Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.170
      1 /*	$NetBSD: kern_resource.c,v 1.170 2012/11/03 23:22:22 njoly Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.170 2012/11/03 23:22:22 njoly Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/kmem.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/timevar.h>
     53 #include <sys/kauth.h>
     54 #include <sys/atomic.h>
     55 #include <sys/mount.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t			maxdmap = MAXDSIZ;
     66 rlim_t			maxsmap = MAXSSIZ;
     67 
     68 static pool_cache_t	plimit_cache	__read_mostly;
     69 static pool_cache_t	pstats_cache	__read_mostly;
     70 
     71 static kauth_listener_t	resource_listener;
     72 static struct sysctllog	*proc_sysctllog;
     73 
     74 static int	donice(struct lwp *, struct proc *, int);
     75 static void	sysctl_proc_setup(void);
     76 
     77 static int
     78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79     void *arg0, void *arg1, void *arg2, void *arg3)
     80 {
     81 	struct proc *p;
     82 	int result;
     83 
     84 	result = KAUTH_RESULT_DEFER;
     85 	p = arg0;
     86 
     87 	switch (action) {
     88 	case KAUTH_PROCESS_NICE:
     89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91 			break;
     92 		}
     93 
     94 		if ((u_long)arg1 >= p->p_nice)
     95 			result = KAUTH_RESULT_ALLOW;
     96 
     97 		break;
     98 
     99 	case KAUTH_PROCESS_RLIMIT: {
    100 		enum kauth_process_req req;
    101 
    102 		req = (enum kauth_process_req)(unsigned long)arg1;
    103 
    104 		switch (req) {
    105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106 			result = KAUTH_RESULT_ALLOW;
    107 			break;
    108 
    109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110 			struct rlimit *new_rlimit;
    111 			u_long which;
    112 
    113 			if ((p != curlwp->l_proc) &&
    114 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115 				break;
    116 
    117 			new_rlimit = arg2;
    118 			which = (u_long)arg3;
    119 
    120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121 				result = KAUTH_RESULT_ALLOW;
    122 
    123 			break;
    124 			}
    125 
    126 		default:
    127 			break;
    128 		}
    129 
    130 		break;
    131 	}
    132 
    133 	default:
    134 		break;
    135 	}
    136 
    137 	return result;
    138 }
    139 
    140 void
    141 resource_init(void)
    142 {
    143 
    144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148 
    149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150 	    resource_listener_cb, NULL);
    151 
    152 	sysctl_proc_setup();
    153 }
    154 
    155 /*
    156  * Resource controls and accounting.
    157  */
    158 
    159 int
    160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161     register_t *retval)
    162 {
    163 	/* {
    164 		syscallarg(int) which;
    165 		syscallarg(id_t) who;
    166 	} */
    167 	struct proc *curp = l->l_proc, *p;
    168 	id_t who = SCARG(uap, who);
    169 	int low = NZERO + PRIO_MAX + 1;
    170 
    171 	mutex_enter(proc_lock);
    172 	switch (SCARG(uap, which)) {
    173 	case PRIO_PROCESS:
    174 		p = who ? proc_find(who) : curp;;
    175 		if (p != NULL)
    176 			low = p->p_nice;
    177 		break;
    178 
    179 	case PRIO_PGRP: {
    180 		struct pgrp *pg;
    181 
    182 		if (who == 0)
    183 			pg = curp->p_pgrp;
    184 		else if ((pg = pgrp_find(who)) == NULL)
    185 			break;
    186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187 			if (p->p_nice < low)
    188 				low = p->p_nice;
    189 		}
    190 		break;
    191 	}
    192 
    193 	case PRIO_USER:
    194 		if (who == 0)
    195 			who = (int)kauth_cred_geteuid(l->l_cred);
    196 		PROCLIST_FOREACH(p, &allproc) {
    197 			mutex_enter(p->p_lock);
    198 			if (kauth_cred_geteuid(p->p_cred) ==
    199 			    (uid_t)who && p->p_nice < low)
    200 				low = p->p_nice;
    201 			mutex_exit(p->p_lock);
    202 		}
    203 		break;
    204 
    205 	default:
    206 		mutex_exit(proc_lock);
    207 		return EINVAL;
    208 	}
    209 	mutex_exit(proc_lock);
    210 
    211 	if (low == NZERO + PRIO_MAX + 1) {
    212 		return ESRCH;
    213 	}
    214 	*retval = low - NZERO;
    215 	return 0;
    216 }
    217 
    218 int
    219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220     register_t *retval)
    221 {
    222 	/* {
    223 		syscallarg(int) which;
    224 		syscallarg(id_t) who;
    225 		syscallarg(int) prio;
    226 	} */
    227 	struct proc *curp = l->l_proc, *p;
    228 	id_t who = SCARG(uap, who);
    229 	int found = 0, error = 0;
    230 
    231 	mutex_enter(proc_lock);
    232 	switch (SCARG(uap, which)) {
    233 	case PRIO_PROCESS:
    234 		p = who ? proc_find(who) : curp;
    235 		if (p != NULL) {
    236 			mutex_enter(p->p_lock);
    237 			found++;
    238 			error = donice(l, p, SCARG(uap, prio));
    239 			mutex_exit(p->p_lock);
    240 		}
    241 		break;
    242 
    243 	case PRIO_PGRP: {
    244 		struct pgrp *pg;
    245 
    246 		if (who == 0)
    247 			pg = curp->p_pgrp;
    248 		else if ((pg = pgrp_find(who)) == NULL)
    249 			break;
    250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251 			mutex_enter(p->p_lock);
    252 			found++;
    253 			error = donice(l, p, SCARG(uap, prio));
    254 			mutex_exit(p->p_lock);
    255 			if (error)
    256 				break;
    257 		}
    258 		break;
    259 	}
    260 
    261 	case PRIO_USER:
    262 		if (who == 0)
    263 			who = (int)kauth_cred_geteuid(l->l_cred);
    264 		PROCLIST_FOREACH(p, &allproc) {
    265 			mutex_enter(p->p_lock);
    266 			if (kauth_cred_geteuid(p->p_cred) ==
    267 			    (uid_t)SCARG(uap, who)) {
    268 				found++;
    269 				error = donice(l, p, SCARG(uap, prio));
    270 			}
    271 			mutex_exit(p->p_lock);
    272 			if (error)
    273 				break;
    274 		}
    275 		break;
    276 
    277 	default:
    278 		mutex_exit(proc_lock);
    279 		return EINVAL;
    280 	}
    281 	mutex_exit(proc_lock);
    282 
    283 	return (found == 0) ? ESRCH : error;
    284 }
    285 
    286 /*
    287  * Renice a process.
    288  *
    289  * Call with the target process' credentials locked.
    290  */
    291 static int
    292 donice(struct lwp *l, struct proc *chgp, int n)
    293 {
    294 	kauth_cred_t cred = l->l_cred;
    295 
    296 	KASSERT(mutex_owned(chgp->p_lock));
    297 
    298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301 		return EPERM;
    302 
    303 	if (n > PRIO_MAX) {
    304 		n = PRIO_MAX;
    305 	}
    306 	if (n < PRIO_MIN) {
    307 		n = PRIO_MIN;
    308 	}
    309 	n += NZERO;
    310 
    311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312 	    KAUTH_ARG(n), NULL, NULL)) {
    313 		return EACCES;
    314 	}
    315 
    316 	sched_nice(chgp, n);
    317 	return 0;
    318 }
    319 
    320 int
    321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322     register_t *retval)
    323 {
    324 	/* {
    325 		syscallarg(int) which;
    326 		syscallarg(const struct rlimit *) rlp;
    327 	} */
    328 	int error, which = SCARG(uap, which);
    329 	struct rlimit alim;
    330 
    331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332 	if (error) {
    333 		return error;
    334 	}
    335 	return dosetrlimit(l, l->l_proc, which, &alim);
    336 }
    337 
    338 int
    339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340 {
    341 	struct rlimit *alimp;
    342 	int error;
    343 
    344 	if ((u_int)which >= RLIM_NLIMITS)
    345 		return EINVAL;
    346 
    347 	if (limp->rlim_cur > limp->rlim_max) {
    348 		/*
    349 		 * This is programming error. According to SUSv2, we should
    350 		 * return error in this case.
    351 		 */
    352 		return EINVAL;
    353 	}
    354 
    355 	alimp = &p->p_rlimit[which];
    356 	/* if we don't change the value, no need to limcopy() */
    357 	if (limp->rlim_cur == alimp->rlim_cur &&
    358 	    limp->rlim_max == alimp->rlim_max)
    359 		return 0;
    360 
    361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363 	if (error)
    364 		return error;
    365 
    366 	lim_privatise(p);
    367 	/* p->p_limit is now unchangeable */
    368 	alimp = &p->p_rlimit[which];
    369 
    370 	switch (which) {
    371 
    372 	case RLIMIT_DATA:
    373 		if (limp->rlim_cur > maxdmap)
    374 			limp->rlim_cur = maxdmap;
    375 		if (limp->rlim_max > maxdmap)
    376 			limp->rlim_max = maxdmap;
    377 		break;
    378 
    379 	case RLIMIT_STACK:
    380 		if (limp->rlim_cur > maxsmap)
    381 			limp->rlim_cur = maxsmap;
    382 		if (limp->rlim_max > maxsmap)
    383 			limp->rlim_max = maxsmap;
    384 
    385 		/*
    386 		 * Return EINVAL if the new stack size limit is lower than
    387 		 * current usage. Otherwise, the process would get SIGSEGV the
    388 		 * moment it would try to access anything on it's current stack.
    389 		 * This conforms to SUSv2.
    390 		 */
    391 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
    392 		    limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    393 			return EINVAL;
    394 		}
    395 
    396 		/*
    397 		 * Stack is allocated to the max at exec time with
    398 		 * only "rlim_cur" bytes accessible (In other words,
    399 		 * allocates stack dividing two contiguous regions at
    400 		 * "rlim_cur" bytes boundary).
    401 		 *
    402 		 * Since allocation is done in terms of page, roundup
    403 		 * "rlim_cur" (otherwise, contiguous regions
    404 		 * overlap).  If stack limit is going up make more
    405 		 * accessible, if going down make inaccessible.
    406 		 */
    407 		limp->rlim_cur = round_page(limp->rlim_cur);
    408 		if (limp->rlim_cur != alimp->rlim_cur) {
    409 			vaddr_t addr;
    410 			vsize_t size;
    411 			vm_prot_t prot;
    412 
    413 			if (limp->rlim_cur > alimp->rlim_cur) {
    414 				prot = VM_PROT_READ | VM_PROT_WRITE;
    415 				size = limp->rlim_cur - alimp->rlim_cur;
    416 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    417 				    limp->rlim_cur;
    418 			} else {
    419 				prot = VM_PROT_NONE;
    420 				size = alimp->rlim_cur - limp->rlim_cur;
    421 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
    422 				     alimp->rlim_cur;
    423 			}
    424 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    425 			    addr, addr+size, prot, false);
    426 		}
    427 		break;
    428 
    429 	case RLIMIT_NOFILE:
    430 		if (limp->rlim_cur > maxfiles)
    431 			limp->rlim_cur = maxfiles;
    432 		if (limp->rlim_max > maxfiles)
    433 			limp->rlim_max = maxfiles;
    434 		break;
    435 
    436 	case RLIMIT_NPROC:
    437 		if (limp->rlim_cur > maxproc)
    438 			limp->rlim_cur = maxproc;
    439 		if (limp->rlim_max > maxproc)
    440 			limp->rlim_max = maxproc;
    441 		break;
    442 
    443 	case RLIMIT_NTHR:
    444 		if (limp->rlim_cur > maxlwp)
    445 			limp->rlim_cur = maxlwp;
    446 		if (limp->rlim_max > maxlwp)
    447 			limp->rlim_max = maxlwp;
    448 		break;
    449 	}
    450 
    451 	mutex_enter(&p->p_limit->pl_lock);
    452 	*alimp = *limp;
    453 	mutex_exit(&p->p_limit->pl_lock);
    454 	return 0;
    455 }
    456 
    457 int
    458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    459     register_t *retval)
    460 {
    461 	/* {
    462 		syscallarg(int) which;
    463 		syscallarg(struct rlimit *) rlp;
    464 	} */
    465 	struct proc *p = l->l_proc;
    466 	int which = SCARG(uap, which);
    467 	struct rlimit rl;
    468 
    469 	if ((u_int)which >= RLIM_NLIMITS)
    470 		return EINVAL;
    471 
    472 	mutex_enter(p->p_lock);
    473 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    474 	mutex_exit(p->p_lock);
    475 
    476 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    477 }
    478 
    479 /*
    480  * Transform the running time and tick information in proc p into user,
    481  * system, and interrupt time usage.
    482  *
    483  * Should be called with p->p_lock held unless called from exit1().
    484  */
    485 void
    486 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    487     struct timeval *ip, struct timeval *rp)
    488 {
    489 	uint64_t u, st, ut, it, tot;
    490 	struct lwp *l;
    491 	struct bintime tm;
    492 	struct timeval tv;
    493 
    494 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    495 
    496 	mutex_spin_enter(&p->p_stmutex);
    497 	st = p->p_sticks;
    498 	ut = p->p_uticks;
    499 	it = p->p_iticks;
    500 	mutex_spin_exit(&p->p_stmutex);
    501 
    502 	tm = p->p_rtime;
    503 
    504 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    505 		lwp_lock(l);
    506 		bintime_add(&tm, &l->l_rtime);
    507 		if ((l->l_pflag & LP_RUNNING) != 0) {
    508 			struct bintime diff;
    509 			/*
    510 			 * Adjust for the current time slice.  This is
    511 			 * actually fairly important since the error
    512 			 * here is on the order of a time quantum,
    513 			 * which is much greater than the sampling
    514 			 * error.
    515 			 */
    516 			binuptime(&diff);
    517 			bintime_sub(&diff, &l->l_stime);
    518 			bintime_add(&tm, &diff);
    519 		}
    520 		lwp_unlock(l);
    521 	}
    522 
    523 	tot = st + ut + it;
    524 	bintime2timeval(&tm, &tv);
    525 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    526 
    527 	if (tot == 0) {
    528 		/* No ticks, so can't use to share time out, split 50-50 */
    529 		st = ut = u / 2;
    530 	} else {
    531 		st = (u * st) / tot;
    532 		ut = (u * ut) / tot;
    533 	}
    534 	if (sp != NULL) {
    535 		sp->tv_sec = st / 1000000;
    536 		sp->tv_usec = st % 1000000;
    537 	}
    538 	if (up != NULL) {
    539 		up->tv_sec = ut / 1000000;
    540 		up->tv_usec = ut % 1000000;
    541 	}
    542 	if (ip != NULL) {
    543 		if (it != 0)
    544 			it = (u * it) / tot;
    545 		ip->tv_sec = it / 1000000;
    546 		ip->tv_usec = it % 1000000;
    547 	}
    548 	if (rp != NULL) {
    549 		*rp = tv;
    550 	}
    551 }
    552 
    553 int
    554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    555     register_t *retval)
    556 {
    557 	/* {
    558 		syscallarg(int) who;
    559 		syscallarg(struct rusage *) rusage;
    560 	} */
    561 	int error;
    562 	struct rusage ru;
    563 	struct proc *p = l->l_proc;
    564 
    565 	error = getrusage1(p, SCARG(uap, who), &ru);
    566 	if (error != 0)
    567 		return error;
    568 
    569 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    570 }
    571 
    572 int
    573 getrusage1(struct proc *p, int who, struct rusage *ru) {
    574 
    575 	switch (who) {
    576 	case RUSAGE_SELF:
    577 		mutex_enter(p->p_lock);
    578 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    579 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    580 		rulwps(p, ru);
    581 		mutex_exit(p->p_lock);
    582 		break;
    583 	case RUSAGE_CHILDREN:
    584 		mutex_enter(p->p_lock);
    585 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    586 		mutex_exit(p->p_lock);
    587 		break;
    588 	default:
    589 		return EINVAL;
    590 	}
    591 
    592 	return 0;
    593 }
    594 
    595 void
    596 ruadd(struct rusage *ru, struct rusage *ru2)
    597 {
    598 	long *ip, *ip2;
    599 	int i;
    600 
    601 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    602 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    603 	if (ru->ru_maxrss < ru2->ru_maxrss)
    604 		ru->ru_maxrss = ru2->ru_maxrss;
    605 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    606 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    607 		*ip++ += *ip2++;
    608 }
    609 
    610 void
    611 rulwps(proc_t *p, struct rusage *ru)
    612 {
    613 	lwp_t *l;
    614 
    615 	KASSERT(mutex_owned(p->p_lock));
    616 
    617 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    618 		ruadd(ru, &l->l_ru);
    619 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    620 		ru->ru_nivcsw += l->l_nivcsw;
    621 	}
    622 }
    623 
    624 /*
    625  * lim_copy: make a copy of the plimit structure.
    626  *
    627  * We use copy-on-write after fork, and copy when a limit is changed.
    628  */
    629 struct plimit *
    630 lim_copy(struct plimit *lim)
    631 {
    632 	struct plimit *newlim;
    633 	char *corename;
    634 	size_t alen, len;
    635 
    636 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    637 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    638 	newlim->pl_writeable = false;
    639 	newlim->pl_refcnt = 1;
    640 	newlim->pl_sv_limit = NULL;
    641 
    642 	mutex_enter(&lim->pl_lock);
    643 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    644 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    645 
    646 	/*
    647 	 * Note: the common case is a use of default core name.
    648 	 */
    649 	alen = 0;
    650 	corename = NULL;
    651 	for (;;) {
    652 		if (lim->pl_corename == defcorename) {
    653 			newlim->pl_corename = defcorename;
    654 			newlim->pl_cnlen = 0;
    655 			break;
    656 		}
    657 		len = lim->pl_cnlen;
    658 		if (len == alen) {
    659 			newlim->pl_corename = corename;
    660 			newlim->pl_cnlen = len;
    661 			memcpy(corename, lim->pl_corename, len);
    662 			corename = NULL;
    663 			break;
    664 		}
    665 		mutex_exit(&lim->pl_lock);
    666 		if (corename) {
    667 			kmem_free(corename, alen);
    668 		}
    669 		alen = len;
    670 		corename = kmem_alloc(alen, KM_SLEEP);
    671 		mutex_enter(&lim->pl_lock);
    672 	}
    673 	mutex_exit(&lim->pl_lock);
    674 
    675 	if (corename) {
    676 		kmem_free(corename, alen);
    677 	}
    678 	return newlim;
    679 }
    680 
    681 void
    682 lim_addref(struct plimit *lim)
    683 {
    684 	atomic_inc_uint(&lim->pl_refcnt);
    685 }
    686 
    687 /*
    688  * lim_privatise: give a process its own private plimit structure.
    689  */
    690 void
    691 lim_privatise(proc_t *p)
    692 {
    693 	struct plimit *lim = p->p_limit, *newlim;
    694 
    695 	if (lim->pl_writeable) {
    696 		return;
    697 	}
    698 
    699 	newlim = lim_copy(lim);
    700 
    701 	mutex_enter(p->p_lock);
    702 	if (p->p_limit->pl_writeable) {
    703 		/* Other thread won the race. */
    704 		mutex_exit(p->p_lock);
    705 		lim_free(newlim);
    706 		return;
    707 	}
    708 
    709 	/*
    710 	 * Since p->p_limit can be accessed without locked held,
    711 	 * old limit structure must not be deleted yet.
    712 	 */
    713 	newlim->pl_sv_limit = p->p_limit;
    714 	newlim->pl_writeable = true;
    715 	p->p_limit = newlim;
    716 	mutex_exit(p->p_lock);
    717 }
    718 
    719 void
    720 lim_setcorename(proc_t *p, char *name, size_t len)
    721 {
    722 	struct plimit *lim;
    723 	char *oname;
    724 	size_t olen;
    725 
    726 	lim_privatise(p);
    727 	lim = p->p_limit;
    728 
    729 	mutex_enter(&lim->pl_lock);
    730 	oname = lim->pl_corename;
    731 	olen = lim->pl_cnlen;
    732 	lim->pl_corename = name;
    733 	lim->pl_cnlen = len;
    734 	mutex_exit(&lim->pl_lock);
    735 
    736 	if (oname != defcorename) {
    737 		kmem_free(oname, olen);
    738 	}
    739 }
    740 
    741 void
    742 lim_free(struct plimit *lim)
    743 {
    744 	struct plimit *sv_lim;
    745 
    746 	do {
    747 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    748 			return;
    749 		}
    750 		if (lim->pl_corename != defcorename) {
    751 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    752 		}
    753 		sv_lim = lim->pl_sv_limit;
    754 		mutex_destroy(&lim->pl_lock);
    755 		pool_cache_put(plimit_cache, lim);
    756 	} while ((lim = sv_lim) != NULL);
    757 }
    758 
    759 struct pstats *
    760 pstatscopy(struct pstats *ps)
    761 {
    762 	struct pstats *nps;
    763 	size_t len;
    764 
    765 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    766 
    767 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    768 	memset(&nps->pstat_startzero, 0, len);
    769 
    770 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    771 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    772 
    773 	return nps;
    774 }
    775 
    776 void
    777 pstatsfree(struct pstats *ps)
    778 {
    779 
    780 	pool_cache_put(pstats_cache, ps);
    781 }
    782 
    783 /*
    784  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    785  * need to pick a valid process by PID.
    786  *
    787  * => Hold a reference on the process, on success.
    788  */
    789 static int
    790 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    791 {
    792 	proc_t *p;
    793 	int error;
    794 
    795 	if (pid == PROC_CURPROC) {
    796 		p = l->l_proc;
    797 	} else {
    798 		mutex_enter(proc_lock);
    799 		p = proc_find(pid);
    800 		if (p == NULL) {
    801 			mutex_exit(proc_lock);
    802 			return ESRCH;
    803 		}
    804 	}
    805 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    806 	if (pid != PROC_CURPROC) {
    807 		mutex_exit(proc_lock);
    808 	}
    809 	*p2 = p;
    810 	return error;
    811 }
    812 
    813 /*
    814  * sysctl_proc_corename: helper routine to get or set the core file name
    815  * for a process specified by PID.
    816  */
    817 static int
    818 sysctl_proc_corename(SYSCTLFN_ARGS)
    819 {
    820 	struct proc *p;
    821 	struct plimit *lim;
    822 	char *cnbuf, *cname;
    823 	struct sysctlnode node;
    824 	size_t len;
    825 	int error;
    826 
    827 	/* First, validate the request. */
    828 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    829 		return EINVAL;
    830 
    831 	/* Find the process.  Hold a reference (p_reflock), if found. */
    832 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    833 	if (error)
    834 		return error;
    835 
    836 	/* XXX-elad */
    837 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    838 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    839 	if (error) {
    840 		rw_exit(&p->p_reflock);
    841 		return error;
    842 	}
    843 
    844 	cnbuf = PNBUF_GET();
    845 
    846 	if (oldp) {
    847 		/* Get case: copy the core name into the buffer. */
    848 		error = kauth_authorize_process(l->l_cred,
    849 		    KAUTH_PROCESS_CORENAME, p,
    850 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    851 		if (error) {
    852 			goto done;
    853 		}
    854 		lim = p->p_limit;
    855 		mutex_enter(&lim->pl_lock);
    856 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    857 		mutex_exit(&lim->pl_lock);
    858 	}
    859 
    860 	node = *rnode;
    861 	node.sysctl_data = cnbuf;
    862 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    863 
    864 	/* Return if error, or if caller is only getting the core name. */
    865 	if (error || newp == NULL) {
    866 		goto done;
    867 	}
    868 
    869 	/*
    870 	 * Set case.  Check permission and then validate new core name.
    871 	 * It must be either "core", "/core", or end in ".core".
    872 	 */
    873 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    874 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    875 	if (error) {
    876 		goto done;
    877 	}
    878 	len = strlen(cnbuf);
    879 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    880 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    881 		error = EINVAL;
    882 		goto done;
    883 	}
    884 
    885 	/* Allocate, copy and set the new core name for plimit structure. */
    886 	cname = kmem_alloc(++len, KM_NOSLEEP);
    887 	if (cname == NULL) {
    888 		error = ENOMEM;
    889 		goto done;
    890 	}
    891 	memcpy(cname, cnbuf, len);
    892 	lim_setcorename(p, cname, len);
    893 done:
    894 	rw_exit(&p->p_reflock);
    895 	PNBUF_PUT(cnbuf);
    896 	return error;
    897 }
    898 
    899 /*
    900  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    901  */
    902 static int
    903 sysctl_proc_stop(SYSCTLFN_ARGS)
    904 {
    905 	struct proc *p;
    906 	int isset, flag, error = 0;
    907 	struct sysctlnode node;
    908 
    909 	if (namelen != 0)
    910 		return EINVAL;
    911 
    912 	/* Find the process.  Hold a reference (p_reflock), if found. */
    913 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    914 	if (error)
    915 		return error;
    916 
    917 	/* XXX-elad */
    918 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    919 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    920 	if (error) {
    921 		goto out;
    922 	}
    923 
    924 	/* Determine the flag. */
    925 	switch (rnode->sysctl_num) {
    926 	case PROC_PID_STOPFORK:
    927 		flag = PS_STOPFORK;
    928 		break;
    929 	case PROC_PID_STOPEXEC:
    930 		flag = PS_STOPEXEC;
    931 		break;
    932 	case PROC_PID_STOPEXIT:
    933 		flag = PS_STOPEXIT;
    934 		break;
    935 	default:
    936 		error = EINVAL;
    937 		goto out;
    938 	}
    939 	isset = (p->p_flag & flag) ? 1 : 0;
    940 	node = *rnode;
    941 	node.sysctl_data = &isset;
    942 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    943 
    944 	/* Return if error, or if callers is only getting the flag. */
    945 	if (error || newp == NULL) {
    946 		goto out;
    947 	}
    948 
    949 	/* Check if caller can set the flags. */
    950 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    951 	    p, KAUTH_ARG(flag), NULL, NULL);
    952 	if (error) {
    953 		goto out;
    954 	}
    955 	mutex_enter(p->p_lock);
    956 	if (isset) {
    957 		p->p_sflag |= flag;
    958 	} else {
    959 		p->p_sflag &= ~flag;
    960 	}
    961 	mutex_exit(p->p_lock);
    962 out:
    963 	rw_exit(&p->p_reflock);
    964 	return error;
    965 }
    966 
    967 /*
    968  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
    969  */
    970 static int
    971 sysctl_proc_plimit(SYSCTLFN_ARGS)
    972 {
    973 	struct proc *p;
    974 	u_int limitno;
    975 	int which, error = 0;
    976         struct rlimit alim;
    977 	struct sysctlnode node;
    978 
    979 	if (namelen != 0)
    980 		return EINVAL;
    981 
    982 	which = name[-1];
    983 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    984 	    which != PROC_PID_LIMIT_TYPE_HARD)
    985 		return EINVAL;
    986 
    987 	limitno = name[-2] - 1;
    988 	if (limitno >= RLIM_NLIMITS)
    989 		return EINVAL;
    990 
    991 	if (name[-3] != PROC_PID_LIMIT)
    992 		return EINVAL;
    993 
    994 	/* Find the process.  Hold a reference (p_reflock), if found. */
    995 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
    996 	if (error)
    997 		return error;
    998 
    999 	/* XXX-elad */
   1000 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1001 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1002 	if (error)
   1003 		goto out;
   1004 
   1005 	/* Check if caller can retrieve the limits. */
   1006 	if (newp == NULL) {
   1007 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1008 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1009 		    KAUTH_ARG(which));
   1010 		if (error)
   1011 			goto out;
   1012 	}
   1013 
   1014 	/* Retrieve the limits. */
   1015 	node = *rnode;
   1016 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1017 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1018 		node.sysctl_data = &alim.rlim_max;
   1019 	} else {
   1020 		node.sysctl_data = &alim.rlim_cur;
   1021 	}
   1022 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1023 
   1024 	/* Return if error, or if we are only retrieving the limits. */
   1025 	if (error || newp == NULL) {
   1026 		goto out;
   1027 	}
   1028 	error = dosetrlimit(l, p, limitno, &alim);
   1029 out:
   1030 	rw_exit(&p->p_reflock);
   1031 	return error;
   1032 }
   1033 
   1034 /*
   1035  * Setup sysctl nodes.
   1036  */
   1037 static void
   1038 sysctl_proc_setup(void)
   1039 {
   1040 
   1041 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1042 		       CTLFLAG_PERMANENT,
   1043 		       CTLTYPE_NODE, "proc", NULL,
   1044 		       NULL, 0, NULL, 0,
   1045 		       CTL_PROC, CTL_EOL);
   1046 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1047 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1048 		       CTLTYPE_NODE, "curproc",
   1049 		       SYSCTL_DESCR("Per-process settings"),
   1050 		       NULL, 0, NULL, 0,
   1051 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1052 
   1053 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1054 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1055 		       CTLTYPE_STRING, "corename",
   1056 		       SYSCTL_DESCR("Core file name"),
   1057 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1058 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1059 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1060 		       CTLFLAG_PERMANENT,
   1061 		       CTLTYPE_NODE, "rlimit",
   1062 		       SYSCTL_DESCR("Process limits"),
   1063 		       NULL, 0, NULL, 0,
   1064 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1065 
   1066 #define create_proc_plimit(s, n) do {					\
   1067 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1068 		       CTLFLAG_PERMANENT,				\
   1069 		       CTLTYPE_NODE, s,					\
   1070 		       SYSCTL_DESCR("Process " s " limits"),		\
   1071 		       NULL, 0, NULL, 0,				\
   1072 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1073 		       CTL_EOL);					\
   1074 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1075 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1076 		       CTLTYPE_QUAD, "soft",				\
   1077 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1078 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1079 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1080 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1081 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1082 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1083 		       CTLTYPE_QUAD, "hard",				\
   1084 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1085 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1086 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1087 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1088 	} while (0/*CONSTCOND*/)
   1089 
   1090 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1091 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1092 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1093 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1094 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1095 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1096 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1097 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1098 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1099 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1100 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1101 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1102 
   1103 #undef create_proc_plimit
   1104 
   1105 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1106 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1107 		       CTLTYPE_INT, "stopfork",
   1108 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1109 		       sysctl_proc_stop, 0, NULL, 0,
   1110 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1111 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1112 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1113 		       CTLTYPE_INT, "stopexec",
   1114 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1115 		       sysctl_proc_stop, 0, NULL, 0,
   1116 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1117 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1118 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1119 		       CTLTYPE_INT, "stopexit",
   1120 		       SYSCTL_DESCR("Stop process before completing exit"),
   1121 		       sysctl_proc_stop, 0, NULL, 0,
   1122 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1123 }
   1124