Home | History | Annotate | Line # | Download | only in kern
kern_resource.c revision 1.172.2.1
      1 /*	$NetBSD: kern_resource.c,v 1.172.2.1 2014/05/18 17:46:07 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.172.2.1 2014/05/18 17:46:07 rmind Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/kmem.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/timevar.h>
     53 #include <sys/kauth.h>
     54 #include <sys/atomic.h>
     55 #include <sys/mount.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t			maxdmap = MAXDSIZ;
     66 rlim_t			maxsmap = MAXSSIZ;
     67 
     68 static pool_cache_t	plimit_cache	__read_mostly;
     69 static pool_cache_t	pstats_cache	__read_mostly;
     70 
     71 static kauth_listener_t	resource_listener;
     72 static struct sysctllog	*proc_sysctllog;
     73 
     74 static int	donice(struct lwp *, struct proc *, int);
     75 static void	sysctl_proc_setup(void);
     76 
     77 static int
     78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     79     void *arg0, void *arg1, void *arg2, void *arg3)
     80 {
     81 	struct proc *p;
     82 	int result;
     83 
     84 	result = KAUTH_RESULT_DEFER;
     85 	p = arg0;
     86 
     87 	switch (action) {
     88 	case KAUTH_PROCESS_NICE:
     89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     91 			break;
     92 		}
     93 
     94 		if ((u_long)arg1 >= p->p_nice)
     95 			result = KAUTH_RESULT_ALLOW;
     96 
     97 		break;
     98 
     99 	case KAUTH_PROCESS_RLIMIT: {
    100 		enum kauth_process_req req;
    101 
    102 		req = (enum kauth_process_req)(unsigned long)arg1;
    103 
    104 		switch (req) {
    105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    106 			result = KAUTH_RESULT_ALLOW;
    107 			break;
    108 
    109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    110 			struct rlimit *new_rlimit;
    111 			u_long which;
    112 
    113 			if ((p != curlwp->l_proc) &&
    114 			    (proc_uidmatch(cred, p->p_cred) != 0))
    115 				break;
    116 
    117 			new_rlimit = arg2;
    118 			which = (u_long)arg3;
    119 
    120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    121 				result = KAUTH_RESULT_ALLOW;
    122 
    123 			break;
    124 			}
    125 
    126 		default:
    127 			break;
    128 		}
    129 
    130 		break;
    131 	}
    132 
    133 	default:
    134 		break;
    135 	}
    136 
    137 	return result;
    138 }
    139 
    140 void
    141 resource_init(void)
    142 {
    143 
    144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
    145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
    146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
    147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
    148 
    149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    150 	    resource_listener_cb, NULL);
    151 
    152 	sysctl_proc_setup();
    153 }
    154 
    155 /*
    156  * Resource controls and accounting.
    157  */
    158 
    159 int
    160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    161     register_t *retval)
    162 {
    163 	/* {
    164 		syscallarg(int) which;
    165 		syscallarg(id_t) who;
    166 	} */
    167 	struct proc *curp = l->l_proc, *p;
    168 	id_t who = SCARG(uap, who);
    169 	int low = NZERO + PRIO_MAX + 1;
    170 
    171 	mutex_enter(proc_lock);
    172 	switch (SCARG(uap, which)) {
    173 	case PRIO_PROCESS:
    174 		p = who ? proc_find(who) : curp;
    175 		if (p != NULL)
    176 			low = p->p_nice;
    177 		break;
    178 
    179 	case PRIO_PGRP: {
    180 		struct pgrp *pg;
    181 
    182 		if (who == 0)
    183 			pg = curp->p_pgrp;
    184 		else if ((pg = pgrp_find(who)) == NULL)
    185 			break;
    186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    187 			if (p->p_nice < low)
    188 				low = p->p_nice;
    189 		}
    190 		break;
    191 	}
    192 
    193 	case PRIO_USER:
    194 		if (who == 0)
    195 			who = (int)kauth_cred_geteuid(l->l_cred);
    196 		PROCLIST_FOREACH(p, &allproc) {
    197 			mutex_enter(p->p_lock);
    198 			if (kauth_cred_geteuid(p->p_cred) ==
    199 			    (uid_t)who && p->p_nice < low)
    200 				low = p->p_nice;
    201 			mutex_exit(p->p_lock);
    202 		}
    203 		break;
    204 
    205 	default:
    206 		mutex_exit(proc_lock);
    207 		return EINVAL;
    208 	}
    209 	mutex_exit(proc_lock);
    210 
    211 	if (low == NZERO + PRIO_MAX + 1) {
    212 		return ESRCH;
    213 	}
    214 	*retval = low - NZERO;
    215 	return 0;
    216 }
    217 
    218 int
    219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    220     register_t *retval)
    221 {
    222 	/* {
    223 		syscallarg(int) which;
    224 		syscallarg(id_t) who;
    225 		syscallarg(int) prio;
    226 	} */
    227 	struct proc *curp = l->l_proc, *p;
    228 	id_t who = SCARG(uap, who);
    229 	int found = 0, error = 0;
    230 
    231 	mutex_enter(proc_lock);
    232 	switch (SCARG(uap, which)) {
    233 	case PRIO_PROCESS:
    234 		p = who ? proc_find(who) : curp;
    235 		if (p != NULL) {
    236 			mutex_enter(p->p_lock);
    237 			found++;
    238 			error = donice(l, p, SCARG(uap, prio));
    239 			mutex_exit(p->p_lock);
    240 		}
    241 		break;
    242 
    243 	case PRIO_PGRP: {
    244 		struct pgrp *pg;
    245 
    246 		if (who == 0)
    247 			pg = curp->p_pgrp;
    248 		else if ((pg = pgrp_find(who)) == NULL)
    249 			break;
    250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    251 			mutex_enter(p->p_lock);
    252 			found++;
    253 			error = donice(l, p, SCARG(uap, prio));
    254 			mutex_exit(p->p_lock);
    255 			if (error)
    256 				break;
    257 		}
    258 		break;
    259 	}
    260 
    261 	case PRIO_USER:
    262 		if (who == 0)
    263 			who = (int)kauth_cred_geteuid(l->l_cred);
    264 		PROCLIST_FOREACH(p, &allproc) {
    265 			mutex_enter(p->p_lock);
    266 			if (kauth_cred_geteuid(p->p_cred) ==
    267 			    (uid_t)SCARG(uap, who)) {
    268 				found++;
    269 				error = donice(l, p, SCARG(uap, prio));
    270 			}
    271 			mutex_exit(p->p_lock);
    272 			if (error)
    273 				break;
    274 		}
    275 		break;
    276 
    277 	default:
    278 		mutex_exit(proc_lock);
    279 		return EINVAL;
    280 	}
    281 	mutex_exit(proc_lock);
    282 
    283 	return (found == 0) ? ESRCH : error;
    284 }
    285 
    286 /*
    287  * Renice a process.
    288  *
    289  * Call with the target process' credentials locked.
    290  */
    291 static int
    292 donice(struct lwp *l, struct proc *chgp, int n)
    293 {
    294 	kauth_cred_t cred = l->l_cred;
    295 
    296 	KASSERT(mutex_owned(chgp->p_lock));
    297 
    298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    301 		return EPERM;
    302 
    303 	if (n > PRIO_MAX) {
    304 		n = PRIO_MAX;
    305 	}
    306 	if (n < PRIO_MIN) {
    307 		n = PRIO_MIN;
    308 	}
    309 	n += NZERO;
    310 
    311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    312 	    KAUTH_ARG(n), NULL, NULL)) {
    313 		return EACCES;
    314 	}
    315 
    316 	sched_nice(chgp, n);
    317 	return 0;
    318 }
    319 
    320 int
    321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    322     register_t *retval)
    323 {
    324 	/* {
    325 		syscallarg(int) which;
    326 		syscallarg(const struct rlimit *) rlp;
    327 	} */
    328 	int error, which = SCARG(uap, which);
    329 	struct rlimit alim;
    330 
    331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    332 	if (error) {
    333 		return error;
    334 	}
    335 	return dosetrlimit(l, l->l_proc, which, &alim);
    336 }
    337 
    338 int
    339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    340 {
    341 	struct rlimit *alimp;
    342 	int error;
    343 
    344 	if ((u_int)which >= RLIM_NLIMITS)
    345 		return EINVAL;
    346 
    347 	if (limp->rlim_cur > limp->rlim_max) {
    348 		/*
    349 		 * This is programming error. According to SUSv2, we should
    350 		 * return error in this case.
    351 		 */
    352 		return EINVAL;
    353 	}
    354 
    355 	alimp = &p->p_rlimit[which];
    356 	/* if we don't change the value, no need to limcopy() */
    357 	if (limp->rlim_cur == alimp->rlim_cur &&
    358 	    limp->rlim_max == alimp->rlim_max)
    359 		return 0;
    360 
    361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    363 	if (error)
    364 		return error;
    365 
    366 	lim_privatise(p);
    367 	/* p->p_limit is now unchangeable */
    368 	alimp = &p->p_rlimit[which];
    369 
    370 	switch (which) {
    371 
    372 	case RLIMIT_DATA:
    373 		if (limp->rlim_cur > maxdmap)
    374 			limp->rlim_cur = maxdmap;
    375 		if (limp->rlim_max > maxdmap)
    376 			limp->rlim_max = maxdmap;
    377 		break;
    378 
    379 	case RLIMIT_STACK:
    380 		if (limp->rlim_cur > maxsmap)
    381 			limp->rlim_cur = maxsmap;
    382 		if (limp->rlim_max > maxsmap)
    383 			limp->rlim_max = maxsmap;
    384 
    385 		/*
    386 		 * Return EINVAL if the new stack size limit is lower than
    387 		 * current usage. Otherwise, the process would get SIGSEGV the
    388 		 * moment it would try to access anything on it's current stack.
    389 		 * This conforms to SUSv2.
    390 		 */
    391 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
    392 		    limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
    393 			return EINVAL;
    394 		}
    395 
    396 		/*
    397 		 * Stack is allocated to the max at exec time with
    398 		 * only "rlim_cur" bytes accessible (In other words,
    399 		 * allocates stack dividing two contiguous regions at
    400 		 * "rlim_cur" bytes boundary).
    401 		 *
    402 		 * Since allocation is done in terms of page, roundup
    403 		 * "rlim_cur" (otherwise, contiguous regions
    404 		 * overlap).  If stack limit is going up make more
    405 		 * accessible, if going down make inaccessible.
    406 		 */
    407 		limp->rlim_cur = round_page(limp->rlim_cur);
    408 		if (limp->rlim_cur != alimp->rlim_cur) {
    409 			vaddr_t addr;
    410 			vsize_t size;
    411 			vm_prot_t prot;
    412 			char *base, *tmp;
    413 
    414 			base = p->p_vmspace->vm_minsaddr;
    415 			if (limp->rlim_cur > alimp->rlim_cur) {
    416 				prot = VM_PROT_READ | VM_PROT_WRITE;
    417 				size = limp->rlim_cur - alimp->rlim_cur;
    418 				tmp = STACK_GROW(base, alimp->rlim_cur);
    419 			} else {
    420 				prot = VM_PROT_NONE;
    421 				size = alimp->rlim_cur - limp->rlim_cur;
    422 				tmp = STACK_GROW(base, limp->rlim_cur);
    423 			}
    424 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    425 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    426 			    addr, addr + size, prot, false);
    427 		}
    428 		break;
    429 
    430 	case RLIMIT_NOFILE:
    431 		if (limp->rlim_cur > maxfiles)
    432 			limp->rlim_cur = maxfiles;
    433 		if (limp->rlim_max > maxfiles)
    434 			limp->rlim_max = maxfiles;
    435 		break;
    436 
    437 	case RLIMIT_NPROC:
    438 		if (limp->rlim_cur > maxproc)
    439 			limp->rlim_cur = maxproc;
    440 		if (limp->rlim_max > maxproc)
    441 			limp->rlim_max = maxproc;
    442 		break;
    443 
    444 	case RLIMIT_NTHR:
    445 		if (limp->rlim_cur > maxlwp)
    446 			limp->rlim_cur = maxlwp;
    447 		if (limp->rlim_max > maxlwp)
    448 			limp->rlim_max = maxlwp;
    449 		break;
    450 	}
    451 
    452 	mutex_enter(&p->p_limit->pl_lock);
    453 	*alimp = *limp;
    454 	mutex_exit(&p->p_limit->pl_lock);
    455 	return 0;
    456 }
    457 
    458 int
    459 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    460     register_t *retval)
    461 {
    462 	/* {
    463 		syscallarg(int) which;
    464 		syscallarg(struct rlimit *) rlp;
    465 	} */
    466 	struct proc *p = l->l_proc;
    467 	int which = SCARG(uap, which);
    468 	struct rlimit rl;
    469 
    470 	if ((u_int)which >= RLIM_NLIMITS)
    471 		return EINVAL;
    472 
    473 	mutex_enter(p->p_lock);
    474 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    475 	mutex_exit(p->p_lock);
    476 
    477 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    478 }
    479 
    480 /*
    481  * Transform the running time and tick information in proc p into user,
    482  * system, and interrupt time usage.
    483  *
    484  * Should be called with p->p_lock held unless called from exit1().
    485  */
    486 void
    487 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    488     struct timeval *ip, struct timeval *rp)
    489 {
    490 	uint64_t u, st, ut, it, tot;
    491 	struct lwp *l;
    492 	struct bintime tm;
    493 	struct timeval tv;
    494 
    495 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    496 
    497 	mutex_spin_enter(&p->p_stmutex);
    498 	st = p->p_sticks;
    499 	ut = p->p_uticks;
    500 	it = p->p_iticks;
    501 	mutex_spin_exit(&p->p_stmutex);
    502 
    503 	tm = p->p_rtime;
    504 
    505 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    506 		lwp_lock(l);
    507 		bintime_add(&tm, &l->l_rtime);
    508 		if ((l->l_pflag & LP_RUNNING) != 0) {
    509 			struct bintime diff;
    510 			/*
    511 			 * Adjust for the current time slice.  This is
    512 			 * actually fairly important since the error
    513 			 * here is on the order of a time quantum,
    514 			 * which is much greater than the sampling
    515 			 * error.
    516 			 */
    517 			binuptime(&diff);
    518 			bintime_sub(&diff, &l->l_stime);
    519 			bintime_add(&tm, &diff);
    520 		}
    521 		lwp_unlock(l);
    522 	}
    523 
    524 	tot = st + ut + it;
    525 	bintime2timeval(&tm, &tv);
    526 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    527 
    528 	if (tot == 0) {
    529 		/* No ticks, so can't use to share time out, split 50-50 */
    530 		st = ut = u / 2;
    531 	} else {
    532 		st = (u * st) / tot;
    533 		ut = (u * ut) / tot;
    534 	}
    535 	if (sp != NULL) {
    536 		sp->tv_sec = st / 1000000;
    537 		sp->tv_usec = st % 1000000;
    538 	}
    539 	if (up != NULL) {
    540 		up->tv_sec = ut / 1000000;
    541 		up->tv_usec = ut % 1000000;
    542 	}
    543 	if (ip != NULL) {
    544 		if (it != 0)
    545 			it = (u * it) / tot;
    546 		ip->tv_sec = it / 1000000;
    547 		ip->tv_usec = it % 1000000;
    548 	}
    549 	if (rp != NULL) {
    550 		*rp = tv;
    551 	}
    552 }
    553 
    554 int
    555 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    556     register_t *retval)
    557 {
    558 	/* {
    559 		syscallarg(int) who;
    560 		syscallarg(struct rusage *) rusage;
    561 	} */
    562 	int error;
    563 	struct rusage ru;
    564 	struct proc *p = l->l_proc;
    565 
    566 	error = getrusage1(p, SCARG(uap, who), &ru);
    567 	if (error != 0)
    568 		return error;
    569 
    570 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    571 }
    572 
    573 int
    574 getrusage1(struct proc *p, int who, struct rusage *ru) {
    575 
    576 	switch (who) {
    577 	case RUSAGE_SELF:
    578 		mutex_enter(p->p_lock);
    579 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    580 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    581 		rulwps(p, ru);
    582 		mutex_exit(p->p_lock);
    583 		break;
    584 	case RUSAGE_CHILDREN:
    585 		mutex_enter(p->p_lock);
    586 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    587 		mutex_exit(p->p_lock);
    588 		break;
    589 	default:
    590 		return EINVAL;
    591 	}
    592 
    593 	return 0;
    594 }
    595 
    596 void
    597 ruadd(struct rusage *ru, struct rusage *ru2)
    598 {
    599 	long *ip, *ip2;
    600 	int i;
    601 
    602 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    603 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    604 	if (ru->ru_maxrss < ru2->ru_maxrss)
    605 		ru->ru_maxrss = ru2->ru_maxrss;
    606 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    607 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    608 		*ip++ += *ip2++;
    609 }
    610 
    611 void
    612 rulwps(proc_t *p, struct rusage *ru)
    613 {
    614 	lwp_t *l;
    615 
    616 	KASSERT(mutex_owned(p->p_lock));
    617 
    618 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    619 		ruadd(ru, &l->l_ru);
    620 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    621 		ru->ru_nivcsw += l->l_nivcsw;
    622 	}
    623 }
    624 
    625 /*
    626  * lim_copy: make a copy of the plimit structure.
    627  *
    628  * We use copy-on-write after fork, and copy when a limit is changed.
    629  */
    630 struct plimit *
    631 lim_copy(struct plimit *lim)
    632 {
    633 	struct plimit *newlim;
    634 	char *corename;
    635 	size_t alen, len;
    636 
    637 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
    638 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    639 	newlim->pl_writeable = false;
    640 	newlim->pl_refcnt = 1;
    641 	newlim->pl_sv_limit = NULL;
    642 
    643 	mutex_enter(&lim->pl_lock);
    644 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    645 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    646 
    647 	/*
    648 	 * Note: the common case is a use of default core name.
    649 	 */
    650 	alen = 0;
    651 	corename = NULL;
    652 	for (;;) {
    653 		if (lim->pl_corename == defcorename) {
    654 			newlim->pl_corename = defcorename;
    655 			newlim->pl_cnlen = 0;
    656 			break;
    657 		}
    658 		len = lim->pl_cnlen;
    659 		if (len == alen) {
    660 			newlim->pl_corename = corename;
    661 			newlim->pl_cnlen = len;
    662 			memcpy(corename, lim->pl_corename, len);
    663 			corename = NULL;
    664 			break;
    665 		}
    666 		mutex_exit(&lim->pl_lock);
    667 		if (corename) {
    668 			kmem_free(corename, alen);
    669 		}
    670 		alen = len;
    671 		corename = kmem_alloc(alen, KM_SLEEP);
    672 		mutex_enter(&lim->pl_lock);
    673 	}
    674 	mutex_exit(&lim->pl_lock);
    675 
    676 	if (corename) {
    677 		kmem_free(corename, alen);
    678 	}
    679 	return newlim;
    680 }
    681 
    682 void
    683 lim_addref(struct plimit *lim)
    684 {
    685 	atomic_inc_uint(&lim->pl_refcnt);
    686 }
    687 
    688 /*
    689  * lim_privatise: give a process its own private plimit structure.
    690  */
    691 void
    692 lim_privatise(proc_t *p)
    693 {
    694 	struct plimit *lim = p->p_limit, *newlim;
    695 
    696 	if (lim->pl_writeable) {
    697 		return;
    698 	}
    699 
    700 	newlim = lim_copy(lim);
    701 
    702 	mutex_enter(p->p_lock);
    703 	if (p->p_limit->pl_writeable) {
    704 		/* Other thread won the race. */
    705 		mutex_exit(p->p_lock);
    706 		lim_free(newlim);
    707 		return;
    708 	}
    709 
    710 	/*
    711 	 * Since p->p_limit can be accessed without locked held,
    712 	 * old limit structure must not be deleted yet.
    713 	 */
    714 	newlim->pl_sv_limit = p->p_limit;
    715 	newlim->pl_writeable = true;
    716 	p->p_limit = newlim;
    717 	mutex_exit(p->p_lock);
    718 }
    719 
    720 void
    721 lim_setcorename(proc_t *p, char *name, size_t len)
    722 {
    723 	struct plimit *lim;
    724 	char *oname;
    725 	size_t olen;
    726 
    727 	lim_privatise(p);
    728 	lim = p->p_limit;
    729 
    730 	mutex_enter(&lim->pl_lock);
    731 	oname = lim->pl_corename;
    732 	olen = lim->pl_cnlen;
    733 	lim->pl_corename = name;
    734 	lim->pl_cnlen = len;
    735 	mutex_exit(&lim->pl_lock);
    736 
    737 	if (oname != defcorename) {
    738 		kmem_free(oname, olen);
    739 	}
    740 }
    741 
    742 void
    743 lim_free(struct plimit *lim)
    744 {
    745 	struct plimit *sv_lim;
    746 
    747 	do {
    748 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    749 			return;
    750 		}
    751 		if (lim->pl_corename != defcorename) {
    752 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    753 		}
    754 		sv_lim = lim->pl_sv_limit;
    755 		mutex_destroy(&lim->pl_lock);
    756 		pool_cache_put(plimit_cache, lim);
    757 	} while ((lim = sv_lim) != NULL);
    758 }
    759 
    760 struct pstats *
    761 pstatscopy(struct pstats *ps)
    762 {
    763 	struct pstats *nps;
    764 	size_t len;
    765 
    766 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
    767 
    768 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    769 	memset(&nps->pstat_startzero, 0, len);
    770 
    771 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    772 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    773 
    774 	return nps;
    775 }
    776 
    777 void
    778 pstatsfree(struct pstats *ps)
    779 {
    780 
    781 	pool_cache_put(pstats_cache, ps);
    782 }
    783 
    784 /*
    785  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    786  * need to pick a valid process by PID.
    787  *
    788  * => Hold a reference on the process, on success.
    789  */
    790 static int
    791 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    792 {
    793 	proc_t *p;
    794 	int error;
    795 
    796 	if (pid == PROC_CURPROC) {
    797 		p = l->l_proc;
    798 	} else {
    799 		mutex_enter(proc_lock);
    800 		p = proc_find(pid);
    801 		if (p == NULL) {
    802 			mutex_exit(proc_lock);
    803 			return ESRCH;
    804 		}
    805 	}
    806 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    807 	if (pid != PROC_CURPROC) {
    808 		mutex_exit(proc_lock);
    809 	}
    810 	*p2 = p;
    811 	return error;
    812 }
    813 
    814 /*
    815  * sysctl_proc_corename: helper routine to get or set the core file name
    816  * for a process specified by PID.
    817  */
    818 static int
    819 sysctl_proc_corename(SYSCTLFN_ARGS)
    820 {
    821 	struct proc *p;
    822 	struct plimit *lim;
    823 	char *cnbuf, *cname;
    824 	struct sysctlnode node;
    825 	size_t len;
    826 	int error;
    827 
    828 	/* First, validate the request. */
    829 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    830 		return EINVAL;
    831 
    832 	/* Find the process.  Hold a reference (p_reflock), if found. */
    833 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    834 	if (error)
    835 		return error;
    836 
    837 	/* XXX-elad */
    838 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    839 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    840 	if (error) {
    841 		rw_exit(&p->p_reflock);
    842 		return error;
    843 	}
    844 
    845 	cnbuf = PNBUF_GET();
    846 
    847 	if (oldp) {
    848 		/* Get case: copy the core name into the buffer. */
    849 		error = kauth_authorize_process(l->l_cred,
    850 		    KAUTH_PROCESS_CORENAME, p,
    851 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    852 		if (error) {
    853 			goto done;
    854 		}
    855 		lim = p->p_limit;
    856 		mutex_enter(&lim->pl_lock);
    857 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    858 		mutex_exit(&lim->pl_lock);
    859 	}
    860 
    861 	node = *rnode;
    862 	node.sysctl_data = cnbuf;
    863 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    864 
    865 	/* Return if error, or if caller is only getting the core name. */
    866 	if (error || newp == NULL) {
    867 		goto done;
    868 	}
    869 
    870 	/*
    871 	 * Set case.  Check permission and then validate new core name.
    872 	 * It must be either "core", "/core", or end in ".core".
    873 	 */
    874 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    875 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    876 	if (error) {
    877 		goto done;
    878 	}
    879 	len = strlen(cnbuf);
    880 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    881 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    882 		error = EINVAL;
    883 		goto done;
    884 	}
    885 
    886 	/* Allocate, copy and set the new core name for plimit structure. */
    887 	cname = kmem_alloc(++len, KM_NOSLEEP);
    888 	if (cname == NULL) {
    889 		error = ENOMEM;
    890 		goto done;
    891 	}
    892 	memcpy(cname, cnbuf, len);
    893 	lim_setcorename(p, cname, len);
    894 done:
    895 	rw_exit(&p->p_reflock);
    896 	PNBUF_PUT(cnbuf);
    897 	return error;
    898 }
    899 
    900 /*
    901  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    902  */
    903 static int
    904 sysctl_proc_stop(SYSCTLFN_ARGS)
    905 {
    906 	struct proc *p;
    907 	int isset, flag, error = 0;
    908 	struct sysctlnode node;
    909 
    910 	if (namelen != 0)
    911 		return EINVAL;
    912 
    913 	/* Find the process.  Hold a reference (p_reflock), if found. */
    914 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    915 	if (error)
    916 		return error;
    917 
    918 	/* XXX-elad */
    919 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    920 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    921 	if (error) {
    922 		goto out;
    923 	}
    924 
    925 	/* Determine the flag. */
    926 	switch (rnode->sysctl_num) {
    927 	case PROC_PID_STOPFORK:
    928 		flag = PS_STOPFORK;
    929 		break;
    930 	case PROC_PID_STOPEXEC:
    931 		flag = PS_STOPEXEC;
    932 		break;
    933 	case PROC_PID_STOPEXIT:
    934 		flag = PS_STOPEXIT;
    935 		break;
    936 	default:
    937 		error = EINVAL;
    938 		goto out;
    939 	}
    940 	isset = (p->p_flag & flag) ? 1 : 0;
    941 	node = *rnode;
    942 	node.sysctl_data = &isset;
    943 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    944 
    945 	/* Return if error, or if callers is only getting the flag. */
    946 	if (error || newp == NULL) {
    947 		goto out;
    948 	}
    949 
    950 	/* Check if caller can set the flags. */
    951 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
    952 	    p, KAUTH_ARG(flag), NULL, NULL);
    953 	if (error) {
    954 		goto out;
    955 	}
    956 	mutex_enter(p->p_lock);
    957 	if (isset) {
    958 		p->p_sflag |= flag;
    959 	} else {
    960 		p->p_sflag &= ~flag;
    961 	}
    962 	mutex_exit(p->p_lock);
    963 out:
    964 	rw_exit(&p->p_reflock);
    965 	return error;
    966 }
    967 
    968 /*
    969  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
    970  */
    971 static int
    972 sysctl_proc_plimit(SYSCTLFN_ARGS)
    973 {
    974 	struct proc *p;
    975 	u_int limitno;
    976 	int which, error = 0;
    977         struct rlimit alim;
    978 	struct sysctlnode node;
    979 
    980 	if (namelen != 0)
    981 		return EINVAL;
    982 
    983 	which = name[-1];
    984 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
    985 	    which != PROC_PID_LIMIT_TYPE_HARD)
    986 		return EINVAL;
    987 
    988 	limitno = name[-2] - 1;
    989 	if (limitno >= RLIM_NLIMITS)
    990 		return EINVAL;
    991 
    992 	if (name[-3] != PROC_PID_LIMIT)
    993 		return EINVAL;
    994 
    995 	/* Find the process.  Hold a reference (p_reflock), if found. */
    996 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
    997 	if (error)
    998 		return error;
    999 
   1000 	/* XXX-elad */
   1001 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1002 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1003 	if (error)
   1004 		goto out;
   1005 
   1006 	/* Check if caller can retrieve the limits. */
   1007 	if (newp == NULL) {
   1008 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1009 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1010 		    KAUTH_ARG(which));
   1011 		if (error)
   1012 			goto out;
   1013 	}
   1014 
   1015 	/* Retrieve the limits. */
   1016 	node = *rnode;
   1017 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1018 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1019 		node.sysctl_data = &alim.rlim_max;
   1020 	} else {
   1021 		node.sysctl_data = &alim.rlim_cur;
   1022 	}
   1023 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1024 
   1025 	/* Return if error, or if we are only retrieving the limits. */
   1026 	if (error || newp == NULL) {
   1027 		goto out;
   1028 	}
   1029 	error = dosetrlimit(l, p, limitno, &alim);
   1030 out:
   1031 	rw_exit(&p->p_reflock);
   1032 	return error;
   1033 }
   1034 
   1035 /*
   1036  * Setup sysctl nodes.
   1037  */
   1038 static void
   1039 sysctl_proc_setup(void)
   1040 {
   1041 
   1042 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1043 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1044 		       CTLTYPE_NODE, "curproc",
   1045 		       SYSCTL_DESCR("Per-process settings"),
   1046 		       NULL, 0, NULL, 0,
   1047 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1048 
   1049 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1050 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1051 		       CTLTYPE_STRING, "corename",
   1052 		       SYSCTL_DESCR("Core file name"),
   1053 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1054 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1055 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1056 		       CTLFLAG_PERMANENT,
   1057 		       CTLTYPE_NODE, "rlimit",
   1058 		       SYSCTL_DESCR("Process limits"),
   1059 		       NULL, 0, NULL, 0,
   1060 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1061 
   1062 #define create_proc_plimit(s, n) do {					\
   1063 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1064 		       CTLFLAG_PERMANENT,				\
   1065 		       CTLTYPE_NODE, s,					\
   1066 		       SYSCTL_DESCR("Process " s " limits"),		\
   1067 		       NULL, 0, NULL, 0,				\
   1068 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1069 		       CTL_EOL);					\
   1070 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1071 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1072 		       CTLTYPE_QUAD, "soft",				\
   1073 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1074 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1075 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1076 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1077 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1078 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1079 		       CTLTYPE_QUAD, "hard",				\
   1080 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1081 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1082 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1083 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1084 	} while (0/*CONSTCOND*/)
   1085 
   1086 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1087 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1088 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1089 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1090 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1091 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1092 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1093 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1094 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1095 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1096 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1097 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1098 
   1099 #undef create_proc_plimit
   1100 
   1101 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1102 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1103 		       CTLTYPE_INT, "stopfork",
   1104 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1105 		       sysctl_proc_stop, 0, NULL, 0,
   1106 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1107 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1108 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1109 		       CTLTYPE_INT, "stopexec",
   1110 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1111 		       sysctl_proc_stop, 0, NULL, 0,
   1112 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1113 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1114 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1115 		       CTLTYPE_INT, "stopexit",
   1116 		       SYSCTL_DESCR("Stop process before completing exit"),
   1117 		       sysctl_proc_stop, 0, NULL, 0,
   1118 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1119 }
   1120