
520 lwp_unlock(l);
521 }
522
523 tot = st + ut + it;
524 bintime2timeval(&tm, &tv);
525 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
526
527 if (tot == 0) {
528 /* No ticks, so can't use to share time out, split 50-50 */
529 st = ut = u / 2;
530 } else {
531 st = (u * st) / tot;
532 ut = (u * ut) / tot;
533 }
534 if (sp != NULL) {
535 sp->tv_sec = st / 1000000;
536 sp->tv_usec = st % 1000000;
537 }
538 if (up != NULL) {
539 up->tv_sec = ut / 1000000;
540 up->tv_usec = ut % 1000000;
541 }
542 if (ip != NULL) {
543 if (it != 0)
544 it = (u * it) / tot;
545 ip->tv_sec = it / 1000000;
546 ip->tv_usec = it % 1000000;
547 }
548 if (rp != NULL) {
549 *rp = tv;
550 }
551 }
552
553 int
554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
555 register_t *retval)
556 {
557 /* {
558 syscallarg(int) who;
559 syscallarg(struct rusage *) rusage;
560 } */
561 struct rusage ru;
562 struct proc *p = l->l_proc;
563
564 switch (SCARG(uap, who)) {
565 case RUSAGE_SELF:
566 mutex_enter(p->p_lock);
567 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
568 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
569 rulwps(p, &ru);
570 mutex_exit(p->p_lock);
571 break;
572
573 case RUSAGE_CHILDREN:
574 mutex_enter(p->p_lock);
575 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
576 mutex_exit(p->p_lock);
577 break;
578
579 default:
580 return EINVAL;
581 }
582
583 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
584 }
585
586 void
587 ruadd(struct rusage *ru, struct rusage *ru2)
588 {
589 long *ip, *ip2;
590 int i;
591
592 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
593 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
594 if (ru->ru_maxrss < ru2->ru_maxrss)
595 ru->ru_maxrss = ru2->ru_maxrss;
596 ip = &ru->ru_first; ip2 = &ru2->ru_first;
597 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
598 *ip++ += *ip2++;
599 }
600
601 void
602 rulwps(proc_t *p, struct rusage *ru)
603 {
604 lwp_t *l;
605
606 KASSERT(mutex_owned(p->p_lock));
607
608 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
609 ruadd(ru, &l->l_ru);
610 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
611 ru->ru_nivcsw += l->l_nivcsw;
612 }
613 }
614
615 /*
616 * lim_copy: make a copy of the plimit structure.
617 *
618 * We use copy-on-write after fork, and copy when a limit is changed.
619 */
620 struct plimit *
621 lim_copy(struct plimit *lim)
622 {
623 struct plimit *newlim;
624 char *corename;
625 size_t alen, len;
626
627 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
628 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
629 newlim->pl_writeable = false;
630 newlim->pl_refcnt = 1;
631 newlim->pl_sv_limit = NULL;
632
633 mutex_enter(&lim->pl_lock);
634 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
635 sizeof(struct rlimit) * RLIM_NLIMITS);
636
637 /*
638 * Note: the common case is a use of default core name.
639 */
640 alen = 0;
641 corename = NULL;
642 for (;;) {
643 if (lim->pl_corename == defcorename) {
644 newlim->pl_corename = defcorename;
645 newlim->pl_cnlen = 0;
646 break;
647 }
648 len = lim->pl_cnlen;
649 if (len == alen) {
650 newlim->pl_corename = corename;
651 newlim->pl_cnlen = len;
652 memcpy(corename, lim->pl_corename, len);
653 corename = NULL;
654 break;
655 }
656 mutex_exit(&lim->pl_lock);
657 if (corename) {
658 kmem_free(corename, alen);
659 }
660 alen = len;
661 corename = kmem_alloc(alen, KM_SLEEP);
662 mutex_enter(&lim->pl_lock);
663 }
664 mutex_exit(&lim->pl_lock);
665
666 if (corename) {
667 kmem_free(corename, alen);
668 }
669 return newlim;
670 }
671
672 void
673 lim_addref(struct plimit *lim)
674 {
675 atomic_inc_uint(&lim->pl_refcnt);
676 }
677
678 /*
679 * lim_privatise: give a process its own private plimit structure.
680 */
681 void
682 lim_privatise(proc_t *p)
683 {
684 struct plimit *lim = p->p_limit, *newlim;
685
686 if (lim->pl_writeable) {
687 return;
688 }
689
690 newlim = lim_copy(lim);
691
692 mutex_enter(p->p_lock);
693 if (p->p_limit->pl_writeable) {
694 /* Other thread won the race. */
695 mutex_exit(p->p_lock);
696 lim_free(newlim);
697 return;
698 }
699
700 /*
701 * Since p->p_limit can be accessed without locked held,
702 * old limit structure must not be deleted yet.
703 */
704 newlim->pl_sv_limit = p->p_limit;
705 newlim->pl_writeable = true;
706 p->p_limit = newlim;
707 mutex_exit(p->p_lock);
708 }
709
710 void
711 lim_setcorename(proc_t *p, char *name, size_t len)
712 {
713 struct plimit *lim;
714 char *oname;
715 size_t olen;
716
717 lim_privatise(p);
718 lim = p->p_limit;
719
720 mutex_enter(&lim->pl_lock);
721 oname = lim->pl_corename;
722 olen = lim->pl_cnlen;
723 lim->pl_corename = name;
724 lim->pl_cnlen = len;
725 mutex_exit(&lim->pl_lock);
726
727 if (oname != defcorename) {
728 kmem_free(oname, olen);
729 }
730 }
731
732 void
733 lim_free(struct plimit *lim)
734 {
735 struct plimit *sv_lim;
736
737 do {
738 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
739 return;
740 }
741 if (lim->pl_corename != defcorename) {
742 kmem_free(lim->pl_corename, lim->pl_cnlen);
743 }
744 sv_lim = lim->pl_sv_limit;
745 mutex_destroy(&lim->pl_lock);
746 pool_cache_put(plimit_cache, lim);
747 } while ((lim = sv_lim) != NULL);
748 }
749
750 struct pstats *
751 pstatscopy(struct pstats *ps)
752 {
753 struct pstats *nps;
754 size_t len;
755
756 nps = pool_cache_get(pstats_cache, PR_WAITOK);
757
758 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
759 memset(&nps->pstat_startzero, 0, len);
760
761 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
762 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
763
764 return nps;
765 }
766
767 void
768 pstatsfree(struct pstats *ps)
769 {
770
771 pool_cache_put(pstats_cache, ps);
772 }
773
774 /*
775 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
776 * need to pick a valid process by PID.
777 *
778 * => Hold a reference on the process, on success.
779 */
780 static int
781 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
782 {
783 proc_t *p;
784 int error;
785
786 if (pid == PROC_CURPROC) {
787 p = l->l_proc;
788 } else {
789 mutex_enter(proc_lock);
790 p = proc_find(pid);
791 if (p == NULL) {
792 mutex_exit(proc_lock);
793 return ESRCH;
794 }
795 }
796 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
797 if (pid != PROC_CURPROC) {
798 mutex_exit(proc_lock);
799 }
800 *p2 = p;
801 return error;
802 }
803
804 /*
805 * sysctl_proc_corename: helper routine to get or set the core file name
806 * for a process specified by PID.
807 */
808 static int
809 sysctl_proc_corename(SYSCTLFN_ARGS)
810 {
811 struct proc *p;
812 struct plimit *lim;
813 char *cnbuf, *cname;
814 struct sysctlnode node;
815 size_t len;
816 int error;
817
818 /* First, validate the request. */
819 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
820 return EINVAL;
821
822 /* Find the process. Hold a reference (p_reflock), if found. */
823 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
824 if (error)
825 return error;
826
827 /* XXX-elad */
828 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
829 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
830 if (error) {
831 rw_exit(&p->p_reflock);
832 return error;
833 }
834
835 cnbuf = PNBUF_GET();
836
837 if (oldp) {
838 /* Get case: copy the core name into the buffer. */
839 error = kauth_authorize_process(l->l_cred,
840 KAUTH_PROCESS_CORENAME, p,
841 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
842 if (error) {
843 goto done;
844 }
845 lim = p->p_limit;
846 mutex_enter(&lim->pl_lock);
847 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
848 mutex_exit(&lim->pl_lock);
849 }
850
851 node = *rnode;
852 node.sysctl_data = cnbuf;
853 error = sysctl_lookup(SYSCTLFN_CALL(&node));
854
855 /* Return if error, or if caller is only getting the core name. */
856 if (error || newp == NULL) {
857 goto done;
858 }
859
860 /*
861 * Set case. Check permission and then validate new core name.
862 * It must be either "core", "/core", or end in ".core".
863 */
864 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
865 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
866 if (error) {
867 goto done;
868 }
869 len = strlen(cnbuf);
870 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
871 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
872 error = EINVAL;
873 goto done;
874 }
875
876 /* Allocate, copy and set the new core name for plimit structure. */
877 cname = kmem_alloc(++len, KM_NOSLEEP);
878 if (cname == NULL) {
879 error = ENOMEM;
880 goto done;
881 }
882 memcpy(cname, cnbuf, len);
883 lim_setcorename(p, cname, len);
884 done:
885 rw_exit(&p->p_reflock);
886 PNBUF_PUT(cnbuf);
887 return error;
888 }
889
890 /*
891 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
892 */
893 static int
894 sysctl_proc_stop(SYSCTLFN_ARGS)
895 {
896 struct proc *p;
897 int isset, flag, error = 0;
898 struct sysctlnode node;
899
900 if (namelen != 0)
901 return EINVAL;
902
903 /* Find the process. Hold a reference (p_reflock), if found. */
904 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
905 if (error)
906 return error;
907
908 /* XXX-elad */
909 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
910 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
911 if (error) {
912 goto out;
913 }
914
915 /* Determine the flag. */
916 switch (rnode->sysctl_num) {
917 case PROC_PID_STOPFORK:
918 flag = PS_STOPFORK;
919 break;
920 case PROC_PID_STOPEXEC:
921 flag = PS_STOPEXEC;
922 break;
923 case PROC_PID_STOPEXIT:
924 flag = PS_STOPEXIT;
925 break;
926 default:
927 error = EINVAL;
928 goto out;
929 }
930 isset = (p->p_flag & flag) ? 1 : 0;
931 node = *rnode;
932 node.sysctl_data = &isset;
933 error = sysctl_lookup(SYSCTLFN_CALL(&node));
934
935 /* Return if error, or if callers is only getting the flag. */
936 if (error || newp == NULL) {
937 goto out;
938 }
939
940 /* Check if caller can set the flags. */
941 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
942 p, KAUTH_ARG(flag), NULL, NULL);
943 if (error) {
944 goto out;
945 }
946 mutex_enter(p->p_lock);
947 if (isset) {
948 p->p_sflag |= flag;
949 } else {
950 p->p_sflag &= ~flag;
951 }
952 mutex_exit(p->p_lock);
953 out:
954 rw_exit(&p->p_reflock);
955 return error;
956 }
957
958 /*
959 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
960 */
961 static int
962 sysctl_proc_plimit(SYSCTLFN_ARGS)
963 {
964 struct proc *p;
965 u_int limitno;
966 int which, error = 0;
967 struct rlimit alim;
968 struct sysctlnode node;
969
970 if (namelen != 0)
971 return EINVAL;
972
973 which = name[-1];
974 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
975 which != PROC_PID_LIMIT_TYPE_HARD)
976 return EINVAL;
977
978 limitno = name[-2] - 1;
979 if (limitno >= RLIM_NLIMITS)
980 return EINVAL;
981
982 if (name[-3] != PROC_PID_LIMIT)
983 return EINVAL;
984
985 /* Find the process. Hold a reference (p_reflock), if found. */
986 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
987 if (error)
988 return error;
989
990 /* XXX-elad */
991 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
992 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
993 if (error)
994 goto out;
995
996 /* Check if caller can retrieve the limits. */
997 if (newp == NULL) {
998 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
999 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1000 KAUTH_ARG(which));
1001 if (error)
1002 goto out;
1003 }
1004
1005 /* Retrieve the limits. */
1006 node = *rnode;
1007 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1008 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1009 node.sysctl_data = &alim.rlim_max;
1010 } else {
1011 node.sysctl_data = &alim.rlim_cur;
1012 }
1013 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1014
1015 /* Return if error, or if we are only retrieving the limits. */
1016 if (error || newp == NULL) {
1017 goto out;
1018 }
1019 error = dosetrlimit(l, p, limitno, &alim);
1020 out:
1021 rw_exit(&p->p_reflock);
1022 return error;
1023 }
1024
1025 /*
1026 * Setup sysctl nodes.
1027 */
1028 static void
1029 sysctl_proc_setup(void)
1030 {
1031
1032 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1033 CTLFLAG_PERMANENT,
1034 CTLTYPE_NODE, "proc", NULL,
1035 NULL, 0, NULL, 0,
1036 CTL_PROC, CTL_EOL);
1037 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1038 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1039 CTLTYPE_NODE, "curproc",
1040 SYSCTL_DESCR("Per-process settings"),
1041 NULL, 0, NULL, 0,
1042 CTL_PROC, PROC_CURPROC, CTL_EOL);
1043
1044 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1045 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1046 CTLTYPE_STRING, "corename",
1047 SYSCTL_DESCR("Core file name"),
1048 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1049 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1050 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1051 CTLFLAG_PERMANENT,
1052 CTLTYPE_NODE, "rlimit",
1053 SYSCTL_DESCR("Process limits"),
1054 NULL, 0, NULL, 0,
1055 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1056
1057 #define create_proc_plimit(s, n) do { \
1058 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1059 CTLFLAG_PERMANENT, \
1060 CTLTYPE_NODE, s, \
1061 SYSCTL_DESCR("Process " s " limits"), \
1062 NULL, 0, NULL, 0, \
1063 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1064 CTL_EOL); \
1065 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1066 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1067 CTLTYPE_QUAD, "soft", \
1068 SYSCTL_DESCR("Process soft " s " limit"), \
1069 sysctl_proc_plimit, 0, NULL, 0, \
1070 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1071 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1072 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1073 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1074 CTLTYPE_QUAD, "hard", \
1075 SYSCTL_DESCR("Process hard " s " limit"), \
1076 sysctl_proc_plimit, 0, NULL, 0, \
1077 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1078 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1079 } while (0/*CONSTCOND*/)
1080
1081 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1082 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1083 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1084 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1085 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1086 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1087 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1088 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1089 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1090 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1091 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1092 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1093
1094 #undef create_proc_plimit
1095
1096 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1098 CTLTYPE_INT, "stopfork",
1099 SYSCTL_DESCR("Stop process at fork(2)"),
1100 sysctl_proc_stop, 0, NULL, 0,
1101 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1102 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1103 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1104 CTLTYPE_INT, "stopexec",
1105 SYSCTL_DESCR("Stop process at execve(2)"),
1106 sysctl_proc_stop, 0, NULL, 0,
1107 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1108 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1109 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1110 CTLTYPE_INT, "stopexit",
1111 SYSCTL_DESCR("Stop process before completing exit"),
1112 sysctl_proc_stop, 0, NULL, 0,
1113 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1114 }
1115