kern_resource.c revision 1.172.2.1 1 /* $NetBSD: kern_resource.c,v 1.172.2.1 2014/05/18 17:46:07 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.172.2.1 2014/05/18 17:46:07 rmind Exp $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Maximum process data and stack limits.
63 * They are variables so they are patchable.
64 */
65 rlim_t maxdmap = MAXDSIZ;
66 rlim_t maxsmap = MAXSSIZ;
67
68 static pool_cache_t plimit_cache __read_mostly;
69 static pool_cache_t pstats_cache __read_mostly;
70
71 static kauth_listener_t resource_listener;
72 static struct sysctllog *proc_sysctllog;
73
74 static int donice(struct lwp *, struct proc *, int);
75 static void sysctl_proc_setup(void);
76
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79 void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 struct proc *p;
82 int result;
83
84 result = KAUTH_RESULT_DEFER;
85 p = arg0;
86
87 switch (action) {
88 case KAUTH_PROCESS_NICE:
89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 break;
92 }
93
94 if ((u_long)arg1 >= p->p_nice)
95 result = KAUTH_RESULT_ALLOW;
96
97 break;
98
99 case KAUTH_PROCESS_RLIMIT: {
100 enum kauth_process_req req;
101
102 req = (enum kauth_process_req)(unsigned long)arg1;
103
104 switch (req) {
105 case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 result = KAUTH_RESULT_ALLOW;
107 break;
108
109 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 struct rlimit *new_rlimit;
111 u_long which;
112
113 if ((p != curlwp->l_proc) &&
114 (proc_uidmatch(cred, p->p_cred) != 0))
115 break;
116
117 new_rlimit = arg2;
118 which = (u_long)arg3;
119
120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 result = KAUTH_RESULT_ALLOW;
122
123 break;
124 }
125
126 default:
127 break;
128 }
129
130 break;
131 }
132
133 default:
134 break;
135 }
136
137 return result;
138 }
139
140 void
141 resource_init(void)
142 {
143
144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148
149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 resource_listener_cb, NULL);
151
152 sysctl_proc_setup();
153 }
154
155 /*
156 * Resource controls and accounting.
157 */
158
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161 register_t *retval)
162 {
163 /* {
164 syscallarg(int) which;
165 syscallarg(id_t) who;
166 } */
167 struct proc *curp = l->l_proc, *p;
168 id_t who = SCARG(uap, who);
169 int low = NZERO + PRIO_MAX + 1;
170
171 mutex_enter(proc_lock);
172 switch (SCARG(uap, which)) {
173 case PRIO_PROCESS:
174 p = who ? proc_find(who) : curp;
175 if (p != NULL)
176 low = p->p_nice;
177 break;
178
179 case PRIO_PGRP: {
180 struct pgrp *pg;
181
182 if (who == 0)
183 pg = curp->p_pgrp;
184 else if ((pg = pgrp_find(who)) == NULL)
185 break;
186 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 if (p->p_nice < low)
188 low = p->p_nice;
189 }
190 break;
191 }
192
193 case PRIO_USER:
194 if (who == 0)
195 who = (int)kauth_cred_geteuid(l->l_cred);
196 PROCLIST_FOREACH(p, &allproc) {
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
202 }
203 break;
204
205 default:
206 mutex_exit(proc_lock);
207 return EINVAL;
208 }
209 mutex_exit(proc_lock);
210
211 if (low == NZERO + PRIO_MAX + 1) {
212 return ESRCH;
213 }
214 *retval = low - NZERO;
215 return 0;
216 }
217
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
221 {
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 id_t who = SCARG(uap, who);
229 int found = 0, error = 0;
230
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 p = who ? proc_find(who) : curp;
235 if (p != NULL) {
236 mutex_enter(p->p_lock);
237 found++;
238 error = donice(l, p, SCARG(uap, prio));
239 mutex_exit(p->p_lock);
240 }
241 break;
242
243 case PRIO_PGRP: {
244 struct pgrp *pg;
245
246 if (who == 0)
247 pg = curp->p_pgrp;
248 else if ((pg = pgrp_find(who)) == NULL)
249 break;
250 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 mutex_enter(p->p_lock);
252 found++;
253 error = donice(l, p, SCARG(uap, prio));
254 mutex_exit(p->p_lock);
255 if (error)
256 break;
257 }
258 break;
259 }
260
261 case PRIO_USER:
262 if (who == 0)
263 who = (int)kauth_cred_geteuid(l->l_cred);
264 PROCLIST_FOREACH(p, &allproc) {
265 mutex_enter(p->p_lock);
266 if (kauth_cred_geteuid(p->p_cred) ==
267 (uid_t)SCARG(uap, who)) {
268 found++;
269 error = donice(l, p, SCARG(uap, prio));
270 }
271 mutex_exit(p->p_lock);
272 if (error)
273 break;
274 }
275 break;
276
277 default:
278 mutex_exit(proc_lock);
279 return EINVAL;
280 }
281 mutex_exit(proc_lock);
282
283 return (found == 0) ? ESRCH : error;
284 }
285
286 /*
287 * Renice a process.
288 *
289 * Call with the target process' credentials locked.
290 */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 kauth_cred_t cred = l->l_cred;
295
296 KASSERT(mutex_owned(chgp->p_lock));
297
298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 return EPERM;
302
303 if (n > PRIO_MAX) {
304 n = PRIO_MAX;
305 }
306 if (n < PRIO_MIN) {
307 n = PRIO_MIN;
308 }
309 n += NZERO;
310
311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 KAUTH_ARG(n), NULL, NULL)) {
313 return EACCES;
314 }
315
316 sched_nice(chgp, n);
317 return 0;
318 }
319
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322 register_t *retval)
323 {
324 /* {
325 syscallarg(int) which;
326 syscallarg(const struct rlimit *) rlp;
327 } */
328 int error, which = SCARG(uap, which);
329 struct rlimit alim;
330
331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 if (error) {
333 return error;
334 }
335 return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 struct rlimit *alimp;
342 int error;
343
344 if ((u_int)which >= RLIM_NLIMITS)
345 return EINVAL;
346
347 if (limp->rlim_cur > limp->rlim_max) {
348 /*
349 * This is programming error. According to SUSv2, we should
350 * return error in this case.
351 */
352 return EINVAL;
353 }
354
355 alimp = &p->p_rlimit[which];
356 /* if we don't change the value, no need to limcopy() */
357 if (limp->rlim_cur == alimp->rlim_cur &&
358 limp->rlim_max == alimp->rlim_max)
359 return 0;
360
361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 if (error)
364 return error;
365
366 lim_privatise(p);
367 /* p->p_limit is now unchangeable */
368 alimp = &p->p_rlimit[which];
369
370 switch (which) {
371
372 case RLIMIT_DATA:
373 if (limp->rlim_cur > maxdmap)
374 limp->rlim_cur = maxdmap;
375 if (limp->rlim_max > maxdmap)
376 limp->rlim_max = maxdmap;
377 break;
378
379 case RLIMIT_STACK:
380 if (limp->rlim_cur > maxsmap)
381 limp->rlim_cur = maxsmap;
382 if (limp->rlim_max > maxsmap)
383 limp->rlim_max = maxsmap;
384
385 /*
386 * Return EINVAL if the new stack size limit is lower than
387 * current usage. Otherwise, the process would get SIGSEGV the
388 * moment it would try to access anything on it's current stack.
389 * This conforms to SUSv2.
390 */
391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 return EINVAL;
394 }
395
396 /*
397 * Stack is allocated to the max at exec time with
398 * only "rlim_cur" bytes accessible (In other words,
399 * allocates stack dividing two contiguous regions at
400 * "rlim_cur" bytes boundary).
401 *
402 * Since allocation is done in terms of page, roundup
403 * "rlim_cur" (otherwise, contiguous regions
404 * overlap). If stack limit is going up make more
405 * accessible, if going down make inaccessible.
406 */
407 limp->rlim_cur = round_page(limp->rlim_cur);
408 if (limp->rlim_cur != alimp->rlim_cur) {
409 vaddr_t addr;
410 vsize_t size;
411 vm_prot_t prot;
412 char *base, *tmp;
413
414 base = p->p_vmspace->vm_minsaddr;
415 if (limp->rlim_cur > alimp->rlim_cur) {
416 prot = VM_PROT_READ | VM_PROT_WRITE;
417 size = limp->rlim_cur - alimp->rlim_cur;
418 tmp = STACK_GROW(base, alimp->rlim_cur);
419 } else {
420 prot = VM_PROT_NONE;
421 size = alimp->rlim_cur - limp->rlim_cur;
422 tmp = STACK_GROW(base, limp->rlim_cur);
423 }
424 addr = (vaddr_t)STACK_ALLOC(tmp, size);
425 (void) uvm_map_protect(&p->p_vmspace->vm_map,
426 addr, addr + size, prot, false);
427 }
428 break;
429
430 case RLIMIT_NOFILE:
431 if (limp->rlim_cur > maxfiles)
432 limp->rlim_cur = maxfiles;
433 if (limp->rlim_max > maxfiles)
434 limp->rlim_max = maxfiles;
435 break;
436
437 case RLIMIT_NPROC:
438 if (limp->rlim_cur > maxproc)
439 limp->rlim_cur = maxproc;
440 if (limp->rlim_max > maxproc)
441 limp->rlim_max = maxproc;
442 break;
443
444 case RLIMIT_NTHR:
445 if (limp->rlim_cur > maxlwp)
446 limp->rlim_cur = maxlwp;
447 if (limp->rlim_max > maxlwp)
448 limp->rlim_max = maxlwp;
449 break;
450 }
451
452 mutex_enter(&p->p_limit->pl_lock);
453 *alimp = *limp;
454 mutex_exit(&p->p_limit->pl_lock);
455 return 0;
456 }
457
458 int
459 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
460 register_t *retval)
461 {
462 /* {
463 syscallarg(int) which;
464 syscallarg(struct rlimit *) rlp;
465 } */
466 struct proc *p = l->l_proc;
467 int which = SCARG(uap, which);
468 struct rlimit rl;
469
470 if ((u_int)which >= RLIM_NLIMITS)
471 return EINVAL;
472
473 mutex_enter(p->p_lock);
474 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
475 mutex_exit(p->p_lock);
476
477 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
478 }
479
480 /*
481 * Transform the running time and tick information in proc p into user,
482 * system, and interrupt time usage.
483 *
484 * Should be called with p->p_lock held unless called from exit1().
485 */
486 void
487 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
488 struct timeval *ip, struct timeval *rp)
489 {
490 uint64_t u, st, ut, it, tot;
491 struct lwp *l;
492 struct bintime tm;
493 struct timeval tv;
494
495 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
496
497 mutex_spin_enter(&p->p_stmutex);
498 st = p->p_sticks;
499 ut = p->p_uticks;
500 it = p->p_iticks;
501 mutex_spin_exit(&p->p_stmutex);
502
503 tm = p->p_rtime;
504
505 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
506 lwp_lock(l);
507 bintime_add(&tm, &l->l_rtime);
508 if ((l->l_pflag & LP_RUNNING) != 0) {
509 struct bintime diff;
510 /*
511 * Adjust for the current time slice. This is
512 * actually fairly important since the error
513 * here is on the order of a time quantum,
514 * which is much greater than the sampling
515 * error.
516 */
517 binuptime(&diff);
518 bintime_sub(&diff, &l->l_stime);
519 bintime_add(&tm, &diff);
520 }
521 lwp_unlock(l);
522 }
523
524 tot = st + ut + it;
525 bintime2timeval(&tm, &tv);
526 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
527
528 if (tot == 0) {
529 /* No ticks, so can't use to share time out, split 50-50 */
530 st = ut = u / 2;
531 } else {
532 st = (u * st) / tot;
533 ut = (u * ut) / tot;
534 }
535 if (sp != NULL) {
536 sp->tv_sec = st / 1000000;
537 sp->tv_usec = st % 1000000;
538 }
539 if (up != NULL) {
540 up->tv_sec = ut / 1000000;
541 up->tv_usec = ut % 1000000;
542 }
543 if (ip != NULL) {
544 if (it != 0)
545 it = (u * it) / tot;
546 ip->tv_sec = it / 1000000;
547 ip->tv_usec = it % 1000000;
548 }
549 if (rp != NULL) {
550 *rp = tv;
551 }
552 }
553
554 int
555 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
556 register_t *retval)
557 {
558 /* {
559 syscallarg(int) who;
560 syscallarg(struct rusage *) rusage;
561 } */
562 int error;
563 struct rusage ru;
564 struct proc *p = l->l_proc;
565
566 error = getrusage1(p, SCARG(uap, who), &ru);
567 if (error != 0)
568 return error;
569
570 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
571 }
572
573 int
574 getrusage1(struct proc *p, int who, struct rusage *ru) {
575
576 switch (who) {
577 case RUSAGE_SELF:
578 mutex_enter(p->p_lock);
579 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
580 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
581 rulwps(p, ru);
582 mutex_exit(p->p_lock);
583 break;
584 case RUSAGE_CHILDREN:
585 mutex_enter(p->p_lock);
586 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
587 mutex_exit(p->p_lock);
588 break;
589 default:
590 return EINVAL;
591 }
592
593 return 0;
594 }
595
596 void
597 ruadd(struct rusage *ru, struct rusage *ru2)
598 {
599 long *ip, *ip2;
600 int i;
601
602 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
603 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
604 if (ru->ru_maxrss < ru2->ru_maxrss)
605 ru->ru_maxrss = ru2->ru_maxrss;
606 ip = &ru->ru_first; ip2 = &ru2->ru_first;
607 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
608 *ip++ += *ip2++;
609 }
610
611 void
612 rulwps(proc_t *p, struct rusage *ru)
613 {
614 lwp_t *l;
615
616 KASSERT(mutex_owned(p->p_lock));
617
618 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
619 ruadd(ru, &l->l_ru);
620 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
621 ru->ru_nivcsw += l->l_nivcsw;
622 }
623 }
624
625 /*
626 * lim_copy: make a copy of the plimit structure.
627 *
628 * We use copy-on-write after fork, and copy when a limit is changed.
629 */
630 struct plimit *
631 lim_copy(struct plimit *lim)
632 {
633 struct plimit *newlim;
634 char *corename;
635 size_t alen, len;
636
637 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
638 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
639 newlim->pl_writeable = false;
640 newlim->pl_refcnt = 1;
641 newlim->pl_sv_limit = NULL;
642
643 mutex_enter(&lim->pl_lock);
644 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
645 sizeof(struct rlimit) * RLIM_NLIMITS);
646
647 /*
648 * Note: the common case is a use of default core name.
649 */
650 alen = 0;
651 corename = NULL;
652 for (;;) {
653 if (lim->pl_corename == defcorename) {
654 newlim->pl_corename = defcorename;
655 newlim->pl_cnlen = 0;
656 break;
657 }
658 len = lim->pl_cnlen;
659 if (len == alen) {
660 newlim->pl_corename = corename;
661 newlim->pl_cnlen = len;
662 memcpy(corename, lim->pl_corename, len);
663 corename = NULL;
664 break;
665 }
666 mutex_exit(&lim->pl_lock);
667 if (corename) {
668 kmem_free(corename, alen);
669 }
670 alen = len;
671 corename = kmem_alloc(alen, KM_SLEEP);
672 mutex_enter(&lim->pl_lock);
673 }
674 mutex_exit(&lim->pl_lock);
675
676 if (corename) {
677 kmem_free(corename, alen);
678 }
679 return newlim;
680 }
681
682 void
683 lim_addref(struct plimit *lim)
684 {
685 atomic_inc_uint(&lim->pl_refcnt);
686 }
687
688 /*
689 * lim_privatise: give a process its own private plimit structure.
690 */
691 void
692 lim_privatise(proc_t *p)
693 {
694 struct plimit *lim = p->p_limit, *newlim;
695
696 if (lim->pl_writeable) {
697 return;
698 }
699
700 newlim = lim_copy(lim);
701
702 mutex_enter(p->p_lock);
703 if (p->p_limit->pl_writeable) {
704 /* Other thread won the race. */
705 mutex_exit(p->p_lock);
706 lim_free(newlim);
707 return;
708 }
709
710 /*
711 * Since p->p_limit can be accessed without locked held,
712 * old limit structure must not be deleted yet.
713 */
714 newlim->pl_sv_limit = p->p_limit;
715 newlim->pl_writeable = true;
716 p->p_limit = newlim;
717 mutex_exit(p->p_lock);
718 }
719
720 void
721 lim_setcorename(proc_t *p, char *name, size_t len)
722 {
723 struct plimit *lim;
724 char *oname;
725 size_t olen;
726
727 lim_privatise(p);
728 lim = p->p_limit;
729
730 mutex_enter(&lim->pl_lock);
731 oname = lim->pl_corename;
732 olen = lim->pl_cnlen;
733 lim->pl_corename = name;
734 lim->pl_cnlen = len;
735 mutex_exit(&lim->pl_lock);
736
737 if (oname != defcorename) {
738 kmem_free(oname, olen);
739 }
740 }
741
742 void
743 lim_free(struct plimit *lim)
744 {
745 struct plimit *sv_lim;
746
747 do {
748 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
749 return;
750 }
751 if (lim->pl_corename != defcorename) {
752 kmem_free(lim->pl_corename, lim->pl_cnlen);
753 }
754 sv_lim = lim->pl_sv_limit;
755 mutex_destroy(&lim->pl_lock);
756 pool_cache_put(plimit_cache, lim);
757 } while ((lim = sv_lim) != NULL);
758 }
759
760 struct pstats *
761 pstatscopy(struct pstats *ps)
762 {
763 struct pstats *nps;
764 size_t len;
765
766 nps = pool_cache_get(pstats_cache, PR_WAITOK);
767
768 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
769 memset(&nps->pstat_startzero, 0, len);
770
771 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
772 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
773
774 return nps;
775 }
776
777 void
778 pstatsfree(struct pstats *ps)
779 {
780
781 pool_cache_put(pstats_cache, ps);
782 }
783
784 /*
785 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
786 * need to pick a valid process by PID.
787 *
788 * => Hold a reference on the process, on success.
789 */
790 static int
791 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
792 {
793 proc_t *p;
794 int error;
795
796 if (pid == PROC_CURPROC) {
797 p = l->l_proc;
798 } else {
799 mutex_enter(proc_lock);
800 p = proc_find(pid);
801 if (p == NULL) {
802 mutex_exit(proc_lock);
803 return ESRCH;
804 }
805 }
806 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
807 if (pid != PROC_CURPROC) {
808 mutex_exit(proc_lock);
809 }
810 *p2 = p;
811 return error;
812 }
813
814 /*
815 * sysctl_proc_corename: helper routine to get or set the core file name
816 * for a process specified by PID.
817 */
818 static int
819 sysctl_proc_corename(SYSCTLFN_ARGS)
820 {
821 struct proc *p;
822 struct plimit *lim;
823 char *cnbuf, *cname;
824 struct sysctlnode node;
825 size_t len;
826 int error;
827
828 /* First, validate the request. */
829 if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
830 return EINVAL;
831
832 /* Find the process. Hold a reference (p_reflock), if found. */
833 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
834 if (error)
835 return error;
836
837 /* XXX-elad */
838 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
839 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
840 if (error) {
841 rw_exit(&p->p_reflock);
842 return error;
843 }
844
845 cnbuf = PNBUF_GET();
846
847 if (oldp) {
848 /* Get case: copy the core name into the buffer. */
849 error = kauth_authorize_process(l->l_cred,
850 KAUTH_PROCESS_CORENAME, p,
851 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
852 if (error) {
853 goto done;
854 }
855 lim = p->p_limit;
856 mutex_enter(&lim->pl_lock);
857 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
858 mutex_exit(&lim->pl_lock);
859 }
860
861 node = *rnode;
862 node.sysctl_data = cnbuf;
863 error = sysctl_lookup(SYSCTLFN_CALL(&node));
864
865 /* Return if error, or if caller is only getting the core name. */
866 if (error || newp == NULL) {
867 goto done;
868 }
869
870 /*
871 * Set case. Check permission and then validate new core name.
872 * It must be either "core", "/core", or end in ".core".
873 */
874 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
875 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
876 if (error) {
877 goto done;
878 }
879 len = strlen(cnbuf);
880 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
881 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
882 error = EINVAL;
883 goto done;
884 }
885
886 /* Allocate, copy and set the new core name for plimit structure. */
887 cname = kmem_alloc(++len, KM_NOSLEEP);
888 if (cname == NULL) {
889 error = ENOMEM;
890 goto done;
891 }
892 memcpy(cname, cnbuf, len);
893 lim_setcorename(p, cname, len);
894 done:
895 rw_exit(&p->p_reflock);
896 PNBUF_PUT(cnbuf);
897 return error;
898 }
899
900 /*
901 * sysctl_proc_stop: helper routine for checking/setting the stop flags.
902 */
903 static int
904 sysctl_proc_stop(SYSCTLFN_ARGS)
905 {
906 struct proc *p;
907 int isset, flag, error = 0;
908 struct sysctlnode node;
909
910 if (namelen != 0)
911 return EINVAL;
912
913 /* Find the process. Hold a reference (p_reflock), if found. */
914 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
915 if (error)
916 return error;
917
918 /* XXX-elad */
919 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
920 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
921 if (error) {
922 goto out;
923 }
924
925 /* Determine the flag. */
926 switch (rnode->sysctl_num) {
927 case PROC_PID_STOPFORK:
928 flag = PS_STOPFORK;
929 break;
930 case PROC_PID_STOPEXEC:
931 flag = PS_STOPEXEC;
932 break;
933 case PROC_PID_STOPEXIT:
934 flag = PS_STOPEXIT;
935 break;
936 default:
937 error = EINVAL;
938 goto out;
939 }
940 isset = (p->p_flag & flag) ? 1 : 0;
941 node = *rnode;
942 node.sysctl_data = &isset;
943 error = sysctl_lookup(SYSCTLFN_CALL(&node));
944
945 /* Return if error, or if callers is only getting the flag. */
946 if (error || newp == NULL) {
947 goto out;
948 }
949
950 /* Check if caller can set the flags. */
951 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
952 p, KAUTH_ARG(flag), NULL, NULL);
953 if (error) {
954 goto out;
955 }
956 mutex_enter(p->p_lock);
957 if (isset) {
958 p->p_sflag |= flag;
959 } else {
960 p->p_sflag &= ~flag;
961 }
962 mutex_exit(p->p_lock);
963 out:
964 rw_exit(&p->p_reflock);
965 return error;
966 }
967
968 /*
969 * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
970 */
971 static int
972 sysctl_proc_plimit(SYSCTLFN_ARGS)
973 {
974 struct proc *p;
975 u_int limitno;
976 int which, error = 0;
977 struct rlimit alim;
978 struct sysctlnode node;
979
980 if (namelen != 0)
981 return EINVAL;
982
983 which = name[-1];
984 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
985 which != PROC_PID_LIMIT_TYPE_HARD)
986 return EINVAL;
987
988 limitno = name[-2] - 1;
989 if (limitno >= RLIM_NLIMITS)
990 return EINVAL;
991
992 if (name[-3] != PROC_PID_LIMIT)
993 return EINVAL;
994
995 /* Find the process. Hold a reference (p_reflock), if found. */
996 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
997 if (error)
998 return error;
999
1000 /* XXX-elad */
1001 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1002 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1003 if (error)
1004 goto out;
1005
1006 /* Check if caller can retrieve the limits. */
1007 if (newp == NULL) {
1008 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1009 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1010 KAUTH_ARG(which));
1011 if (error)
1012 goto out;
1013 }
1014
1015 /* Retrieve the limits. */
1016 node = *rnode;
1017 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1018 if (which == PROC_PID_LIMIT_TYPE_HARD) {
1019 node.sysctl_data = &alim.rlim_max;
1020 } else {
1021 node.sysctl_data = &alim.rlim_cur;
1022 }
1023 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1024
1025 /* Return if error, or if we are only retrieving the limits. */
1026 if (error || newp == NULL) {
1027 goto out;
1028 }
1029 error = dosetrlimit(l, p, limitno, &alim);
1030 out:
1031 rw_exit(&p->p_reflock);
1032 return error;
1033 }
1034
1035 /*
1036 * Setup sysctl nodes.
1037 */
1038 static void
1039 sysctl_proc_setup(void)
1040 {
1041
1042 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1043 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1044 CTLTYPE_NODE, "curproc",
1045 SYSCTL_DESCR("Per-process settings"),
1046 NULL, 0, NULL, 0,
1047 CTL_PROC, PROC_CURPROC, CTL_EOL);
1048
1049 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1050 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1051 CTLTYPE_STRING, "corename",
1052 SYSCTL_DESCR("Core file name"),
1053 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1054 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1055 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1056 CTLFLAG_PERMANENT,
1057 CTLTYPE_NODE, "rlimit",
1058 SYSCTL_DESCR("Process limits"),
1059 NULL, 0, NULL, 0,
1060 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1061
1062 #define create_proc_plimit(s, n) do { \
1063 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1064 CTLFLAG_PERMANENT, \
1065 CTLTYPE_NODE, s, \
1066 SYSCTL_DESCR("Process " s " limits"), \
1067 NULL, 0, NULL, 0, \
1068 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1069 CTL_EOL); \
1070 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1071 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1072 CTLTYPE_QUAD, "soft", \
1073 SYSCTL_DESCR("Process soft " s " limit"), \
1074 sysctl_proc_plimit, 0, NULL, 0, \
1075 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1076 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1077 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \
1078 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1079 CTLTYPE_QUAD, "hard", \
1080 SYSCTL_DESCR("Process hard " s " limit"), \
1081 sysctl_proc_plimit, 0, NULL, 0, \
1082 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1083 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1084 } while (0/*CONSTCOND*/)
1085
1086 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1087 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1088 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1089 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1090 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1091 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1092 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1093 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1094 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1095 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1096 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1097 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR);
1098
1099 #undef create_proc_plimit
1100
1101 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1102 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1103 CTLTYPE_INT, "stopfork",
1104 SYSCTL_DESCR("Stop process at fork(2)"),
1105 sysctl_proc_stop, 0, NULL, 0,
1106 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1107 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1108 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1109 CTLTYPE_INT, "stopexec",
1110 SYSCTL_DESCR("Stop process at execve(2)"),
1111 sysctl_proc_stop, 0, NULL, 0,
1112 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1113 sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1114 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1115 CTLTYPE_INT, "stopexit",
1116 SYSCTL_DESCR("Stop process before completing exit"),
1117 sysctl_proc_stop, 0, NULL, 0,
1118 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1119 }
1120