kern_resource.c revision 1.170 1 /* $NetBSD: kern_resource.c,v 1.170 2012/11/03 23:22:22 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.170 2012/11/03 23:22:22 njoly Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on it's current stack.
389 * This conforms to SUSv2.
390 */
391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_cur = round_page(limp->rlim_cur);
408 if (limp->rlim_cur != alimp->rlim_cur) {
409 vaddr_t addr;
410 vsize_t size;
411 vm_prot_t prot;
412
413 if (limp->rlim_cur > alimp->rlim_cur) {
414 prot = VM_PROT_READ | VM_PROT_WRITE;
415 size = limp->rlim_cur - alimp->rlim_cur;
416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 limp->rlim_cur;
418 } else {
419 prot = VM_PROT_NONE;
420 size = alimp->rlim_cur - limp->rlim_cur;
421 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
422 alimp->rlim_cur;
423 }
424 (void) uvm_map_protect(&p->p_vmspace->vm_map,
425 addr, addr+size, prot, false);
426 }
427 break;
428
429 case RLIMIT_NOFILE:
430 if (limp->rlim_cur > maxfiles)
431 limp->rlim_cur = maxfiles;
432 if (limp->rlim_max > maxfiles)
433 limp->rlim_max = maxfiles;
434 break;
435
436 case RLIMIT_NPROC:
437 if (limp->rlim_cur > maxproc)
438 limp->rlim_cur = maxproc;
439 if (limp->rlim_max > maxproc)
440 limp->rlim_max = maxproc;
441 break;
442
443 case RLIMIT_NTHR:
444 if (limp->rlim_cur > maxlwp)
445 limp->rlim_cur = maxlwp;
446 if (limp->rlim_max > maxlwp)
447 limp->rlim_max = maxlwp;
448 break;
449 }
450
451 mutex_enter(&p->p_limit->pl_lock);
452 *alimp = *limp;
453 mutex_exit(&p->p_limit->pl_lock);
454 return 0;
455 }
456
457 int
458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
459 register_t *retval)
460 {
461 /* {
462 syscallarg(int) which;
463 syscallarg(struct rlimit *) rlp;
464 } */
465 struct proc *p = l->l_proc;
466 int which = SCARG(uap, which);
467 struct rlimit rl;
468
469 if ((u_int)which >= RLIM_NLIMITS)
470 return EINVAL;
471
472 mutex_enter(p->p_lock);
473 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
474 mutex_exit(p->p_lock);
475
476 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
477 }
478
479 /*
480 * Transform the running time and tick information in proc p into user,
481 * system, and interrupt time usage.
482 *
483 * Should be called with p->p_lock held unless called from exit1().
484 */
485 void
486 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
487 struct timeval *ip, struct timeval *rp)
488 {
489 uint64_t u, st, ut, it, tot;
490 struct lwp *l;
491 struct bintime tm;
492 struct timeval tv;
493
494 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
495
496 mutex_spin_enter(&p->p_stmutex);
497 st = p->p_sticks;
498 ut = p->p_uticks;
499 it = p->p_iticks;
500 mutex_spin_exit(&p->p_stmutex);
501
502 tm = p->p_rtime;
503
504 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
505 lwp_lock(l);
506 bintime_add(&tm, &l->l_rtime);
507 if ((l->l_pflag & LP_RUNNING) != 0) {
508 struct bintime diff;
509 /*
510 * Adjust for the current time slice. This is
511 * actually fairly important since the error
512 * here is on the order of a time quantum,
513 * which is much greater than the sampling
514 * error.
515 */
516 binuptime(&diff);
517 bintime_sub(&diff, &l->l_stime);
518 bintime_add(&tm, &diff);
519 }
520 lwp_unlock(l);
521 }
522
523 tot = st + ut + it;
524 bintime2timeval(&tm, &tv);
525 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
526
527 if (tot == 0) {
528 /* No ticks, so can't use to share time out, split 50-50 */
529 st = ut = u / 2;
530 } else {
531 st = (u * st) / tot;
532 ut = (u * ut) / tot;
533 }
534 if (sp != NULL) {
535 sp->tv_sec = st / 1000000;
536 sp->tv_usec = st % 1000000;
537 }
538 if (up != NULL) {
539 up->tv_sec = ut / 1000000;
540 up->tv_usec = ut % 1000000;
541 }
542 if (ip != NULL) {
543 if (it != 0)
544 it = (u * it) / tot;
545 ip->tv_sec = it / 1000000;
546 ip->tv_usec = it % 1000000;
547 }
548 if (rp != NULL) {
549 *rp = tv;
550 }
551 }
552
553 int
554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
555 register_t *retval)
556 {
557 /* {
558 syscallarg(int) who;
559 syscallarg(struct rusage *) rusage;
560 } */
561 int error;
562 struct rusage ru;
563 struct proc *p = l->l_proc;
564
565 error = getrusage1(p, SCARG(uap, who), &ru);
566 if (error != 0)
567 return error;
568
569 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
570 }
571
572 int
573 getrusage1(struct proc *p, int who, struct rusage *ru) {
574
575 switch (who) {
576 case RUSAGE_SELF:
577 mutex_enter(p->p_lock);
578 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
579 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
580 rulwps(p, ru);
581 mutex_exit(p->p_lock);
582 break;
583 case RUSAGE_CHILDREN:
584 mutex_enter(p->p_lock);
585 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
586 mutex_exit(p->p_lock);
587 break;
588 default:
589 return EINVAL;
590 }
591
592 return 0;
593 }
594
595 void
596 ruadd(struct rusage *ru, struct rusage *ru2)
597 {
598 long *ip, *ip2;
599 int i;
600
601 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
602 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
603 if (ru->ru_maxrss < ru2->ru_maxrss)
604 ru->ru_maxrss = ru2->ru_maxrss;
605 ip = &ru->ru_first; ip2 = &ru2->ru_first;
606 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
607 *ip++ += *ip2++;
608 }
609
610 void
611 rulwps(proc_t *p, struct rusage *ru)
612 {
613 lwp_t *l;
614
615 KASSERT(mutex_owned(p->p_lock));
616
617 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
618 ruadd(ru, &l->l_ru);
619 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
620 ru->ru_nivcsw += l->l_nivcsw;
621 }
622 }
623
624 /*
625 * lim_copy: make a copy of the plimit structure.
626 *
627 * We use copy-on-write after fork, and copy when a limit is changed.
628 */
629 struct plimit *
630 lim_copy(struct plimit *lim)
631 {
632 struct plimit *newlim;
633 char *corename;
634 size_t alen, len;
635
636 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
637 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
638 newlim->pl_writeable = false;
639 newlim->pl_refcnt = 1;
640 newlim->pl_sv_limit = NULL;
641
642 mutex_enter(&lim->pl_lock);
643 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
644 sizeof(struct rlimit) * RLIM_NLIMITS);
645
646 /*
647 * Note: the common case is a use of default core name.
648 */
649 alen = 0;
650 corename = NULL;
651 for (;;) {
652 if (lim->pl_corename == defcorename) {
653 newlim->pl_corename = defcorename;
654 newlim->pl_cnlen = 0;
655 break;
656 }
657 len = lim->pl_cnlen;
658 if (len == alen) {
659 newlim->pl_corename = corename;
660 newlim->pl_cnlen = len;
661 memcpy(corename, lim->pl_corename, len);
662 corename = NULL;
663 break;
664 }
665 mutex_exit(&lim->pl_lock);
666 if (corename) {
667 kmem_free(corename, alen);
668 }
669 alen = len;
670 corename = kmem_alloc(alen, KM_SLEEP);
671 mutex_enter(&lim->pl_lock);
672 }
673 mutex_exit(&lim->pl_lock);
674
675 if (corename) {
676 kmem_free(corename, alen);
677 }
678 return newlim;
679 }
680
681 void
682 lim_addref(struct plimit *lim)
683 {
684 atomic_inc_uint(&lim->pl_refcnt);
685 }
686
687 /*
688 * lim_privatise: give a process its own private plimit structure.
689 */
690 void
691 lim_privatise(proc_t *p)
692 {
693 struct plimit *lim = p->p_limit, *newlim;
694
695 if (lim->pl_writeable) {
696 return;
697 }
698
699 newlim = lim_copy(lim);
700
701 mutex_enter(p->p_lock);
702 if (p->p_limit->pl_writeable) {
703 /* Other thread won the race. */
704 mutex_exit(p->p_lock);
705 lim_free(newlim);
706 return;
707 }
708
709 /*
710 * Since p->p_limit can be accessed without locked held,
711 * old limit structure must not be deleted yet.
712 */
713 newlim->pl_sv_limit = p->p_limit;
714 newlim->pl_writeable = true;
715 p->p_limit = newlim;
716 mutex_exit(p->p_lock);
717 }
718
719 void
720 lim_setcorename(proc_t *p, char *name, size_t len)
721 {
722 struct plimit *lim;
723 char *oname;
724 size_t olen;
725
726 lim_privatise(p);
727 lim = p->p_limit;
728
729 mutex_enter(&lim->pl_lock);
730 oname = lim->pl_corename;
731 olen = lim->pl_cnlen;
732 lim->pl_corename = name;
733 lim->pl_cnlen = len;
734 mutex_exit(&lim->pl_lock);
735
736 if (oname != defcorename) {
737 kmem_free(oname, olen);
738 }
739 }
740
741 void
742 lim_free(struct plimit *lim)
743 {
744 struct plimit *sv_lim;
745
746 do {
747 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
748 return;
749 }
750 if (lim->pl_corename != defcorename) {
751 kmem_free(lim->pl_corename, lim->pl_cnlen);
752 }
753 sv_lim = lim->pl_sv_limit;
754 mutex_destroy(&lim->pl_lock);
755 pool_cache_put(plimit_cache, lim);
756 } while ((lim = sv_lim) != NULL);
757 }
758
759 struct pstats *
760 pstatscopy(struct pstats *ps)
761 {
762 struct pstats *nps;
763 size_t len;
764
765 nps = pool_cache_get(pstats_cache, PR_WAITOK);
766
767 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
768 memset(&nps->pstat_startzero, 0, len);
769
770 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
771 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
772
773 return nps;
774 }
775
776 void
777 pstatsfree(struct pstats *ps)
778 {
779
780 pool_cache_put(pstats_cache, ps);
781 }
782
783 /*
784 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
785 * need to pick a valid process by PID.
786 *
787 * => Hold a reference on the process, on success.
788 */
789 static int
790 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
791 {
792 proc_t *p;
793 int error;
794
795 if (pid == PROC_CURPROC) {
796 p = l->l_proc;
797 } else {
798 mutex_enter(proc_lock);
799 p = proc_find(pid);
800 if (p == NULL) {
801 mutex_exit(proc_lock);
802 return ESRCH;
803 }
804 }
805 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
806 if (pid != PROC_CURPROC) {
807 mutex_exit(proc_lock);
808 }
809 *p2 = p;
810 return error;
811 }
812
813 /*
814 * sysctl_proc_corename: helper routine to get or set the core file name
815 * for a process specified by PID.
816 */
817 static int
818 sysctl_proc_corename(SYSCTLFN_ARGS)
819 {
820 struct proc *p;
821 struct plimit *lim;
822 char *cnbuf, *cname;
823 struct sysctlnode node;
824 size_t len;
825 int error;
826
827 /* First, validate the request. */
828 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
829 return EINVAL;
830
831 /* Find the process. Hold a reference (p_reflock), if found. */
832 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
833 if (error)
834 return error;
835
836 /* XXX-elad */
837 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
838 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
839 if (error) {
840 rw_exit(&p->p_reflock);
841 return error;
842 }
843
844 cnbuf = PNBUF_GET();
845
846 if (oldp) {
847 /* Get case: copy the core name into the buffer. */
848 error = kauth_authorize_process(l->l_cred,
849 KAUTH_PROCESS_CORENAME, p,
850 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
851 if (error) {
852 goto done;
853 }
854 lim = p->p_limit;
855 mutex_enter(&lim->pl_lock);
856 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
857 mutex_exit(&lim->pl_lock);
858 }
859
860 node = *rnode;
861 node.sysctl_data = cnbuf;
862 error = sysctl_lookup(SYSCTLFN_CALL(&node));
863
864 /* Return if error, or if caller is only getting the core name. */
865 if (error || newp == NULL) {
866 goto done;
867 }
868
869 /*
870 * Set case. Check permission and then validate new core name.
871 * It must be either "core", "/core", or end in ".core".
872 */
873 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
874 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
875 if (error) {
876 goto done;
877 }
878 len = strlen(cnbuf);
879 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
880 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
881 error = EINVAL;
882 goto done;
883 }
884
885 /* Allocate, copy and set the new core name for plimit structure. */
886 cname = kmem_alloc(++len, KM_NOSLEEP);
887 if (cname == NULL) {
888 error = ENOMEM;
889 goto done;
890 }
891 memcpy(cname, cnbuf, len);
892 lim_setcorename(p, cname, len);
893 done:
894 rw_exit(&p->p_reflock);
895 PNBUF_PUT(cnbuf);
896 return error;
897 }
898
899 /*
900 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
901 */
902 static int
903 sysctl_proc_stop(SYSCTLFN_ARGS)
904 {
905 struct proc *p;
906 int isset, flag, error = 0;
907 struct sysctlnode node;
908
909 if (namelen != 0)
910 return EINVAL;
911
912 /* Find the process. Hold a reference (p_reflock), if found. */
913 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
914 if (error)
915 return error;
916
917 /* XXX-elad */
918 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
919 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
920 if (error) {
921 goto out;
922 }
923
924 /* Determine the flag. */
925 switch (rnode->sysctl_num) {
926 case PROC_PID_STOPFORK:
927 flag = PS_STOPFORK;
928 break;
929 case PROC_PID_STOPEXEC:
930 flag = PS_STOPEXEC;
931 break;
932 case PROC_PID_STOPEXIT:
933 flag = PS_STOPEXIT;
934 break;
935 default:
936 error = EINVAL;
937 goto out;
938 }
939 isset = (p->p_flag & flag) ? 1 : 0;
940 node = *rnode;
941 node.sysctl_data = &isset;
942 error = sysctl_lookup(SYSCTLFN_CALL(&node));
943
944 /* Return if error, or if callers is only getting the flag. */
945 if (error || newp == NULL) {
946 goto out;
947 }
948
949 /* Check if caller can set the flags. */
950 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
951 p, KAUTH_ARG(flag), NULL, NULL);
952 if (error) {
953 goto out;
954 }
955 mutex_enter(p->p_lock);
956 if (isset) {
957 p->p_sflag |= flag;
958 } else {
959 p->p_sflag &= ~flag;
960 }
961 mutex_exit(p->p_lock);
962 out:
963 rw_exit(&p->p_reflock);
964 return error;
965 }
966
967 /*
968 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
969 */
970 static int
971 sysctl_proc_plimit(SYSCTLFN_ARGS)
972 {
973 struct proc *p;
974 u_int limitno;
975 int which, error = 0;
976 struct rlimit alim;
977 struct sysctlnode node;
978
979 if (namelen != 0)
980 return EINVAL;
981
982 which = name[-1];
983 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
984 which != PROC_PID_LIMIT_TYPE_HARD)
985 return EINVAL;
986
987 limitno = name[-2] - 1;
988 if (limitno >= RLIM_NLIMITS)
989 return EINVAL;
990
991 if (name[-3] != PROC_PID_LIMIT)
992 return EINVAL;
993
994 /* Find the process. Hold a reference (p_reflock), if found. */
995 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
996 if (error)
997 return error;
998
999 /* XXX-elad */
1000 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1001 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1002 if (error)
1003 goto out;
1004
1005 /* Check if caller can retrieve the limits. */
1006 if (newp == NULL) {
1007 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1008 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1009 KAUTH_ARG(which));
1010 if (error)
1011 goto out;
1012 }
1013
1014 /* Retrieve the limits. */
1015 node = *rnode;
1016 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1017 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1018 node.sysctl_data = &alim.rlim_max;
1019 } else {
1020 node.sysctl_data = &alim.rlim_cur;
1021 }
1022 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1023
1024 /* Return if error, or if we are only retrieving the limits. */
1025 if (error || newp == NULL) {
1026 goto out;
1027 }
1028 error = dosetrlimit(l, p, limitno, &alim);
1029 out:
1030 rw_exit(&p->p_reflock);
1031 return error;
1032 }
1033
1034 /*
1035 * Setup sysctl nodes.
1036 */
1037 static void
1038 sysctl_proc_setup(void)
1039 {
1040
1041 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1042 CTLFLAG_PERMANENT,
1043 CTLTYPE_NODE, "proc", NULL,
1044 NULL, 0, NULL, 0,
1045 CTL_PROC, CTL_EOL);
1046 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1047 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1048 CTLTYPE_NODE, "curproc",
1049 SYSCTL_DESCR("Per-process settings"),
1050 NULL, 0, NULL, 0,
1051 CTL_PROC, PROC_CURPROC, CTL_EOL);
1052
1053 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1054 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1055 CTLTYPE_STRING, "corename",
1056 SYSCTL_DESCR("Core file name"),
1057 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1058 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1059 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1060 CTLFLAG_PERMANENT,
1061 CTLTYPE_NODE, "rlimit",
1062 SYSCTL_DESCR("Process limits"),
1063 NULL, 0, NULL, 0,
1064 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1065
1066 #define create_proc_plimit(s, n) do { \
1067 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1068 CTLFLAG_PERMANENT, \
1069 CTLTYPE_NODE, s, \
1070 SYSCTL_DESCR("Process " s " limits"), \
1071 NULL, 0, NULL, 0, \
1072 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1073 CTL_EOL); \
1074 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1075 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1076 CTLTYPE_QUAD, "soft", \
1077 SYSCTL_DESCR("Process soft " s " limit"), \
1078 sysctl_proc_plimit, 0, NULL, 0, \
1079 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1080 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1081 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1082 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1083 CTLTYPE_QUAD, "hard", \
1084 SYSCTL_DESCR("Process hard " s " limit"), \
1085 sysctl_proc_plimit, 0, NULL, 0, \
1086 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1087 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1088 } while (0/*CONSTCOND*/)
1089
1090 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1091 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1092 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1093 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1094 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1095 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1096 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1097 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1098 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1099 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1100 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1101 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1102
1103 #undef create_proc_plimit
1104
1105 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1106 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1107 CTLTYPE_INT, "stopfork",
1108 SYSCTL_DESCR("Stop process at fork(2)"),
1109 sysctl_proc_stop, 0, NULL, 0,
1110 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1111 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1113 CTLTYPE_INT, "stopexec",
1114 SYSCTL_DESCR("Stop process at execve(2)"),
1115 sysctl_proc_stop, 0, NULL, 0,
1116 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1117 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1118 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1119 CTLTYPE_INT, "stopexit",
1120 SYSCTL_DESCR("Stop process before completing exit"),
1121 sysctl_proc_stop, 0, NULL, 0,
1122 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1123 }
1124