kern_resource.c revision 1.168 1 /* $NetBSD: kern_resource.c,v 1.168 2011/12/02 12:33:12 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.168 2011/12/02 12:33:12 yamt Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on it's current stack.
389 * This conforms to SUSv2.
390 */
391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_cur = round_page(limp->rlim_cur);
408 if (limp->rlim_cur != alimp->rlim_cur) {
409 vaddr_t addr;
410 vsize_t size;
411 vm_prot_t prot;
412
413 if (limp->rlim_cur > alimp->rlim_cur) {
414 prot = VM_PROT_READ | VM_PROT_WRITE;
415 size = limp->rlim_cur - alimp->rlim_cur;
416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 limp->rlim_cur;
418 } else {
419 prot = VM_PROT_NONE;
420 size = alimp->rlim_cur - limp->rlim_cur;
421 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
422 alimp->rlim_cur;
423 }
424 (void) uvm_map_protect(&p->p_vmspace->vm_map,
425 addr, addr+size, prot, false);
426 }
427 break;
428
429 case RLIMIT_NOFILE:
430 if (limp->rlim_cur > maxfiles)
431 limp->rlim_cur = maxfiles;
432 if (limp->rlim_max > maxfiles)
433 limp->rlim_max = maxfiles;
434 break;
435
436 case RLIMIT_NPROC:
437 if (limp->rlim_cur > maxproc)
438 limp->rlim_cur = maxproc;
439 if (limp->rlim_max > maxproc)
440 limp->rlim_max = maxproc;
441 break;
442 }
443
444 mutex_enter(&p->p_limit->pl_lock);
445 *alimp = *limp;
446 mutex_exit(&p->p_limit->pl_lock);
447 return 0;
448 }
449
450 int
451 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
452 register_t *retval)
453 {
454 /* {
455 syscallarg(int) which;
456 syscallarg(struct rlimit *) rlp;
457 } */
458 struct proc *p = l->l_proc;
459 int which = SCARG(uap, which);
460 struct rlimit rl;
461
462 if ((u_int)which >= RLIM_NLIMITS)
463 return EINVAL;
464
465 mutex_enter(p->p_lock);
466 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
467 mutex_exit(p->p_lock);
468
469 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
470 }
471
472 /*
473 * Transform the running time and tick information in proc p into user,
474 * system, and interrupt time usage.
475 *
476 * Should be called with p->p_lock held unless called from exit1().
477 */
478 void
479 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
480 struct timeval *ip, struct timeval *rp)
481 {
482 uint64_t u, st, ut, it, tot;
483 struct lwp *l;
484 struct bintime tm;
485 struct timeval tv;
486
487 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
488
489 mutex_spin_enter(&p->p_stmutex);
490 st = p->p_sticks;
491 ut = p->p_uticks;
492 it = p->p_iticks;
493 mutex_spin_exit(&p->p_stmutex);
494
495 tm = p->p_rtime;
496
497 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
498 lwp_lock(l);
499 bintime_add(&tm, &l->l_rtime);
500 if ((l->l_pflag & LP_RUNNING) != 0) {
501 struct bintime diff;
502 /*
503 * Adjust for the current time slice. This is
504 * actually fairly important since the error
505 * here is on the order of a time quantum,
506 * which is much greater than the sampling
507 * error.
508 */
509 binuptime(&diff);
510 bintime_sub(&diff, &l->l_stime);
511 bintime_add(&tm, &diff);
512 }
513 lwp_unlock(l);
514 }
515
516 tot = st + ut + it;
517 bintime2timeval(&tm, &tv);
518 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
519
520 if (tot == 0) {
521 /* No ticks, so can't use to share time out, split 50-50 */
522 st = ut = u / 2;
523 } else {
524 st = (u * st) / tot;
525 ut = (u * ut) / tot;
526 }
527 if (sp != NULL) {
528 sp->tv_sec = st / 1000000;
529 sp->tv_usec = st % 1000000;
530 }
531 if (up != NULL) {
532 up->tv_sec = ut / 1000000;
533 up->tv_usec = ut % 1000000;
534 }
535 if (ip != NULL) {
536 if (it != 0)
537 it = (u * it) / tot;
538 ip->tv_sec = it / 1000000;
539 ip->tv_usec = it % 1000000;
540 }
541 if (rp != NULL) {
542 *rp = tv;
543 }
544 }
545
546 int
547 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
548 register_t *retval)
549 {
550 /* {
551 syscallarg(int) who;
552 syscallarg(struct rusage *) rusage;
553 } */
554 struct rusage ru;
555 struct proc *p = l->l_proc;
556
557 switch (SCARG(uap, who)) {
558 case RUSAGE_SELF:
559 mutex_enter(p->p_lock);
560 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
561 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
562 rulwps(p, &ru);
563 mutex_exit(p->p_lock);
564 break;
565
566 case RUSAGE_CHILDREN:
567 mutex_enter(p->p_lock);
568 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
569 mutex_exit(p->p_lock);
570 break;
571
572 default:
573 return EINVAL;
574 }
575
576 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
577 }
578
579 void
580 ruadd(struct rusage *ru, struct rusage *ru2)
581 {
582 long *ip, *ip2;
583 int i;
584
585 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
586 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
587 if (ru->ru_maxrss < ru2->ru_maxrss)
588 ru->ru_maxrss = ru2->ru_maxrss;
589 ip = &ru->ru_first; ip2 = &ru2->ru_first;
590 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
591 *ip++ += *ip2++;
592 }
593
594 void
595 rulwps(proc_t *p, struct rusage *ru)
596 {
597 lwp_t *l;
598
599 KASSERT(mutex_owned(p->p_lock));
600
601 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
602 ruadd(ru, &l->l_ru);
603 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
604 ru->ru_nivcsw += l->l_nivcsw;
605 }
606 }
607
608 /*
609 * lim_copy: make a copy of the plimit structure.
610 *
611 * We use copy-on-write after fork, and copy when a limit is changed.
612 */
613 struct plimit *
614 lim_copy(struct plimit *lim)
615 {
616 struct plimit *newlim;
617 char *corename;
618 size_t alen, len;
619
620 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
621 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
622 newlim->pl_writeable = false;
623 newlim->pl_refcnt = 1;
624 newlim->pl_sv_limit = NULL;
625
626 mutex_enter(&lim->pl_lock);
627 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
628 sizeof(struct rlimit) * RLIM_NLIMITS);
629
630 /*
631 * Note: the common case is a use of default core name.
632 */
633 alen = 0;
634 corename = NULL;
635 for (;;) {
636 if (lim->pl_corename == defcorename) {
637 newlim->pl_corename = defcorename;
638 newlim->pl_cnlen = 0;
639 break;
640 }
641 len = lim->pl_cnlen;
642 if (len == alen) {
643 newlim->pl_corename = corename;
644 newlim->pl_cnlen = len;
645 memcpy(corename, lim->pl_corename, len);
646 corename = NULL;
647 break;
648 }
649 mutex_exit(&lim->pl_lock);
650 if (corename) {
651 kmem_free(corename, alen);
652 }
653 alen = len;
654 corename = kmem_alloc(alen, KM_SLEEP);
655 mutex_enter(&lim->pl_lock);
656 }
657 mutex_exit(&lim->pl_lock);
658
659 if (corename) {
660 kmem_free(corename, alen);
661 }
662 return newlim;
663 }
664
665 void
666 lim_addref(struct plimit *lim)
667 {
668 atomic_inc_uint(&lim->pl_refcnt);
669 }
670
671 /*
672 * lim_privatise: give a process its own private plimit structure.
673 */
674 void
675 lim_privatise(proc_t *p)
676 {
677 struct plimit *lim = p->p_limit, *newlim;
678
679 if (lim->pl_writeable) {
680 return;
681 }
682
683 newlim = lim_copy(lim);
684
685 mutex_enter(p->p_lock);
686 if (p->p_limit->pl_writeable) {
687 /* Other thread won the race. */
688 mutex_exit(p->p_lock);
689 lim_free(newlim);
690 return;
691 }
692
693 /*
694 * Since p->p_limit can be accessed without locked held,
695 * old limit structure must not be deleted yet.
696 */
697 newlim->pl_sv_limit = p->p_limit;
698 newlim->pl_writeable = true;
699 p->p_limit = newlim;
700 mutex_exit(p->p_lock);
701 }
702
703 void
704 lim_setcorename(proc_t *p, char *name, size_t len)
705 {
706 struct plimit *lim;
707 char *oname;
708 size_t olen;
709
710 lim_privatise(p);
711 lim = p->p_limit;
712
713 mutex_enter(&lim->pl_lock);
714 oname = lim->pl_corename;
715 olen = lim->pl_cnlen;
716 lim->pl_corename = name;
717 lim->pl_cnlen = len;
718 mutex_exit(&lim->pl_lock);
719
720 if (oname != defcorename) {
721 kmem_free(oname, olen);
722 }
723 }
724
725 void
726 lim_free(struct plimit *lim)
727 {
728 struct plimit *sv_lim;
729
730 do {
731 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
732 return;
733 }
734 if (lim->pl_corename != defcorename) {
735 kmem_free(lim->pl_corename, lim->pl_cnlen);
736 }
737 sv_lim = lim->pl_sv_limit;
738 mutex_destroy(&lim->pl_lock);
739 pool_cache_put(plimit_cache, lim);
740 } while ((lim = sv_lim) != NULL);
741 }
742
743 struct pstats *
744 pstatscopy(struct pstats *ps)
745 {
746 struct pstats *nps;
747 size_t len;
748
749 nps = pool_cache_get(pstats_cache, PR_WAITOK);
750
751 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
752 memset(&nps->pstat_startzero, 0, len);
753
754 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
755 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
756
757 return nps;
758 }
759
760 void
761 pstatsfree(struct pstats *ps)
762 {
763
764 pool_cache_put(pstats_cache, ps);
765 }
766
767 /*
768 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
769 * need to pick a valid process by PID.
770 *
771 * => Hold a reference on the process, on success.
772 */
773 static int
774 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
775 {
776 proc_t *p;
777 int error;
778
779 if (pid == PROC_CURPROC) {
780 p = l->l_proc;
781 } else {
782 mutex_enter(proc_lock);
783 p = proc_find(pid);
784 if (p == NULL) {
785 mutex_exit(proc_lock);
786 return ESRCH;
787 }
788 }
789 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
790 if (pid != PROC_CURPROC) {
791 mutex_exit(proc_lock);
792 }
793 *p2 = p;
794 return error;
795 }
796
797 /*
798 * sysctl_proc_corename: helper routine to get or set the core file name
799 * for a process specified by PID.
800 */
801 static int
802 sysctl_proc_corename(SYSCTLFN_ARGS)
803 {
804 struct proc *p;
805 struct plimit *lim;
806 char *cnbuf, *cname;
807 struct sysctlnode node;
808 size_t len;
809 int error;
810
811 /* First, validate the request. */
812 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
813 return EINVAL;
814
815 /* Find the process. Hold a reference (p_reflock), if found. */
816 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
817 if (error)
818 return error;
819
820 /* XXX-elad */
821 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
822 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
823 if (error) {
824 rw_exit(&p->p_reflock);
825 return error;
826 }
827
828 cnbuf = PNBUF_GET();
829
830 if (oldp) {
831 /* Get case: copy the core name into the buffer. */
832 error = kauth_authorize_process(l->l_cred,
833 KAUTH_PROCESS_CORENAME, p,
834 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
835 if (error) {
836 goto done;
837 }
838 lim = p->p_limit;
839 mutex_enter(&lim->pl_lock);
840 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
841 mutex_exit(&lim->pl_lock);
842 }
843
844 node = *rnode;
845 node.sysctl_data = cnbuf;
846 error = sysctl_lookup(SYSCTLFN_CALL(&node));
847
848 /* Return if error, or if caller is only getting the core name. */
849 if (error || newp == NULL) {
850 goto done;
851 }
852
853 /*
854 * Set case. Check permission and then validate new core name.
855 * It must be either "core", "/core", or end in ".core".
856 */
857 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
858 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
859 if (error) {
860 goto done;
861 }
862 len = strlen(cnbuf);
863 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
864 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
865 error = EINVAL;
866 goto done;
867 }
868
869 /* Allocate, copy and set the new core name for plimit structure. */
870 cname = kmem_alloc(++len, KM_NOSLEEP);
871 if (cname == NULL) {
872 error = ENOMEM;
873 goto done;
874 }
875 memcpy(cname, cnbuf, len);
876 lim_setcorename(p, cname, len);
877 done:
878 rw_exit(&p->p_reflock);
879 PNBUF_PUT(cnbuf);
880 return error;
881 }
882
883 /*
884 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
885 */
886 static int
887 sysctl_proc_stop(SYSCTLFN_ARGS)
888 {
889 struct proc *p;
890 int isset, flag, error = 0;
891 struct sysctlnode node;
892
893 if (namelen != 0)
894 return EINVAL;
895
896 /* Find the process. Hold a reference (p_reflock), if found. */
897 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
898 if (error)
899 return error;
900
901 /* XXX-elad */
902 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
903 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
904 if (error) {
905 goto out;
906 }
907
908 /* Determine the flag. */
909 switch (rnode->sysctl_num) {
910 case PROC_PID_STOPFORK:
911 flag = PS_STOPFORK;
912 break;
913 case PROC_PID_STOPEXEC:
914 flag = PS_STOPEXEC;
915 break;
916 case PROC_PID_STOPEXIT:
917 flag = PS_STOPEXIT;
918 break;
919 default:
920 error = EINVAL;
921 goto out;
922 }
923 isset = (p->p_flag & flag) ? 1 : 0;
924 node = *rnode;
925 node.sysctl_data = &isset;
926 error = sysctl_lookup(SYSCTLFN_CALL(&node));
927
928 /* Return if error, or if callers is only getting the flag. */
929 if (error || newp == NULL) {
930 goto out;
931 }
932
933 /* Check if caller can set the flags. */
934 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
935 p, KAUTH_ARG(flag), NULL, NULL);
936 if (error) {
937 goto out;
938 }
939 mutex_enter(p->p_lock);
940 if (isset) {
941 p->p_sflag |= flag;
942 } else {
943 p->p_sflag &= ~flag;
944 }
945 mutex_exit(p->p_lock);
946 out:
947 rw_exit(&p->p_reflock);
948 return error;
949 }
950
951 /*
952 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
953 */
954 static int
955 sysctl_proc_plimit(SYSCTLFN_ARGS)
956 {
957 struct proc *p;
958 u_int limitno;
959 int which, error = 0;
960 struct rlimit alim;
961 struct sysctlnode node;
962
963 if (namelen != 0)
964 return EINVAL;
965
966 which = name[-1];
967 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
968 which != PROC_PID_LIMIT_TYPE_HARD)
969 return EINVAL;
970
971 limitno = name[-2] - 1;
972 if (limitno >= RLIM_NLIMITS)
973 return EINVAL;
974
975 if (name[-3] != PROC_PID_LIMIT)
976 return EINVAL;
977
978 /* Find the process. Hold a reference (p_reflock), if found. */
979 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
980 if (error)
981 return error;
982
983 /* XXX-elad */
984 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
985 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
986 if (error)
987 goto out;
988
989 /* Check if caller can retrieve the limits. */
990 if (newp == NULL) {
991 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
992 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
993 KAUTH_ARG(which));
994 if (error)
995 goto out;
996 }
997
998 /* Retrieve the limits. */
999 node = *rnode;
1000 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1001 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1002 node.sysctl_data = &alim.rlim_max;
1003 } else {
1004 node.sysctl_data = &alim.rlim_cur;
1005 }
1006 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1007
1008 /* Return if error, or if we are only retrieving the limits. */
1009 if (error || newp == NULL) {
1010 goto out;
1011 }
1012 error = dosetrlimit(l, p, limitno, &alim);
1013 out:
1014 rw_exit(&p->p_reflock);
1015 return error;
1016 }
1017
1018 /*
1019 * Setup sysctl nodes.
1020 */
1021 static void
1022 sysctl_proc_setup(void)
1023 {
1024
1025 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1026 CTLFLAG_PERMANENT,
1027 CTLTYPE_NODE, "proc", NULL,
1028 NULL, 0, NULL, 0,
1029 CTL_PROC, CTL_EOL);
1030 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1031 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1032 CTLTYPE_NODE, "curproc",
1033 SYSCTL_DESCR("Per-process settings"),
1034 NULL, 0, NULL, 0,
1035 CTL_PROC, PROC_CURPROC, CTL_EOL);
1036
1037 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1038 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1039 CTLTYPE_STRING, "corename",
1040 SYSCTL_DESCR("Core file name"),
1041 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1042 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1043 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1044 CTLFLAG_PERMANENT,
1045 CTLTYPE_NODE, "rlimit",
1046 SYSCTL_DESCR("Process limits"),
1047 NULL, 0, NULL, 0,
1048 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1049
1050 #define create_proc_plimit(s, n) do { \
1051 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1052 CTLFLAG_PERMANENT, \
1053 CTLTYPE_NODE, s, \
1054 SYSCTL_DESCR("Process " s " limits"), \
1055 NULL, 0, NULL, 0, \
1056 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1057 CTL_EOL); \
1058 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1059 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1060 CTLTYPE_QUAD, "soft", \
1061 SYSCTL_DESCR("Process soft " s " limit"), \
1062 sysctl_proc_plimit, 0, NULL, 0, \
1063 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1064 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1065 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1066 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1067 CTLTYPE_QUAD, "hard", \
1068 SYSCTL_DESCR("Process hard " s " limit"), \
1069 sysctl_proc_plimit, 0, NULL, 0, \
1070 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1071 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1072 } while (0/*CONSTCOND*/)
1073
1074 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1075 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1076 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1077 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1078 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1079 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1080 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1081 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1082 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1083 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1084 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1085
1086 #undef create_proc_plimit
1087
1088 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1089 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1090 CTLTYPE_INT, "stopfork",
1091 SYSCTL_DESCR("Stop process at fork(2)"),
1092 sysctl_proc_stop, 0, NULL, 0,
1093 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1094 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1095 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1096 CTLTYPE_INT, "stopexec",
1097 SYSCTL_DESCR("Stop process at execve(2)"),
1098 sysctl_proc_stop, 0, NULL, 0,
1099 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1100 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1101 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1102 CTLTYPE_INT, "stopexit",
1103 SYSCTL_DESCR("Stop process before completing exit"),
1104 sysctl_proc_stop, 0, NULL, 0,
1105 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1106 }
1107